Electronic Journal of Differential Equations, Vol. 2008(2008), No. 128, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A NOTE ON THE EXISTENCE OF Ψ -BOUNDED SOLUTIONS FOR A SYSTEM OF DIFFERENTIAL EQUATIONS ON \mathbb{R}

AUREL DIAMANDESCU

ABSTRACT. We prove a necessary and sufficient condition for the existence of Ψ -bounded solutions of a linear nonhomogeneous system of ordinary differential equations on \mathbb{R} .

1. INTRODUCTION

The aim of this paper is to give a necessary and sufficient condition so that the nonhomogeneous system of ordinary differential equations

$$r' = A(t)x + f(t) \tag{1.1}$$

has at least one Ψ -bounded solution on \mathbb{R} for every continuous and Ψ -bounded function f on \mathbb{R} .

Here, Ψ is a continuous matrix function on \mathbb{R} . The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of boundedness of the solutions for the system (1.1) was studied in [4] The problem of Ψ -boundedness of the solutions for systems of ordinary differential equations has been studied in many papers, as e.q. [1, 3, 9, 11]. The fact that in [1] the function Ψ is a scalar continuous function and increasing, differentiable and such that $\Psi(t) \geq 1$ on \mathbb{R}_+ and $\lim_{t\to\infty} \Psi(t) = b \in \mathbb{R}_+$ does not enable a deeper analysis of the asymptotic properties of the solutions of a differential equation than the notions of stability or boundedness. In [3], the function Ψ is a scalar continuous function, nondecreasing and such that $\Psi(t) \geq 1$ on \mathbb{R}_+ . In [9, 11], Ψ is a scalar continuous function.

In [5, 6, 7], the author proposes a novel concept, Ψ -boundedness of solutions, Ψ being a continuous matrix function, which is interesting and useful in some practical cases and presents the existence conditions for such solutions on \mathbb{R}_+ . In [2], the author associates this problem with the concept of Ψ -dichotomy on \mathbb{R} of the system x' = A(t)x. Also, in [10], the authors define Ψ -boundedness of solutions for difference equations via Ψ -bounded sequences and establish a necessary and sufficient condition for existence of Ψ -bounded solutions for a nonhomogeneous linear difference equation.

Key words and phrases. Ψ -bounded solution; Ψ -boundedness; boundedness.

²⁰⁰⁰ Mathematics Subject Classification. 34D05, 34C11.

^{©2008} Texas State University - San Marcos.

Submitted April 10, 2008. Published September 18, 2008.

Let \mathbb{R}^d be the Euclidean *d*-space. For $x = (x_1, x_2, x_3, \dots, x_d)^T \in \mathbb{R}^d$, let ||x|| = $\max\{|x_1|, |x_2|, |x_3|, \dots, |x_d|\}$ be the norm of x. For a $d \times d$ real matrix $A = (a_{ij})$, we define the norm |A| by $|A| = \sup_{\|x\| \le 1} \|Ax\|$. It is well-known that |A| = $\max_{1 \le i \le d} \{ \sum_{j=1}^{d} |a_{ij}| \}.$ Let $\Psi_i : \mathbb{R} \to (0, \infty), i = 1, 2, \dots, d$, be continuous functions and

$$\Psi = \operatorname{diag}[\Psi_1, \Psi_2, \dots \Psi_d].$$

Definition. A function $\varphi : \mathbb{R} \to \mathbb{R}^d$ is said to be Ψ -bounded on \mathbb{R} if $\Psi \varphi$ is bounded on \mathbb{R} .

By a solution of (1.1), we mean a continuously differentiable function $x: \mathbb{R} \to \mathbb{R}^d$ satisfying the system for all $t \in \mathbb{R}$.

Let A be a continuous $d \times d$ real matrix and the associated linear differential system

$$y' = A(t)y. \tag{1.2}$$

Let Y be the fundamental matrix of (1.2) for which $Y(0) = I_d$ (identity $d \times d$ matrix).

Let the vector space \mathbb{R}^d be represented as a direct sum of three subspaces X_- , X_0, X_+ such that a solution y(t) of (1.2) is Ψ -bounded on \mathbb{R} if and only if $y(0) \in X_0$ and Ψ -bounded on $\mathbb{R}_+ = [0, \infty)$ if and only if $y(0) \in X_- \oplus X_0$. Also, let P_-, P_0 , P_+ denote the corresponding projection of \mathbb{R}^d onto X_- , X_0 , X_+ respectively.

MAIN RESULT

We are now in position to prove our main result.

Theorem 1.1. If A is a continuous $d \times d$ real matrix on \mathbb{R} , then, the system (1.1) has at least one Ψ -bounded solution on \mathbb{R} for every continuous and Ψ -bounded function $f: \mathbb{R} \to \mathbb{R}^d$ if and only if there exists a positive constant K such that

$$\int_{-\infty}^{t} |\Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)|ds + \int_{t}^{0} |\Psi(t)Y(t)(P_{0}+P_{+})Y^{-1}(s)\Psi^{-1}(s)|ds + \int_{0}^{\infty} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|ds \leq K, \quad fort \geq 0,$$
(1.3)

and

$$\int_{-\infty}^{0} |\Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)|ds + \int_{0}^{t} |\Psi(t)Y(t)(P_{0}+P_{-})Y^{-1}(s)\Psi^{-1}(s)|ds - \int_{t}^{\infty} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|ds \le K, \quad fort \ge 0$$

Proof. First, we prove the "only if" part. Suppose that the system (1.1) has at least one Ψ -bounded solution on \mathbb{R} for every continuous and Ψ -bounded function $f: \mathbb{R} \to \mathbb{R}^d$ on \mathbb{R} .

We shall denote by B the Banach space of all Ψ -bounded and continuous functions $x : \mathbb{R} \to \mathbb{R}^d$ with the norm $\|\mathbf{x}\|_B = \sup_{t \in \mathbb{R}} \|\Psi(t)x(t)\|$.

Let D denote the set of all Ψ -bounded and continuously differentiable functions $x : \mathbb{R} \to \mathbb{R}^d$ such that $x(0) \in X_- \oplus X_+$ and $x' - Ax \in B$. Evidently, D is a vector space. We define a norm in D by setting $||x||_D = ||x||_B + ||x' - Ax||_B$.

Step 1. $(D, \|\cdot\|_D)$ is a Banach space. Let $(x_n)_{n \in \mathbb{N}}$ be a fundamental sequence of elements of D. Then, $(x_n)_{n \in \mathbb{N}}$ is a fundamental sequence in B. Therefore, there exists a continuous and Ψ -bounded function $x : \mathbb{R} \to \mathbb{R}^d$ such that $\lim_{n\to\infty} \Psi(t)x_n(t) = \Psi(t)x(t)$, uniformly on \mathbb{R} . From the inequality

$$|x_n(t) - x(t)|| \le |\Psi^{-1}(t)| ||\Psi(t)x_n(t) - \Psi(t)x(t)||,$$

it follows that $\lim_{n\to\infty} x_n(t) = x(t)$, uniformly on every compact of \mathbb{R} . Thus, $x(0) \in X_- \oplus X_+$.

Similarly, $(x'_n - Ax_n)_{n \in \mathbb{N}}$ is a fundamental sequence in B. Therefore, there exists a continuous and Ψ -bounded function $f : \mathbb{R} \to \mathbb{R}^d$ such that

$$\lim_{n \to \infty} \Psi(t)(x'_n(t) - A(t)x_n(t)) = \Psi(t)f(t), \quad \text{uniformly on } \mathbb{R}.$$

Similarly,

 $\lim_{n \to \infty} (x'_n(t) - A(t)x_n(t)) = f(t), \quad \text{uniformly on every compact subset of } \mathbb{R}.$

For any fixed $t \in \mathbb{R}$, we have

$$\begin{aligned} x(t) - x(0) &= \lim_{n \to \infty} (x_n(t) - x_n(0)) \\ &= \lim_{n \to \infty} \int_0^t x'_n(s) ds \\ &= \lim_{n \to \infty} \int_0^t [(x'_n(s) - A(s)x_n(s)) + A(s)x_n(s)] ds \\ &= \int_0^t (f(s) + A(s)x(s)) ds. \end{aligned}$$

Hence, the function x is continuously differentiable on \mathbb{R} and

$$x'(t) = A(t)x(t) + f(t), \quad t \in \mathbb{R}.$$

Thus, $x \in D$. On the other hand, from

$$\lim_{n \to \infty} \Psi(t) x_n(t) = \Psi(t) x(t), \quad \text{uniformly on } \mathbb{R},$$
$$\lim_{n \to \infty} \Psi(t) (x'_n(t) - A(t) x_n(t)) = \Psi(t) (x'(t) - A(t) x(t)), \quad \text{uniformly on } \mathbb{R},$$

it follows that $\lim_{n\to\infty} ||x_n - x||_D = 0$. This proves that $(D, || \cdot ||_D)$ is a Banach space.

Step 2. There exists a positive constant K_0 such that, for every $f \in B$ and for corresponding solution $x \in D$ of (1.1), we have

$$\sup_{t \in \mathbb{R}} \|\Psi(t)x(t)\| \le K_0 \sup_{t \in \mathbb{R}} \|\Psi(t)f(t)\|,$$

or

$$\sup_{t \in \mathbb{R}} \max_{1 \le i \le d} |\Psi_i(t)x_i(t)| \le K_0 \sup_{t \in \mathbb{R}} \max_{1 \le i \le d} |\Psi_i(t)f_i(t)|.$$
(1.4)

For this, define the mapping $T: D \to B$, Tx = x' - Ax. This mapping is obviously linear and bounded, with $||T|| \leq 1$.

Let Tx = 0. Then, x' = Ax, $x \in D$. This shows that x is a Ψ -bounded solution on \mathbb{R} of (1.2). Then, $x(0) \in X_0 \cap (X_- \oplus X_+) = \{0\}$. Thus, x = 0, such that the mapping T is "one-to-one". Finally, the mapping T is "onto". In fact, for any $f \in B$, let x be the Ψ -bounded solution on \mathbb{R} of the system (1.1) which exists by assumption. Let z be the solution of the Cauchy problem

$$x' = A(t)x + f(t), \quad z(0) = (P_{-} + P_{+})x(0).$$

Then, u = x - z is a solution of (1.2) with $u(0) = x(0) - (P_- + P_+)x(0) = P_0x(0)$. From the Definition of X_0 , it follows that u is Ψ -bounded on \mathbb{R} . Thus, z belongs to D and Tz = f. Consequently, the mapping T is "onto". From a fundamental result of S.Banach: "If T is a bounded one-to-one linear operator of one Banach space onto another, then the inverse operator T^{-1} is also bounded". We have $\|\mathbf{T}^{-1}f\|_D \leq \|T^{-1}\| \|f\|_B$, for all $f \in B$.

For a given $f \in B$, let $x = T^{-1}f$ be the corresponding solution $x \in D$ of (1.1). We have $||x||_D = ||x||_B + ||x' - Ax||_B = ||x||_B + ||f||_B \le ||T^{-1}|| ||f||_B$. It follows that $||x||_B \le K_0 ||f||_B$, where $K_0 = ||T^{-1}|| - 1$, which is equivalent with (1.4). **Step 3.** The end of the proof. Let $T_1 < 0 < T_2$ be fixed points but arbitrarily

and let $f : \mathbb{R} \to \mathbb{R}^d$ be a continuous and Ψ -bounded function which vanishes on $(-\infty, T_1] \cup [T_2, +\infty)$.

It is easy to see that the function $x : \mathbb{R} \to \mathbb{R}^d$ defined by

$$x(t) = \begin{cases} -\int_{T_1}^0 Y(t)P_0Y^{-1}(s)f(s)ds - \int_{T_1}^{T_2} Y(t)P_+Y^{-1}(s)f(s)ds, & t < T_1 \\ \int_{T_1}^t Y(t)P_-Y^{-1}(s)f(s)ds + \int_0^t Y(t)P_0Y^{-1}(s)f(s)ds \\ -\int_t^{T_2} Y(t)P_+Y^{-1}(s)f(s)ds, & T_1 \le t \le T_2 \\ \int_{T_1}^{T_2} Y(t)P_-Y^{-1}(s)f(s)ds + \int_0^{T_2} Y(t)P_0Y^{-1}(s)f(s)ds, & t > T_2 \end{cases}$$

is the solution in D of the system (1.1). Putting

$$G(t,s) = \begin{cases} Y(t)P_{-}Y^{-1}(s), & t > 0, s \leq 0\\ Y(t)(P_{0}+P_{-})Y^{-1}(s), & t > 0, s > 0, s < t\\ -Y(t)P_{+}Y^{-1}(s), & t > 0, s > 0, s \geq t\\ Y(t)P_{-}Y^{-1}(s), & t \leq 0, s < t\\ -Y(t)(P_{0}+P_{+})Y^{-1}(s), & t \leq 0, s \geq t, s < 0\\ -Y(t)P_{+}Y^{-1}(s), & t \leq 0, s \geq t, s \geq 0 \end{cases}$$

we have that $x(t) = \int_{T_1}^{T_2} G(t,s) f(s) ds$, $t \in \mathbb{R}$. Indeed, • for $t > T_2$, we have

$$\begin{split} \int_{T_1}^{T_2} G(t,s)f(s)ds &= \int_{T_1}^0 Y(t)P_-Y^{-1}(s)f(s)ds + \int_0^{T_2} Y(t)(P_0+P_-)Y^{-1}(s)f(s)ds \\ &= \int_{T_1}^{T_2} Y(t)P_-Y^{-1}(s)f(s)ds + \int_0^{T_2} Y(t)P_0Y^{-1}(s)f(s)ds = x(t), \end{split}$$

• for $t \in (0, T_2]$, we have

$$\begin{split} \int_{T_1}^{T_2} G(t,s) f(s) ds &= \int_{T_1}^0 Y(t) P_- Y^{-1}(s) f(s) ds + \int_0^t Y(t) (P_0 + P_-) Y^{-1}(s) f(s) ds \\ &- \int_t^{T_2} Y(t) P_+ Y^{-1}(s) f(s) ds \\ &= \int_{T_1}^t Y(t) P_- Y^{-1}(s) f(s) ds + \int_0^t Y(t) P_0 Y^{-1}(s) f(s) ds \\ &- \int_t^{T_2} Y(t) P_+ Y^{-1}(s) f(s) ds = x(t), \end{split}$$

• for $t \in [T_1, 0]$, we have

$$\begin{split} \int_{T_1}^{T_2} G(t,s) f(s) ds &= \int_{T_1}^t Y(t) P_- Y^{-1}(s) f(s) ds - \int_t^0 Y(t) (P_0 + P_+) Y^{-1}(s) f(s) ds \\ &- \int_0^{T_2} Y(t) P_+ Y^{-1}(s) f(s) ds \\ &= \int_{T_1}^t Y(t) P_- Y^{-1}(s) f(s) ds + \int_0^t Y(t) P_0 Y^{-1}(s) f(s) ds \\ &- \int_t^{T_2} Y(t) P_+ Y^{-1}(s) f(s) ds = x(t), \end{split}$$

• for $t < T_1$, we have

$$\begin{split} &\int_{T_1}^{T_2} G(t,s)f(s)ds \\ &= -\int_{T_1}^0 Y(t)(P_0 + P_+)Y^{-1}(s)f(s)ds - \int_0^{T_2} Y(t)P_+Y^{-1}(s)f(s)ds \\ &= -\int_{T_1}^0 Y(t)P_0Y^{-1}(s)f(s)ds - \int_{T_1}^{T_2} Y(t)P_+Y^{-1}(s)f(s)ds = x(t). \end{split}$$

Now, putting $\Psi(t)G(t,s)\Psi^{-1}(s) = (G_{ij}(t,s))$, inequality (1.4) becomes

$$\left|\int_{T_{1}}^{T_{2}} \sum_{k=1}^{d} G_{ik}(t,s)\Psi_{k}(s)f_{k}(s)\,ds\right| \leq K_{0} \sup_{t\in\mathbb{R}} \max_{1\leq i\leq d} |\Psi_{i}(t)f_{i}(t)|, \quad t\in\mathbb{R},$$

 $i = 1, 2, \ldots, d$, for every $f = (f_1, f_2, \ldots, f_d) : \mathbb{R} \to \mathbb{R}^d$, continuous and Ψ -bounded, which vanishes on $(-\infty, T_1] \cup [T_2, +\infty)$.

For a fixed i and t, we consider the function f such that

$$f_k(s) = \begin{cases} \Psi_k^{-1}(s) \operatorname{sgn} G_{ik}(t,s), & T_1 \le s \le T_2 \\ 0, & \text{elsewhere} \end{cases}$$

The function $\Psi_k(s)f_k(s)$ is pointwise limit of a sequence of continuous functions having the same supremum 1. The above inequality continues to hold for the functions of this sequence. By the dominated convergence Theorem, we get

$$\int_{T_1}^{T_2} \sum_{k=1}^d |G_{ik}(t,s)| ds \le K_0, t \in \mathbb{R}, \quad i = 1, 2, \dots, d.$$

Since $|\Psi(t)G(t,s)\Psi^{-1}(s)| \leq \sum_{i,k=1}^{d} |G_{ik}(t,s)|$, it follows that

$$\int_{T_1}^{T_2} |\Psi(t)G(t,s)\Psi^{-1}(s)| ds \le dK_0.$$

This holds for any $T_1 < 0$ and $T_2 > 0$. Hence, $|\Psi(t)G(t,s)\Psi^{-1}(s)|$ is integrable over $\mathbb R$ and

$$\int_{-\infty}^{\infty} |\Psi(t)G(t,s)\Psi^{-1}(s)| ds \le dK_0, \quad for all t \in \mathbb{R}.$$

By the Definition of $\Psi(t)G(t,s)\Psi^{-1}(s)$, this is equivalent to (1.3), with $K = dK_0$.

Now, we prove the "if" part. Suppose that the fundamental matrix Y of (1.2)satisfies the conditions (1.3) for some K > 0. For a continuous and Ψ -bounded function $f: \mathbb{R} \to \mathbb{R}^d$, we consider the function $u: \mathbb{R} \to \mathbb{R}^d$, defined by

$$u(t) = \int_{-\infty}^{t} Y(t)P_{-}Y^{-1}(s)f(s)ds + \int_{0}^{t} Y(t)P_{0}Y^{-1}(s)f(s)ds - \int_{t}^{\infty} Y(t)P_{+}Y^{-1}(s)f(s)ds.$$
(1.5)

Step 4. The function u is well-defined on \mathbb{R} . For $v \ge t$, we have

$$\begin{split} &\int_{t}^{v} \|Y(t)P_{+}Y^{-1}(s)f(s)\|ds \\ &= \int_{t}^{v} \|\Psi^{-1}(t)\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)\|ds \\ &\leq |\Psi^{-1}(t)| \int_{t}^{v} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\|ds \\ &\leq |\Psi^{-1}(t)| \sup_{s\in\mathbb{R}} \|\Psi(s)f(s)\| \int_{t}^{v} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|ds. \end{split}$$

This shows that the integral $\int_t^{\infty} Y(t)P_+Y^{-1}(s)f(s)ds$ is absolutely convergent. Similarly, the integral $\int_{-\infty}^t Y(t)P_-Y^{-1}(s)f(s)ds$ is absolutely convergent. Thus, the function u is continuously differentiable on \mathbb{R} .

Step 5. The function u is a solution of the equation (1.1). For $t \in \mathbb{R}$, we have

$$\begin{split} u'(t) &= \int_{-\infty}^{t} A(t)Y(t)P_{-}Y^{-1}(s)f(s)ds + Y(t)P_{-}Y^{-1}(t)f(t) \\ &+ \int_{0}^{t} A(t)Y(t)P_{0}Y^{-1}(s)f(s)ds + Y(t)P_{0}Y^{-1}(t)f(t) \\ &- \int_{t}^{\infty} A(t)Y(t)P_{+}Y^{-1}(s)f(s)ds + Y(t)P_{+}Y^{-1}(t)f(t) \\ &= A(t)u(t) + Y(t)(P_{-} + P_{0} + P_{+})Y^{-1}(t)f(t) \\ &= A(t)u(t) + f(t), \end{split}$$

which shows that u is a solution of (1.1) on \mathbb{R} .

Step 6. The solution u is Ψ -bounded on \mathbb{R} . For $t \ge 0$, we have

$$\begin{split} \Psi(t)u(t) &= \int_{-\infty}^{t} \Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &+ \int_{0}^{t} \Psi(t)Y(t)P_{0}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &- \int_{t}^{\infty} \Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &= \int_{-\infty}^{0} \Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &+ \int_{0}^{t} \Psi(t)Y(t)(P_{0}+P_{-})Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &- \int_{t}^{\infty} \Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \,. \end{split}$$

Then

$$\|\Psi(t)u(t)\| \le K \sup_{t \in \mathbb{R}} \|\Psi(t)f(t)\|.$$

For t < 0, we have

$$\begin{split} \Psi(t)u(t) &= \int_{-\infty}^{t} \Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &+ \int_{0}^{t} \Psi(t)Y(t)P_{0}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &- \int_{t}^{\infty} \Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &= \int_{-\infty}^{t} \Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &- \int_{t}^{0} \Psi(t)Y(t)(P_{0} + P_{+})Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &- \int_{0}^{\infty} \Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \,. \end{split}$$

Then

$$\|\Psi(t)u(t)\| \le K \sup_{t \in \mathbb{R}} \|\Psi(t)f(t)\|.$$

Hence,

$$\sup_{t \in \mathbb{R}} \|\Psi(t)u(t)\| \le K \sup_{t \in \mathbb{R}} \|\Psi(t)f(t)\|,$$

which shows that u is a Ψ -bounded solution on \mathbb{R} of (1.1). The proof is now complete.

As a particular case, we have the following result.

Theorem 1.2. If the homogeneous equation (1.2) has no nontrivial Ψ -bounded solution on \mathbb{R} , then, the equation (1.1) has a unique Ψ -bounded solution on \mathbb{R} for

every continuous and Ψ -bounded function $f : \mathbb{R} \to \mathbb{R}^d$ if and only if there exists a positive constant K such that for $t \in \mathbb{R}$,

$$\int_{-\infty}^{t} |\Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)|ds + \int_{t}^{\infty} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|ds \le K$$
(1.6)

Proof. Indeed, in this case, $P_0 = 0$. Now, the Proof goes in the same way as before. We prove finally a theorem in which we will see that the asymptotic behavior of the solutions of (1.1) is determined completely by the asymptotic behavior of f as $t \to \pm \infty$.

Theorem 1.3. Suppose that:

- (1) The fundamental matrix Y(t) of (1.2) satisfies: (a) conditions (1.3) for some K > 0; (b) $H = \frac{1}{2} \frac{1}{$
 - (b) the condition $\lim_{t\to\pm\infty} |\Psi(t)Y(t)P_0| = 0;$
- (2) the continuous and Ψ -bounded function $f : \mathbb{R} \to \mathbb{R}^d$ is such that

 $\lim_{t\to\pm\infty}\|\Psi(t)f(t)\|=0.$

Then, every Ψ -bounded solution x of (1.1) satisfies

$$\lim_{t \to +\infty} \|\Psi(t)x(t)\| = 0.$$

Proof. By Theorem 1.1, for every continuous and Ψ -bounded function $f : \mathbb{R} \to \mathbb{R}^d$, the equation (1.1) has at least one Ψ -bounded solution. Let x be a Ψ -bounded solution of (1.1). Let u be defined by (1.5). This function is a Ψ -bounded solution of (1.1).

Now, let the function $y(t) = x(t) - Y(t)P_0x(0) - u(t), t \in \mathbb{R}$. Obviously, y is a Ψ -bounded solution on \mathbb{R} of (1.2). Thus, $y(0) \in X_0$. On the other hand,

$$\begin{split} y(0) &= x(0) - Y(0)P_0x(0) - u(0) \\ &= (I - P_0)x(0) - P_- \int_{-\infty}^0 Y^{-1}(s)f(s)ds + P_+ \int_0^\infty Y^{-1}(s)f(s)ds \\ &= P_-(x(0) - \int_{-\infty}^0 Y^{-1}(s)f(s)ds) \\ &+ P_+(x(0) + \int_0^\infty Y^{-1}(s)f(s)ds) \in X_- \oplus X_+. \end{split}$$

Therefore, $y(0) \in X_0 \cap (X_- \oplus X_+) = \{0\}$ and then, y = 0. It follows that

$$x(t) = Y(t)P_0x(0) + u(t), \quad t \in \mathbb{R}.$$

We prove that $\lim_{t\to\pm\infty} \|\Psi(t)u(t)\| = 0$. For a given $\varepsilon > 0$, there exists $t_1 > 0$ such that $\|\Psi(t)f(t)\| < \frac{\varepsilon}{3K}$, for all $t \ge t_1$. For t > 0, write

$$\begin{split} \Psi(t)u(t) &= \int_{-\infty}^{0} \Psi(t)Y(t)P_{-}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &+ \int_{0}^{t} \Psi(t)Y(t)(P_{0}+P_{-})Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds \\ &- \int_{t}^{\infty} \Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)\Psi(s)f(s)ds. \end{split}$$

From the hypothesis (1)(a), it follows that

$$\int_0^t |\Psi(t)Y(t)(P_0 + P_-)Y^{-1}(s)\Psi^{-1}(s)| ds \le K, t \ge 0.$$

From the [8, Lemma 1], it follows that

$$\lim_{t \to +\infty} |\Psi(t)Y(t)(P_0 + P_-)| = 0.$$

From this and from hypothesis (1)(b), it follows that $\lim_{t\to+\infty} |\Psi(t)Y(t)P_{-}| = 0$. Thus, there exists $t_2 \ge t_1$ such that, for all $t \ge t_2$,

$$|\Psi(t)Y(t)P_{-}| < \frac{\varepsilon}{3(1+\int_{-\infty}^{0} \|P_{-}Y^{-1}(s)f(s)\|ds)},$$

$$|\Psi(t)Y(t)(P_{0}+P_{-})| < \frac{\varepsilon}{3(1+\int_{0}^{t_{1}} \|Y^{-1}(s)f(s)\|ds)}.$$

Then, for $t \geq t_2$, we have

$$\begin{split} \|\Psi(t)u(t)\| &\leq |\Psi(t)Y(t)P_{-}| \int_{-\infty}^{0} \|P_{-}Y^{-1}(s)f(s)\|ds \\ &+ |\Psi(t)Y(t)(P_{0} + P_{-})| \int_{0}^{t_{1}} \|Y^{-1}(s)f(s)\|ds \\ &+ \int_{t_{1}}^{t} |\Psi(t)Y(t)(P_{0} + P_{-})Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\|ds \\ &+ \int_{t}^{\infty} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\|ds \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3K} \int_{t_{1}}^{t} |\Psi(t)Y(t)(P_{0} + P_{-})Y^{-1}(s)\Psi^{-1}(s)|ds \\ &+ \frac{\varepsilon}{3K} \int_{t}^{\infty} |\Psi(t)Y(t)P_{+}Y^{-1}(s)\Psi^{-1}(s)|\|\Psi(s)f(s)\|ds \\ &\leq \frac{2\varepsilon}{3} + \frac{\varepsilon}{3K} K = \varepsilon. \end{split}$$

This shows that $\lim_{t\to+\infty} \|\Psi(t)u(t)\| = 0.$

Now, from hypothesis (1)(b) it follows that $\lim_{t\to+\infty} \|\Psi(t)Y(t)P_0x(0)\| = 0$ and then, $\lim_{t\to+\infty} \|\Psi(t)x(t)\| = 0$. Similarly, $\lim_{t\to-\infty} \|\Psi(t)x(t)\| = 0$. The proof is now complete.

Corollary 1.4. Suppose that:

- (2) the fundamental matrix Y of (1.2) satisfies the condition (1.6) for some K > 0;
- (3) the continuous and Ψ -bounded function $f : \mathbb{R} \to \mathbb{R}^d$ is such that

$$\lim_{t \to \pm \infty} \|\Psi(t)f(t)\| = 0.$$

Then, the equation (1.1) has a unique solution x on \mathbb{R} such that

$$\lim_{t \to +\infty} \|\Psi(t)x(t)\| = 0.$$

The above result follows from the Theorems 1.2 and 1.3. Furthermore, this unique solution of (1.1) is

$$u(t) = \int_{-\infty}^{t} Y(t) P_{-} Y^{-1}(s) f(s) ds - \int_{t}^{\infty} Y(t) P_{+} Y^{-1}(s) f(s) ds.$$

Remark 1.5. If we do not have $\lim_{t\to\pm\infty} \|\Psi(t)f(t)\| = 0$, then the solution x may be such that $\lim_{t\to\pm\infty} \|\Psi(t)x(t)\| \neq 0$. This is shown by the next example: Consider the linear system (1.1) with

$$A(t) = \begin{pmatrix} 2 & 0\\ 0 & -3 \end{pmatrix}, \quad f(t) = \begin{pmatrix} e^{3t}\\ e^{-4t} \end{pmatrix}$$

A fundamental matrix for the homogeneous system (1.2) is

$$Y(t) = \begin{pmatrix} e^{2t} & 0\\ 0 & e^{-3t} \end{pmatrix}$$

Consider

$$\Psi(t) = \begin{pmatrix} e^{-3t} & 0\\ 0 & e^{4t} \end{pmatrix}.$$

Then, we have $\|\Psi(t)f(t)\| = 1$ for all $t \in \mathbb{R}$. The first condition of Theorem 1.3 is satisfied with K = 2 and

$$P_{-} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_{+} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

The solutions of the system (1.1) are

$$x(t) = \begin{pmatrix} c_1 e^{2t} + e^{3t} \\ c_2 e^{-3t} - e^{-4t} \end{pmatrix}$$

with $c_1, c_2 \in \mathbb{R}$ and $t \in \mathbb{R}$. There exists a unique Ψ -bounded solution on \mathbb{R} ,

$$x(t) = \begin{pmatrix} e^{3t} \\ -e^{-4t} \end{pmatrix},$$

but $\lim_{t \to \pm \infty} \|\Psi(t)x(t)\| = 1.$

References

- Akinyele, O.; On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), 259 - 264.
- [2] Boi, P. N.; Existence of Ψ-bounded solutions on R for nonhomogeneous linear differential equations, Electron. J. Diff. Eqns., vol. 2007(2007), No. 52. pp. 1–10.
- [3] Constantin, A.; Asymptotic Properties of Solutions of Differential Equations, Analele Universității din Timișoara, Vol. XXX, fasc. 2-3, 1992, Seria Științe Matematice, 183 225.
- [4] Coppel, W. A.; Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
- [5] Diamandescu, A.; Existence of Ψ-bounded solutions for a system of differential equations, Electronic J. Diff. Eqns., Vol. 2004(2004), No. 63, pp. 1 - 6,
- [6] Diamandescu, A.; Note on the Ψ-boundedness of the solutions of a system of differential equations, Acta. Math. Univ. Comenianae, Vol. LXXIII, 2(2004), pp. 223 - 233
- [7] Diamandescu, A.; A Note on the Ψ-boundedness for differential systems, Bull. Math. Soc. Sc. Math. Roumanie, Tome 48(96), No. 1, 2005, pp. 33 - 43.
- [8] Diamandescu, A.; On the Ψ-Instability of a Nonlinear Volterra Integro-Differential System, Bull. Math. Soc. Sc. Math. Roumanie, Tome 46(94), No. 3-4, 2003, pp. 103 - 119.
- [9] Hallam, T. G.; On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. math. Journal, Vol. 16(1969), 353-363.

- [10] Han, Y., Hong, J.; Existence of Ψ-bounded solutions for linear difference equations, Applied mathematics Letters 20 (2007) 301-305.
- [11] Morchalo, J. ; On (ΨL_p) -stability of nonlinear systems of differential equations, Analele Universit ății "Al. I. Cuza", Iași, XXXVI, I, Matematică, (1990), 4, 353-360.

Aurel Diamandescu

UNIVERSITY OF CRAIOVA, DEPARTMENT OF APPLIED MATHEMATICS, 13, "AL. I. CUZA" ST., 200585, CRAIOVA, ROMANIA

E-mail address: adiamandescu@central.ucv.ro