Electronic Journal of Differential Equations, Vol. 2008(2008), No. 128, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A NOTE ON THE EXISTENCE OF Ψ-BOUNDED SOLUTIONS FOR A SYSTEM OF DIFFERENTIAL EQUATIONS ON \mathbb{R}

AUREL DIAMANDESCU

Abstract

We prove a necessary and sufficient condition for the existence of Ψ-bounded solutions of a linear nonhomogeneous system of ordinary differential equations on \mathbb{R}.

1. Introduction

The aim of this paper is to give a necessary and sufficient condition so that the nonhomogeneous system of ordinary differential equations

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t) \tag{1.1}
\end{equation*}
$$

has at least one Ψ-bounded solution on \mathbb{R} for every continuous and Ψ-bounded function f on \mathbb{R}.

Here, Ψ is a continuous matrix function on \mathbb{R}. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the components of the solutions.

The problem of boundedness of the solutions for the system (1.1) was studied in [4] The problem of Ψ-boundedness of the solutions for systems of ordinary differential equations has been studied in many papers, as e.q. [1, 3, 9, 11]. The fact that in [1] the function Ψ is a scalar continuous function and increasing, differentiable and such that $\Psi(t) \geq 1$ on \mathbb{R}_{+}and $\lim _{t \rightarrow \infty} \Psi(t)=b \in \mathbb{R}_{+}$does not enable a deeper analysis of the asymptotic properties of the solutions of a differential equation than the notions of stability or boundedness. In [3], the function Ψ is a scalar continuous function, nondecreasing and such that $\Psi(\mathrm{t}) \geq 1$ on \mathbb{R}_{+}. In [9, 11], Ψ is a scalar continuous function.

In [5, 6, 7], the author proposes a novel concept, Ψ-boundedness of solutions, Ψ being a continuous matrix function, which is interesting and useful in some practical cases and presents the existence conditions for such solutions on \mathbb{R}_{+}. In [2, the author associates this problem with the concept of Ψ-dichotomy on \mathbb{R} of the system $x^{\prime}=A(t) x$. Also, in [10], the authors define Ψ-boundedness of solutions for difference equations via Ψ-bounded sequences and establish a necessary and sufficient condition for existence of Ψ-bounded solutions for a nonhomogeneous linear difference equation.

[^0]Let \mathbb{R}^{d} be the Euclidean d-space. For $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right)^{T} \in \mathbb{R}^{d}$, let $\|x\|=$ $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \ldots,\left|x_{d}\right|\right\}$ be the norm of x. For a $d \times d$ real matrix $A=\left(a_{i j}\right)$, we define the norm $|A|$ by $|A|=\sup _{\|x\| \leq 1}\|A x\|$. It is well-known that $|A|=$ $\max _{1 \leq i \leq d}\left\{\sum_{j=1}^{d}\left|a_{i j}\right|\right\}$.

Let $\Psi_{i}: \mathbb{R} \rightarrow(0, \infty), i=1,2, \ldots, d$, be continuous functions and

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{d}\right]
$$

Definition. A function $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is said to be Ψ-bounded on \mathbb{R} if $\Psi \varphi$ is bounded on \mathbb{R}.

By a solution of (1.1), we mean a continuously differentiable function $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ satisfying the system for all $t \in \mathbb{R}$.

Let A be a continuous $d \times d$ real matrix and the associated linear differential system

$$
\begin{equation*}
y^{\prime}=A(t) y . \tag{1.2}
\end{equation*}
$$

Let Y be the fundamental matrix of 1.2 for which $Y(0)=I_{d}$ (identity $d \times d$ matrix).

Let the vector space \mathbb{R}^{d} be represented as a direct sum of three subspaces X_{-}, X_{0}, X_{+}such that a solution $y(t)$ of 1.2 is Ψ-bounded on \mathbb{R} if and only if $y(0) \in X_{0}$ and Ψ-bounded on $\mathbb{R}_{+}=[0, \infty)$ if and only if $y(0) \in X_{-} \oplus X_{0}$. Also, let P_{-}, P_{0}, P_{+}denote the corresponding projection of \mathbb{R}^{d} onto X_{-}, X_{0}, X_{+}respectively.

Main Result

We are now in position to prove our main result.
Theorem 1.1. If Ais a continuous $d \times d$ real matrix on \mathbb{R}, then, the system (1.1) has at least one Ψ-bounded solution on \mathbb{R} for every continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ if and only if there exists a positive constant K such that

$$
\begin{align*}
& \int_{-\infty}^{t}\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right| d s \\
& +\int_{t}^{0}\left|\Psi(t) Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) \Psi^{-1}(s)\right| d s \tag{1.3}\\
& +\int_{0}^{\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K, \quad \text { fort } \geq 0
\end{align*}
$$

and

$$
\begin{aligned}
& \int_{-\infty}^{0}\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right| d s \\
& +\int_{0}^{t}\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s)\right| d s \\
& \int_{t}^{\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K, \quad \text { fort } \geq 0
\end{aligned}
$$

Proof. First, we prove the "only if" part. Suppose that the system 1.1 has at least one Ψ-bounded solution on \mathbb{R} for every continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ on \mathbb{R}.

We shall denote by B the Banach space of all Ψ-bounded and continuous functions $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ with the norm $\|\mathrm{x}\|_{B}=\sup _{t \in \mathbb{R}}\|\Psi(t) x(t)\|$.

Let D denote the set of all Ψ-bounded and continuously differentiable functions $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ such that $x(0) \in X_{-} \oplus X_{+}$and $x^{\prime}-A x \in B$. Evidently, D is a vector space. We define a norm in D by setting $\|x\|_{D}=\|x\|_{B}+\left\|x^{\prime}-A x\right\|_{B}$.
Step 1. $\left(D,\|\cdot\|_{D}\right)$ is a Banach space. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a fundamental sequence of elements of D. Then, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a fundamental sequence in B. Therefore, there exists a continuous and Ψ-bounded function $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ such that $\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=$ $\Psi(t) x(t)$, uniformly on \mathbb{R}. From the inequality

$$
\left\|x_{n}(t)-x(t)\right\| \leq \mid \Psi^{-1}(t)\| \| \Psi(t) x_{n}(t)-\Psi(t) x(t) \|
$$

it follows that $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$, uniformly on every compact of \mathbb{R}. Thus, $x(0) \in X_{-} \oplus X_{+}$.

Similarly, $\left(x_{n}^{\prime}-A x_{n}\right)_{n \in \mathbb{N}}$ is a fundamental sequence in B. Therefore, there exists a continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ such that

$$
\lim _{n \rightarrow \infty} \Psi(t)\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)=\Psi(t) f(t), \quad \text { uniformly on } \mathbb{R}
$$

Similarly,

$$
\lim _{n \rightarrow \infty}\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)=f(t), \quad \text { uniformly on every compact subset of } \mathbb{R} .
$$

For any fixed $t \in \mathbb{R}$, we have

$$
\begin{aligned}
x(t)-x(0) & =\lim _{n \rightarrow \infty}\left(x_{n}(t)-x_{n}(0)\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t} x_{n}^{\prime}(s) d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t}\left[\left(x_{n}^{\prime}(s)-A(s) x_{n}(s)\right)+A(s) x_{n}(s)\right] d s \\
& =\int_{0}^{t}(f(s)+A(s) x(s)) d s
\end{aligned}
$$

Hence, the function x is continuously differentiable on \mathbb{R} and

$$
x^{\prime}(t)=A(t) x(t)+f(t), \quad t \in \mathbb{R}
$$

Thus, $x \in D$. On the other hand, from

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), & \text { uniformly on } \mathbb{R} \\
\lim _{n \rightarrow \infty} \Psi(t)\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)=\Psi(t)\left(x^{\prime}(t)-A(t) x(t)\right), & \text { uniformly on } \mathbb{R}
\end{aligned}
$$

it follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{D}=0$. This proves that $\left(D,\|\cdot\|_{D}\right)$ is a Banach space.
Step 2. There exists a positive constant K_{0} such that, for every $f \in B$ and for corresponding solution $x \in D$ of (1.1), we have

$$
\sup _{t \in \mathbb{R}}\|\Psi(t) x(t)\| \leq K_{0} \sup _{t \in \mathbb{R}}\|\Psi(t) f(t)\|
$$

or

$$
\begin{equation*}
\sup _{t \in \mathbb{R}} \max _{1 \leq i \leq d}\left|\Psi_{i}(t) x_{i}(t)\right| \leq K_{0} \sup _{t \in \mathbb{R}} \max _{1 \leq i \leq d}\left|\Psi_{i}(t) f_{i}(t)\right| \tag{1.4}
\end{equation*}
$$

For this, define the mapping $T: D \rightarrow B, T x=x^{\prime}-A x$. This mapping is obviously linear and bounded, with $\|T\| \leq 1$.

Let $T x=0$. Then, $x^{\prime}=A x, x \in D$. This shows that x is a Ψ-bounded solution on \mathbb{R} of 1.2$)$. Then, $x(0) \in X_{0} \cap\left(X_{-} \oplus X_{+}\right)=\{0\}$. Thus, $x=0$, such that the mapping T is "one-to-one".

Finally, the mapping T is "onto". In fact, for any $f \in B$, let x be the Ψ-bounded solution on \mathbb{R} of the system (1.1) which exists by assumption. Let z be the solution of the Cauchy problem

$$
x^{\prime}=A(t) x+f(t), \quad z(0)=\left(P_{-}+P_{+}\right) x(0)
$$

Then, $u=x-z$ is a solution of 1.2 with $u(0)=x(0)-\left(P_{-}+P_{+}\right) x(0)=P_{0} x(0)$. From the Definition of X_{0}, it follows that u is Ψ-bounded on \mathbb{R}. Thus, z belongs to D and $\mathrm{Tz}=\mathrm{f}$. Consequently, the mapping T is "onto". From a fundamental result of S.Banach: "If T is a bounded one-to-one linear operator of one Banach space onto another, then the inverse operator T^{-1} is also bounded". We have $\left\|\mathrm{T}^{-1} f\right\|_{D} \leq\left\|T^{-1}\right\|\|f\|_{B}$, for all $f \in B$.

For a given $f \in B$, let $x=T^{-1} f$ be the corresponding solution $x \in D$ of 1.1). We have $\|x\|_{D}=\|x\|_{B}+\left\|x^{\prime}-A x\right\|_{B}=\|x\|_{B}+\|f\|_{B} \leq\left\|T^{-1}\right\|\|f\|_{B}$. It follows that $\|x\|_{B} \leq K_{0}\|f\|_{B}$, where $K_{0}=\left\|T^{-1}\right\|-1$, which is equivalent with (1.4).
Step 3. The end of the proof. Let $T_{1}<0<T_{2}$ be fixed points but arbitrarily and let $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ be a continuous and Ψ-bounded function which vanishes on $\left(-\infty, T_{1}\right] \cup\left[T_{2},+\infty\right)$.

It is easy to see that the function $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ defined by

$$
x(t)= \begin{cases}-\int_{T_{1}}^{0} Y(t) P_{0} Y^{-1}(s) f(s) d s-\int_{T_{1}}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s, & t<T_{1} \\ \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s & \\ -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s & T_{1} \leq t \leq T_{2} \\ \int_{T_{1}}^{T_{2}} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{T_{2}} Y(t) P_{0} Y^{-1}(s) f(s) d s, & t>T_{2}\end{cases}
$$

is the solution in D of the system (1.1). Putting

$$
G(t, s)= \begin{cases}Y(t) P_{-} Y^{-1}(s), & t>0, s \leq 0 \\ Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s), & t>0, s>0, s<t \\ -Y(t) P_{+} Y^{-1}(s), & t>0, s>0, s \geq t \\ Y(t) P_{-} Y^{-1}(s), & t \leq 0, s<t \\ -Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s), & t \leq 0, s \geq t, s<0 \\ -Y(t) P_{+} Y^{-1}(s), & t \leq 0, s \geq t, s \geq 0\end{cases}
$$

we have that $x(t)=\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s, t \in \mathbb{R}$. Indeed,

- for $t>T_{2}$, we have

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s & =\int_{T_{1}}^{0} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{T_{2}} Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) f(s) d s \\
& =\int_{T_{1}}^{T_{2}} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{T_{2}} Y(t) P_{0} Y^{-1}(s) f(s) d s=x(t)
\end{aligned}
$$

- for $t \in\left(0, T_{2}\right]$, we have

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s= & \int_{T_{1}}^{0} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) f(s) d s \\
& -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
= & \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s \\
& -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s=x(t)
\end{aligned}
$$

- for $t \in\left[T_{1}, 0\right]$, we have

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s= & \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s-\int_{t}^{0} Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) f(s) d s \\
& -\int_{0}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
= & \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s \\
- & \int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s=x(t)
\end{aligned}
$$

- for $t<T_{1}$, we have

$$
\begin{aligned}
& \int_{T_{1}}^{T_{2}} G(t, s) f(s) d s \\
& =-\int_{T_{1}}^{0} Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) f(s) d s-\int_{0}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
& =-\int_{T_{1}}^{0} Y(t) P_{0} Y^{-1}(s) f(s) d s-\int_{T_{1}}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s=x(t)
\end{aligned}
$$

Now, putting $\Psi(t) G(t, s) \Psi^{-1}(s)=\left(G_{i j}(t, s)\right)$, inequality (1.4) becomes

$$
\left|\int_{T_{1}}^{T_{2}} \sum_{k=1}^{d} G_{i k}(t, s) \Psi_{k}(s) f_{k}(s) d s\right| \leq K_{0} \sup _{t \in \mathbb{R}} \max _{1 \leq i \leq d}\left|\Psi_{i}(t) f_{i}(t)\right|, \quad t \in \mathbb{R}
$$

$i=1,2, \ldots, d$, for every $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right): \mathbb{R} \rightarrow \mathbb{R}^{d}$, continuous and Ψ-bounded, which vanishes on $\left(-\infty, T_{1}\right] \cup\left[T_{2},+\infty\right)$.

For a fixed i and t, we consider the function f such that

$$
f_{k}(s)= \begin{cases}\Psi_{k}^{-1}(s) \operatorname{sgn} G_{i k}(t, s), & T_{1} \leq s \leq T_{2} \\ 0, & \text { elsewhere }\end{cases}
$$

The function $\Psi_{k}(s) f_{k}(s)$ is pointwise limit of a sequence of continuous functions having the same supremum 1. The above inequality continues to hold for the functions of this sequence. By the dominated convergence Theorem, we get

$$
\int_{T_{1}}^{T_{2}} \sum_{k=1}^{d}\left|G_{i k}(t, s)\right| d s \leq K_{0}, t \in \mathbb{R}, \quad i=1,2, \ldots, d
$$

Since $\left|\Psi(t) G(t, s) \Psi^{-1}(s)\right| \leq \sum_{i, k=1}^{d}\left|G_{i k}(t, s)\right|$, it follows that

$$
\int_{T_{1}}^{T_{2}}\left|\Psi(t) G(t, s) \Psi^{-1}(s)\right| d s \leq d K_{0}
$$

This holds for any $T_{1}<0$ and $T_{2}>0$. Hence, $\left|\Psi(t) G(t, s) \Psi^{-1}(s)\right|$ is integrable over \mathbb{R} and

$$
\int_{-\infty}^{\infty}\left|\Psi(t) G(t, s) \Psi^{-1}(s)\right| d s \leq d K_{0}, \quad \text { forallt } \in \mathbb{R}
$$

By the Definition of $\Psi(t) G(t, s) \Psi^{-1}(s)$, this is equivalent to 1.3), with $K=d K_{0}$.
Now, we prove the "if" part. Suppose that the fundamental matrix Y of 1.2 satisfies the conditions 1.3 for some $K>0$. For a continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$, we consider the function $u: \mathbb{R} \rightarrow \mathbb{R}^{d}$, defined by

$$
\begin{align*}
u(t)= & \int_{-\infty}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s \\
& +\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s-\int_{t}^{\infty} Y(t) P_{+} Y^{-1}(s) f(s) d s \tag{1.5}
\end{align*}
$$

Step 4. The function u is well-defined on \mathbb{R}. For $\mathrm{v} \geq t$, we have

$$
\begin{aligned}
& \int_{t}^{v}\left\|Y(t) P_{+} Y^{-1}(s) f(s)\right\| d s \\
& =\int_{t}^{v}\left\|\Psi^{-1}(t) \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s)\right\| d s \\
& \leq\left|\Psi^{-1}(t)\right| \int_{t}^{v}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
& \leq\left|\Psi^{-1}(t)\right| \sup _{s \in \mathbb{R}}\|\Psi(s) f(s)\| \int_{t}^{v}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| d s
\end{aligned}
$$

This shows that the integral $\int_{t}^{\infty} Y(t) P_{+} Y^{-1}(s) f(s) d s$ is absolutely convergent.
Similarly, the integral $\int_{-\infty}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s$ is absolutely convergent. Thus, the function u is continuously differentiable on \mathbb{R}.
Step 5. The function u is a solution of the equation 1.1. For $t \in \mathbb{R}$, we have

$$
\begin{aligned}
u^{\prime}(t)= & \int_{-\infty}^{t} A(t) Y(t) P_{-} Y^{-1}(s) f(s) d s+Y(t) P_{-} Y^{-1}(t) f(t) \\
& +\int_{0}^{t} A(t) Y(t) P_{0} Y^{-1}(s) f(s) d s+Y(t) P_{0} Y^{-1}(t) f(t) \\
& -\int_{t}^{\infty} A(t) Y(t) P_{+} Y^{-1}(s) f(s) d s+Y(t) P_{+} Y^{-1}(t) f(t) \\
= & A(t) u(t)+Y(t)\left(P_{-}+P_{0}+P_{+}\right) Y^{-1}(t) f(t) \\
= & A(t) u(t)+f(t)
\end{aligned}
$$

which shows that u is a solution of 1.1 on \mathbb{R}.

Step 6. The solution u is Ψ-bounded on \mathbb{R}. For $t \geq 0$, we have

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t) P_{0} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
= & \int_{-\infty}^{0} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

Then

$$
\|\Psi(t) u(t)\| \leq K \sup _{t \in \mathbb{R}}\|\Psi(t) f(t)\|
$$

For $\mathrm{t}<0$, we have

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t) P_{0} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{0} \Psi(t) Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{0}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

Then

$$
\|\Psi(t) u(t)\| \leq K \sup _{t \in \mathbb{R}}\|\Psi(t) f(t)\|
$$

Hence,

$$
\sup _{t \in \mathbb{R}}\|\Psi(t) u(t)\| \leq K \sup _{t \in \mathbb{R}}\|\Psi(t) f(t)\|
$$

which shows that u is a Ψ-bounded solution on \mathbb{R} of 1.1 . The proof is now complete.

As a particular case, we have the following result.
Theorem 1.2. If the homogeneous equation (1.2) has no nontrivial Ψ-bounded solution on \mathbb{R}, then, the equation (1.1) has a unique Ψ-bounded solution on \mathbb{R} for
every continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ if and only if there exists a positive constant K such that for $t \in \mathbb{R}$,

$$
\begin{equation*}
\int_{-\infty}^{t}\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right| d s+\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K \tag{1.6}
\end{equation*}
$$

Proof. Indeed, in this case, $P_{0}=0$. Now, the Proof goes in the same way as before. We prove finally a theorem in which we will see that the asymptotic behavior of the solutions of 1.1 is determined completely by the asymptotic behavior of f as $t \rightarrow \pm \infty$.

Theorem 1.3. Suppose that:
(1) The fundamental matrix $Y(t)$ of (1.2) satisfies:
(a) conditions 1.3) for some $K>0$;
(b) the condition $\lim _{t \rightarrow \pm \infty}\left|\Psi(t) Y(t) P_{0}\right|=0$;
(2) the continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is such that

$$
\lim _{t \rightarrow \pm \infty}\|\Psi(t) f(t)\|=0
$$

Then, every Ψ-bounded solution x of (1.1) satisfies

$$
\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=0
$$

Proof. By Theorem 1.1, for every continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$, the equation (1.1) has at least one Ψ-bounded solution. Let x be a Ψ-bounded solution of 1.1 . Let u be defined by 1.5 . This function is a Ψ-bounded solution of (1.1).

Now, let the function $y(t)=x(t)-Y(t) P_{0} x(0)-u(t), t \in \mathbb{R}$. Obviously, y is a Ψ-bounded solution on \mathbb{R} of $\sqrt{1.2}$. Thus, $y(0) \in X_{0}$. On the other hand,

$$
\begin{aligned}
y(0)= & x(0)-Y(0) P_{0} x(0)-u(0) \\
= & \left(I-P_{0}\right) x(0)-P_{-} \int_{-\infty}^{0} Y^{-1}(s) f(s) d s+P_{+} \int_{0}^{\infty} Y^{-1}(s) f(s) d s \\
= & P_{-}\left(x(0)-\int_{-\infty}^{0} Y^{-1}(s) f(s) d s\right) \\
& +P_{+}\left(x(0)+\int_{0}^{\infty} Y^{-1}(s) f(s) d s\right) \in X_{-} \oplus X_{+}
\end{aligned}
$$

Therefore, $y(0) \in X_{0} \cap\left(X_{-} \oplus X_{+}\right)=\{0\}$ and then, $y=0$. It follows that

$$
x(t)=Y(t) P_{0} x(0)+u(t), \quad t \in \mathbb{R} .
$$

We prove that $\lim _{t \rightarrow \pm \infty}\|\Psi(t) u(t)\|=0$. For a given $\varepsilon>0$, there exists $t_{1}>0$ such that $\|\Psi(t) f(t)\|<\frac{\varepsilon}{3 K}$, for all $t \geq t_{1}$. For $t>0$, write

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{0} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

From the hypothesis (1)(a), it follows that

$$
\int_{0}^{t}\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq K, t \geq 0
$$

From the [8, Lemma 1], it follows that

$$
\lim _{t \rightarrow+\infty}\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right)\right|=0
$$

From this and from hypothesis (1)(b), it follows that $\lim _{t \rightarrow+\infty}\left|\Psi(t) Y(t) P_{-}\right|=0$. Thus, there exists $t_{2} \geq t_{1}$ such that, for all $t \geq t_{2}$,

$$
\begin{gathered}
\left|\Psi(t) Y(t) P_{-}\right|<\frac{\varepsilon}{3\left(1+\int_{-\infty}^{0}\left\|P_{-} Y^{-1}(s) f(s)\right\| d s\right)} \\
\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right)\right|<\frac{\varepsilon}{3\left(1+\int_{0}^{t_{1}}\left\|Y^{-1}(s) f(s)\right\| d s\right)}
\end{gathered}
$$

Then, for $t \geq t_{2}$, we have

$$
\begin{aligned}
\|\Psi(t) u(t)\| \leq & \left|\Psi(t) Y(t) P_{-}\right| \int_{-\infty}^{0}\left\|P_{-} Y^{-1}(s) f(s)\right\| d s \\
& +\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right)\right| \int_{0}^{t_{1}}\left\|Y^{-1}(s) f(s)\right\| d s \\
& +\int_{t_{1}}^{t}\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
& +\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
< & \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3 K} \int_{t_{1}}^{t}\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s)\right| d s \\
& +\frac{\varepsilon}{3 K} \int_{t}^{\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
\leq & \frac{2 \varepsilon}{3}+\frac{\varepsilon}{3 K} K=\varepsilon .
\end{aligned}
$$

This shows that $\lim _{t \rightarrow+\infty}\|\Psi(t) u(t)\|=0$.
Now, from hypothesis (1)(b) it follows that $\lim _{t \rightarrow+\infty}\left\|\Psi(t) Y(t) P_{0} x(0)\right\|=0$ and then, $\lim _{t \rightarrow+\infty}\|\Psi(t) x(t)\|=0$. Similarly, $\lim _{t \rightarrow-\infty}\|\Psi(t) x(t)\|=0$. The proof is now complete.

Corollary 1.4. Suppose that:
(1) The homogeneous equation $\sqrt{1.2}$ has no nontrivial Ψ-bounded solution on \mathbb{R};
(2) the fundamental matrix Y of 1.2 satisfies the condition 1.6 for some $K>0$;
(3) the continuous and Ψ-bounded function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is such that

$$
\lim _{t \rightarrow \pm \infty}\|\Psi(t) f(t)\|=0
$$

Then, the equation (1.1) has a unique solution x on \mathbb{R} such that

$$
\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=0
$$

The above result follows from the Theorems 1.2 and 1.3 . Furthermore, this unique solution of (1.1) is

$$
u(t)=\int_{-\infty}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s-\int_{t}^{\infty} Y(t) P_{+} Y^{-1}(s) f(s) d s
$$

Remark 1.5. If we do not have $\lim _{t \rightarrow \pm \infty}\|\Psi(t) f(t)\|=0$, then the solution x may be such that $\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\| \neq 0$. This is shown by the next example: Consider the linear system 1.1 with

$$
A(t)=\left(\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right), \quad f(t)=\binom{e^{3 t}}{e^{-4 t}}
$$

A fundamental matrix for the homogeneous system 1.2 is

$$
Y(t)=\left(\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-3 t}
\end{array}\right)
$$

Consider

$$
\Psi(t)=\left(\begin{array}{cc}
e^{-3 t} & 0 \\
0 & e^{4 t}
\end{array}\right)
$$

Then, we have $\|\Psi(t) f(t)\|=1$ for all $t \in \mathbb{R}$. The first condition of Theorem 1.3 is satisfied with $K=2$ and

$$
P_{-}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad P_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad P_{+}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

The solutions of the system (1.1) are

$$
x(t)=\binom{c_{1} e^{2 t}+e^{3 t}}{c_{2} e^{-3 t}-e^{-4 t}}
$$

with $c_{1}, c_{2} \in \mathbb{R}$ and $t \in \mathbb{R}$. There exists a unique Ψ-bounded solution on \mathbb{R},

$$
x(t)=\binom{e^{3 t}}{-e^{-4 t}}
$$

but $\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=1$.

References

[1] Akinyele, O.; On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), $259-264$.
[2] Boi, P. N.; Existence of Ψ-bounded solutions on R for nonhomogeneous linear differential equations, Electron. J. Diff. Eqns., vol. 2007(2007), No. 52. pp. 1-10.
[3] Constantin, A.; Asymptotic Properties of Solutions of Differential Equations, Analele Universităţii din Timişoara, Vol. XXX, fasc. 2-3, 1992, Seria Ştiinţe Matematice, 183-225.
[4] Coppel, W. A.; Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[5] Diamandescu, A.; Existence of Ψ-bounded solutions for a system of differential equations, Electronic J. Diff. Eqns., Vol. 2004(2004), No. 63, pp. 1-6,
[6] Diamandescu, A.; Note on the Ψ-boundedness of the solutions of a system of differential equations, Acta. Math. Univ. Comenianae, Vol. LXXIII, 2(2004), pp. 223-233
[7] Diamandescu, A.; A Note on the Ψ-boundedness for differential systems, Bull. Math. Soc. Sc. Math. Roumanie, Tome 48(96), No. 1, 2005, pp. 33-43.
[8] Diamandescu, A.; On the Ψ-Instability of a Nonlinear Volterra Integro-Differential System, Bull. Math. Soc. Sc. Math. Roumanie, Tome 46(94), No. 3-4, 2003, pp. 103-119.
[9] Hallam, T. G.; On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. math. Journal, Vol. 16(1969), 353-363.
[10] Han, Y., Hong, J.; Existence of Ψ-bounded solutions for linear difference equations, Applied mathematics Letters 20 (2007) 301-305.
[11] Morchalo, J. ; On ($\left.\Psi-L_{p}\right)$-stability of nonlinear systems of differential equations, Analele Universit ăţii "Al. I. Cuza", Iaşi, XXXVI, I, Matematică, (1990), 4, 353-360.

Aurel Diamandescu
University of Craiova, Department of Applied Mathematics, 13, "Al. I. Cuza" st., 200585, Craiova, Romania

E-mail address: adiamandescu@central.ucv.ro

[^0]: 2000 Mathematics Subject Classification. 34D05, 34C11.
 Key words and phrases. Ψ-bounded solution; Ψ-boundedenss; boundedness.
 (C)2008 Texas State University - San Marcos.

 Submitted April 10, 2008. Published September 18, 2008.

