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A NOTE ON THE EXISTENCE OF Ψ-BOUNDED SOLUTIONS
FOR A SYSTEM OF DIFFERENTIAL EQUATIONS ON R

AUREL DIAMANDESCU

Abstract. We prove a necessary and sufficient condition for the existence of
Ψ-bounded solutions of a linear nonhomogeneous system of ordinary differen-

tial equations on R.

1. Introduction

The aim of this paper is to give a necessary and sufficient condition so that the
nonhomogeneous system of ordinary differential equations

x′ = A(t)x + f(t) (1.1)

has at least one Ψ-bounded solution on R for every continuous and Ψ-bounded
function f on R.

Here, Ψ is a continuous matrix function on R. The introduction of the matrix
function Ψ permits to obtain a mixed asymptotic behavior of the components of
the solutions.

The problem of boundedness of the solutions for the system (1.1) was studied in
[4] The problem of Ψ-boundedness of the solutions for systems of ordinary differen-
tial equations has been studied in many papers, as e.q. [1, 3, 9, 11]. The fact that
in [1] the function Ψ is a scalar continuous function and increasing, differentiable
and such that Ψ(t) ≥ 1 on R+ and limt→∞Ψ(t) = b ∈ R+ does not enable a deeper
analysis of the asymptotic properties of the solutions of a differential equation than
the notions of stability or boundedness. In [3], the function Ψ is a scalar continuous
function, nondecreasing and such that Ψ(t) ≥ 1 on R+. In [9, 11], Ψ is a scalar
continuous function.

In [5, 6, 7], the author proposes a novel concept, Ψ-boundedness of solutions,
Ψ being a continuous matrix function, which is interesting and useful in some
practical cases and presents the existence conditions for such solutions on R+. In
[2], the author associates this problem with the concept of Ψ-dichotomy on R of
the system x′ = A(t)x. Also, in [10], the authors define Ψ-boundedness of solutions
for difference equations via Ψ-bounded sequences and establish a necessary and
sufficient condition for existence of Ψ-bounded solutions for a nonhomogeneous
linear difference equation.
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Let Rd be the Euclidean d-space. For x = (x1, x2, x3, . . . , xd)T ∈ Rd, let ‖x‖ =
max{|x1|, |x2|, |x3|, . . . , |xd|} be the norm of x. For a d× d real matrix A = (aij),
we define the norm |A| by |A| = sup‖x‖≤1 ‖Ax‖. It is well-known that |A| =
max1≤i≤d{

∑d
j=1 |aij |}.

Let Ψi : R → (0,∞), i = 1, 2, . . . , d, be continuous functions and

Ψ = diag[Ψ1,Ψ2, . . . Ψd].

Definition. A function ϕ : R → Rd is said to be Ψ-bounded on R if Ψϕ is bounded
on R.

By a solution of (1.1), we mean a continuously differentiable function x : R → Rd
satisfying the system for all t ∈ R.

Let A be a continuous d × d real matrix and the associated linear differential
system

y′ = A(t)y. (1.2)

Let Y be the fundamental matrix of (1.2) for which Y (0) = Id (identity d × d
matrix).

Let the vector space Rd be represented as a direct sum of three subspaces X−,
X0, X+ such that a solution y(t) of (1.2) is Ψ-bounded on R if and only if y(0) ∈ X0

and Ψ-bounded on R+ = [0,∞) if and only if y(0) ∈ X− ⊕X0. Also, let P−, P0,
P+ denote the corresponding projection of Rd onto X−, X0, X+ respectively.

Main result

We are now in position to prove our main result.

Theorem 1.1. If Ais a continuous d×d real matrix on R, then, the system (1.1) has
at least one Ψ-bounded solution on R for every continuous and Ψ-bounded function
f : R → Rd if and only if there exists a positive constant K such that∫ t

−∞
|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)|ds

+
∫ 0

t

|Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)|ds

+
∫ ∞

0

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|ds ≤ K, fort ≥ 0,

(1.3)

and ∫ 0

−∞
|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)|ds

+
∫ t

0

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)|ds∫ ∞

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|ds ≤ K, fort ≥ 0.

Proof. First, we prove the “only if” part. Suppose that the system (1.1) has at
least one Ψ-bounded solution on R for every continuous and Ψ-bounded function
f : R → Rd on R.

We shall denote by B the Banach space of all Ψ-bounded and continuous func-
tions x : R → Rd with the norm ‖x‖B = supt∈R ‖Ψ(t)x(t)‖.
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Let D denote the set of all Ψ-bounded and continuously differentiable functions
x : R → Rd such that x(0) ∈ X− ⊕X+ and x′ − Ax ∈ B. Evidently, D is a vector
space. We define a norm in D by setting ‖x‖D = ‖x‖B + ‖x′ −Ax‖B .
Step 1. (D, ‖·‖D) is a Banach space. Let (xn)n∈N be a fundamental sequence of el-
ements of D. Then, (xn)n∈N is a fundamental sequence in B. Therefore, there exists
a continuous and Ψ-bounded function x : R → Rd such that limn→∞Ψ(t)xn(t) =
Ψ(t)x(t), uniformly on R. From the inequality

‖xn(t)− x(t)‖ ≤ |Ψ−1(t)|‖Ψ(t)xn(t)−Ψ(t)x(t)‖,
it follows that limn→∞ xn(t) = x(t), uniformly on every compact of R. Thus,
x(0) ∈ X− ⊕X+.

Similarly, (x′n−Axn)n∈N is a fundamental sequence in B. Therefore, there exists
a continuous and Ψ-bounded function f : R → Rd such that

lim
n→∞

Ψ(t)(x′n(t)−A(t)xn(t)) = Ψ(t)f(t), uniformly on R.

Similarly,

lim
n→∞

(x′n(t)−A(t)xn(t)) = f(t), uniformly on every compact subset of R.

For any fixed t ∈ R, we have

x(t)− x(0) = lim
n→∞

(xn(t)− xn(0))

= lim
n→∞

∫ t

0

x′n(s)ds

= lim
n→∞

∫ t

0

[(x′n(s)−A(s)xn(s)) + A(s)xn(s)]ds

=
∫ t

0

(f(s) + A(s)x(s))ds.

Hence, the function x is continuously differentiable on R and

x′(t) = A(t)x(t) + f(t), t ∈ R.

Thus, x ∈ D. On the other hand, from

lim
n→∞

Ψ(t)xn(t) = Ψ(t)x(t), uniformly on R,

lim
n→∞

Ψ(t)(x′n(t)−A(t)xn(t)) = Ψ(t)(x′(t)−A(t)x(t)), uniformly on R,

it follows that limn→∞ ‖xn − x‖D = 0. This proves that (D, ‖ · ‖D) is a Banach
space.
Step 2. There exists a positive constant K0 such that, for every f ∈ B and for
corresponding solution x ∈ D of (1.1), we have

sup
t∈R

‖Ψ(t)x(t)‖ ≤ K0 sup
t∈R

‖Ψ(t)f(t)‖,

or
sup
t∈R

max
1≤i≤d

|Ψi(t)xi(t)| ≤ K0 sup
t∈R

max
1≤i≤d

|Ψi(t)fi(t)|. (1.4)

For this, define the mapping T : D → B, Tx = x′−Ax. This mapping is obviously
linear and bounded, with ‖T‖ ≤ 1.

Let Tx = 0. Then, x′ = Ax, x ∈ D. This shows that x is a Ψ-bounded solution
on R of (1.2). Then, x(0) ∈ X0 ∩ (X− ⊕X+) = {0}. Thus, x = 0, such that the
mapping T is “one-to-one”.
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Finally, the mapping T is “onto”. In fact, for any f ∈ B, let x be the Ψ-bounded
solution on R of the system (1.1) which exists by assumption. Let z be the solution
of the Cauchy problem

x′ = A(t)x + f(t), z(0) = (P− + P+)x(0).

Then, u = x− z is a solution of (1.2) with u(0) = x(0)− (P− + P+)x(0) = P0x(0).
From the Definition of X0, it follows that u is Ψ-bounded on R. Thus, z belongs
to D and Tz = f. Consequently, the mapping T is “onto”. From a fundamental
result of S.Banach: “If T is a bounded one-to-one linear operator of one Banach
space onto another, then the inverse operator T−1 is also bounded”. We have
‖T−1f‖D ≤ ‖T−1‖‖f‖B , for all f ∈ B.

For a given f ∈ B, let x = T−1f be the corresponding solution x ∈ D of (1.1).
We have ‖x‖D = ‖x‖B +‖x′−Ax‖B = ‖x‖B +‖f‖B ≤ ‖T−1‖‖f‖B . It follows that
‖x‖B ≤ K0‖f‖B , where K0 = ‖T−1‖ − 1, which is equivalent with (1.4).
Step 3. The end of the proof. Let T1 < 0 < T2 be fixed points but arbitrarily
and let f : R → Rd be a continuous and Ψ-bounded function which vanishes on
(−∞, T1] ∪ [T2,+∞).

It is easy to see that the function x : R → Rd defined by

x(t) =


−

∫ 0

T1
Y (t)P0Y

−1(s)f(s)ds−
∫ T2

T1
Y (t)P+Y −1(s)f(s)ds, t < T1∫ t

T1
Y (t)P−Y −1(s)f(s)ds +

∫ t
0

Y (t)P0Y
−1(s)f(s)ds

−
∫ T2

t
Y (t)P+Y −1(s)f(s)ds, T1 ≤ t ≤ T2∫ T2

T1
Y (t)P−Y −1(s)f(s)ds +

∫ T2

0
Y (t)P0Y

−1(s)f(s)ds, t > T2

is the solution in D of the system (1.1). Putting

G(t, s) =



Y (t)P−Y −1(s), t > 0, s ≤ 0
Y (t)(P 0+P−)Y −1(s), t > 0, s > 0, s < t

−Y (t)P+Y −1(s), t > 0, s > 0, s ≥ t

Y (t)P−Y −1(s), t ≤ 0, s < t

−Y (t)(P 0+P+)Y −1(s), t ≤ 0, s ≥ t, s < 0
−Y (t)P+Y −1(s), t ≤ 0, s ≥ t, s ≥ 0

we have that x(t) =
∫ T2

T1
G(t, s)f(s)ds, t ∈ R. Indeed,

• for t > T2, we have

∫ T2

T1

G(t, s)f(s)ds =
∫ 0

T1

Y (t)P−Y −1(s)f(s)ds +
∫ T2

0

Y (t)(P0 + P−)Y −1(s)f(s)ds

=
∫ T2

T1

Y (t)P−Y −1(s)f(s)ds +
∫ T2

0

Y (t)P0Y
−1(s)f(s)ds = x(t),
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• for t ∈ (0, T2], we have∫ T2

T1

G(t, s)f(s)ds =
∫ 0

T1

Y (t)P−Y −1(s)f(s)ds +
∫ t

0

Y (t)(P0 + P−)Y −1(s)f(s)ds

−
∫ T2

t

Y (t)P+Y −1(s)f(s)ds

=
∫ t

T1

Y (t)P−Y −1(s)f(s)ds +
∫ t

0

Y (t)P0Y
−1(s)f(s)ds

−
∫ T2

t

Y (t)P+Y −1(s)f(s)ds = x(t),

• for t ∈ [T1, 0], we have∫ T2

T1

G(t, s)f(s)ds =
∫ t

T1

Y (t)P−Y −1(s)f(s)ds−
∫ 0

t

Y (t)(P0 + P+)Y −1(s)f(s)ds

−
∫ T2

0

Y (t)P+Y −1(s)f(s)ds

=
∫ t

T1

Y (t)P−Y −1(s)f(s)ds +
∫ t

0

Y (t)P0Y
−1(s)f(s)ds

−
∫ T2

t

Y (t)P+Y −1(s)f(s)ds = x(t),

• for t < T1, we have∫ T2

T1

G(t, s)f(s)ds

= −
∫ 0

T1

Y (t)(P0 + P+)Y −1(s)f(s)ds−
∫ T2

0

Y (t)P+Y −1(s)f(s)ds

= −
∫ 0

T1

Y (t)P0Y
−1(s)f(s)ds−

∫ T2

T1

Y (t)P+Y −1(s)f(s)ds = x(t).

Now, putting Ψ(t)G(t, s)Ψ−1(s) = (Gij(t, s)), inequality (1.4) becomes

∣∣ ∫ T2

T1

d∑
k=1

Gik(t, s)Ψk(s)fk(s) ds
∣∣ ≤ K0 sup

t∈R
max
1≤i≤d

|Ψi(t)fi(t)|, t ∈ R,

i = 1, 2, . . . , d, for every f = (f1, f2, . . . , fd) : R → Rd, continuous and Ψ-bounded,
which vanishes on (−∞, T1] ∪ [T2,+∞).

For a fixed i and t, we consider the function f such that

fk(s) =

{
Ψ−1
k (s) sgnGik(t, s), T1 ≤ s ≤ T2

0, elsewhere

The function Ψk(s)fk(s) is pointwise limit of a sequence of continuous functions
having the same supremum 1. The above inequality continues to hold for the
functions of this sequence. By the dominated convergence Theorem, we get∫ T2

T1

d∑
k=1

|Gik(t, s)|ds ≤ K0, t ∈ R, i = 1, 2, . . . , d.
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Since |Ψ(t)G(t, s)Ψ−1(s)| ≤
∑d
i,k=1 |Gik(t, s)|, it follows that

∫ T2

T1

|Ψ(t)G(t, s)Ψ−1(s)|ds ≤ dK0.

This holds for any T1 < 0 and T2 > 0. Hence, |Ψ(t)G(t, s)Ψ−1(s)| is integrable
over R and ∫ ∞

−∞
|Ψ(t)G(t, s)Ψ−1(s)|ds ≤ dK0, forallt ∈ R.

By the Definition of Ψ(t)G(t, s)Ψ−1(s), this is equivalent to (1.3), with K = dK0.
Now, we prove the “if” part. Suppose that the fundamental matrix Y of (1.2)

satisfies the conditions (1.3) for some K > 0. For a continuous and Ψ-bounded
function f : R → Rd, we consider the function u : R → Rd, defined by

u(t) =
∫ t

−∞
Y (t)P−Y −1(s)f(s)ds

+
∫ t

0

Y (t)P0Y
−1(s)f(s)ds−

∫ ∞

t

Y (t)P+Y −1(s)f(s)ds.

(1.5)

Step 4. The function u is well-defined on R. For v ≥ t, we have∫ v

t

‖Y (t)P+Y −1(s)f(s)‖ds

=
∫ v

t

‖Ψ−1(t)Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)‖ds

≤ |Ψ−1(t)|
∫ v

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

≤ |Ψ−1(t)| sup
s∈R

‖Ψ(s)f(s)‖
∫ v

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|ds.

This shows that the integral
∫∞
t

Y (t)P+Y −1(s)f(s)ds is absolutely convergent.
Similarly, the integral

∫ t
−∞ Y (t)P−Y −1(s)f(s)ds is absolutely convergent. Thus,

the function u is continuously differentiable on R.
Step 5. The function u is a solution of the equation (1.1). For t ∈ R, we have

u′(t) =
∫ t

−∞
A(t)Y (t)P−Y −1(s)f(s)ds + Y (t)P−Y −1(t)f(t)

+
∫ t

0

A(t)Y (t)P0Y
−1(s)f(s)ds + Y (t)P0Y

−1(t)f(t)

−
∫ ∞

t

A(t)Y (t)P+Y −1(s)f(s)ds + Y (t)P+Y −1(t)f(t)

= A(t)u(t) + Y (t)(P− + P0 + P+)Y −1(t)f(t)

= A(t)u(t) + f(t),

which shows that u is a solution of (1.1) on R.
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Step 6. The solution u is Ψ-bounded on R. For t ≥ 0, we have

Ψ(t)u(t) =
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)P0Y
−1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

=
∫ 0

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds .

Then

‖Ψ(t)u(t)‖ ≤ K sup
t∈R

‖Ψ(t)f(t)‖.

For t < 0, we have

Ψ(t)u(t) =
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)P0Y
−1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

=
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ 0

t

Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

0

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds .

Then

‖Ψ(t)u(t)‖ ≤ K sup
t∈R

‖Ψ(t)f(t)‖.

Hence,

sup
t∈R

‖Ψ(t)u(t)‖ ≤ K sup
t∈R

‖Ψ(t)f(t)‖,

which shows that u is a Ψ-bounded solution on R of (1.1). The proof is now
complete. �

As a particular case, we have the following result.

Theorem 1.2. If the homogeneous equation (1.2) has no nontrivial Ψ-bounded
solution on R, then, the equation (1.1) has a unique Ψ-bounded solution on R for
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every continuous and Ψ-bounded function f : R → Rd if and only if there exists a
positive constant K such that for t ∈ R,∫ t

−∞
|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)|ds +

∫ ∞

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|ds ≤ K

(1.6)

Proof. Indeed, in this case, P0 = 0. Now, the Proof goes in the same way as before.
We prove finally a theorem in which we will see that the asymptotic behavior of
the solutions of (1.1) is determined completely by the asymptotic behavior of f as
t → ±∞. �

Theorem 1.3. Suppose that:
(1) The fundamental matrix Y (t) of (1.2) satisfies:

(a) conditions (1.3) for some K > 0;
(b) the condition limt→±∞ |Ψ(t)Y (t)P0| = 0;

(2) the continuous and Ψ-bounded function f : R → Rd is such that

lim
t→±∞

‖Ψ(t)f(t)‖ = 0.

Then, every Ψ-bounded solution x of (1.1) satisfies

lim
t→±∞

‖Ψ(t)x(t)‖= 0.

Proof. By Theorem 1.1, for every continuous and Ψ-bounded function f : R → Rd,
the equation (1.1) has at least one Ψ-bounded solution. Let x be a Ψ-bounded
solution of (1.1). Let u be defined by (1.5). This function is a Ψ-bounded solution
of (1.1).

Now, let the function y(t) = x(t) − Y (t)P0x(0) − u(t), t ∈ R. Obviously, y is a
Ψ-bounded solution on R of (1.2). Thus, y(0) ∈ X0. On the other hand,

y(0) = x(0)− Y (0)P0x(0)− u(0)

= (I − P0)x(0)− P−

∫ 0

−∞
Y −1(s)f(s)ds + P+

∫ ∞

0

Y −1(s)f(s)ds

= P−(x(0)−
∫ 0

−∞
Y −1(s)f(s)ds)

+ P+(x(0) +
∫ ∞

0

Y −1(s)f(s)ds) ∈ X− ⊕X+.

Therefore, y(0) ∈ X0 ∩ (X− ⊕X+) = {0} and then, y = 0. It follows that

x(t) = Y (t)P0x(0) + u(t), t ∈ R.

We prove that limt→±∞ ‖Ψ(t)u(t)‖ = 0. For a given ε > 0, there exists t1 > 0 such
that ‖Ψ(t)f(t)‖ < ε

3K , for all t ≥ t1. For t > 0, write

Ψ(t)u(t) =
∫ 0

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds.
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From the hypothesis (1)(a), it follows that∫ t

0

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)|ds ≤ K, t ≥ 0.

From the [8, Lemma 1], it follows that

lim
t→+∞

|Ψ(t)Y (t)(P0 + P−)| = 0.

From this and from hypothesis (1)(b), it follows that limt→+∞ |Ψ(t)Y (t)P−| = 0.
Thus, there exists t2 ≥ t1 such that, for all t ≥ t2,

|Ψ(t)Y (t)P−| <
ε

3
(
1 +

∫ 0

−∞ ‖P−Y −1(s)f(s)‖ds
) ,

|Ψ(t)Y (t)(P0 + P−)| < ε

3
(
1 +

∫ t1
0
‖Y −1(s)f(s)‖ds

) .

Then, for t ≥ t2, we have

‖Ψ(t)u(t)‖ ≤ |Ψ(t)Y (t)P−|
∫ 0

−∞
‖P−Y −1(s)f(s)‖ds

+ |Ψ(t)Y (t)(P0 + P−)|
∫ t1

0

‖Y −1(s)f(s)‖ds

+
∫ t

t1

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

+
∫ ∞

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

<
ε

3
+

ε

3
+

ε

3K

∫ t

t1

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)|ds

+
ε

3K

∫ ∞

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

≤ 2ε

3
+

ε

3K
K = ε.

This shows that limt→+∞ ‖Ψ(t)u(t)‖ = 0.
Now, from hypothesis (1)(b) it follows that limt→+∞ ‖Ψ(t)Y (t)P0x(0)‖ = 0 and

then, limt→+∞ ‖Ψ(t)x(t)‖ = 0. Similarly, limt→−∞ ‖Ψ(t)x(t)‖ = 0. The proof is
now complete. �

Corollary 1.4. Suppose that:
(1) The homogeneous equation (1.2) has no nontrivial Ψ-bounded solution on

R;
(2) the fundamental matrix Y of (1.2) satisfies the condition (1.6) for some

K > 0;
(3) the continuous and Ψ-bounded function f : R → Rd is such that

lim
t→±∞

‖Ψ(t)f(t)‖= 0.

Then, the equation (1.1) has a unique solution x on R such that

lim
t→±∞

‖Ψ(t)x(t)‖ = 0.
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The above result follows from the Theorems 1.2 and 1.3. Furthermore, this
unique solution of (1.1) is

u(t) =
∫ t

−∞
Y (t)P−Y −1(s)f(s)ds−

∫ ∞

t

Y (t)P+Y −1(s)f(s)ds.

Remark 1.5. If we do not have limt→±∞ ‖Ψ(t)f(t)‖ = 0, then the solution x
may be such that limt→±∞ ‖Ψ(t)x(t)‖ 6= 0. This is shown by the next example:
Consider the linear system (1.1) with

A(t) =
(

2 0
0 −3

)
, f(t) =

(
e3t

e−4t

)
A fundamental matrix for the homogeneous system (1.2) is

Y (t) =
(

e2t 0
0 e−3t

)
Consider

Ψ(t) =
(

e−3t 0
0 e4t

)
.

Then, we have ‖Ψ(t)f(t)‖ = 1 for all t ∈ R. The first condition of Theorem 1.3 is
satisfied with K = 2 and

P− =
(

1 0
0 0

)
, P0 =

(
0 0
0 0

)
, P+ =

(
0 0
0 1

)
.

The solutions of the system (1.1) are

x(t) =
(

c1e
2t+e3t

c2e
−3t − e−4t

)
with c1, c2 ∈ R and t ∈ R. There exists a unique Ψ-bounded solution on R,

x(t) =
(

e3t

−e−4t

)
,

but limt→±∞ ‖Ψ(t)x(t)‖ = 1.
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