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A QUASISTATIC FRICTIONAL CONTACT PROBLEM WITH
ADHESION FOR NONLINEAR ELASTIC MATERIALS

AREZKI TOUZALINE

Abstract. The aim of this paper is to study a quasistatic contact problem

between a nonlinear elastic body and a foundation. The contact is adhesive and
frictional and is modelled with a version of normal compliance condition and

the associated Coulomb’s law of dry friction. The evolution of the bonding field

is described by a first order differential equation. We establish the variational
formulation of the mechanical problem and prove an existence result of the

weak solution if the coefficient of friction is sufficiently small by passing to

the limit with respect to time. The proofs are based on arguments of time-
discretization, compactness, lower semicontinuity and Banach fixed point.

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as
well as in daily life and play an important role in structural and mechanical systems.
Because of the importance of this process a considerable effort has been made in its
modelling and numerical simulations. A first study of frictional contact problems
within the framework of variational inequalities was made in [7]. The mathematical,
mechanical and numerical state of the art can be found in [15]. Models for dynamic
or quasistatic process of frictionless adhesive contact between a deformable body
and a foundation have been studied in [3, 4, 10, 19]. In this paper we study a
mathematical model which describes a frictional quasistatic contact problem with
adhesion between a nonlinear elastic body and a foundation. The adhesive fric-
tional contact is modelled with a version of normal compliance condition and the
associated Coulomb’s law of dry friction. As in [9, 10], we use the bonding field as
an additional state variable β, defined on the contact surface of the boundary. The
variable is restricted to values 0 ≤ β ≤ 1, when β = 0 all the bonds are severed and
there are no active bonds; when β = 1 all the bonds are active; when 0 < β < 1
it measures the fraction of active bonds and partial adhesion takes place. We refer
the reader to the extensive bibliography on the subject in [11, 14, 16, 18, 19, 20]. In
[2] a model of a contact problem with adhesion and friction was studied in which β
represents a continuous transition between total adhesion and pure frictional states.
In [5] the authors considered the interface model proposed in [2] in order to study
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a quasistatic unilateral contact problem with local friction and adhesion. They ob-
tained an existence result under a smallness assumption of the coefficient of friction.
In this work, as in [5] by applying an implicit time-discretization scheme, if the co-
efficient of friction is sufficiently small, we prove that the time-discretized problem
has a unique solution for which appropriate estimations are established. We finally
obtain the existence of a weak solution by passing to the limit with respect to time.
The paper is structured as follows. In Section 2 we present some notations and
give the variational formulation. In Section 3 we study a time-discretized problem
which admits a unique solution if the coefficient of friction is sufficiently small,
Proposition 3.1. In Section 4 we prove Theorem 2.1.

2. Problem Statement and Variational Formulation

Let Ω ⊂ Rd; (d = 2, 3), be the domain initially occupied by an elastic body.
Ω is supposed to be open, bounded, with a sufficiently regular boundary Γ. Γ is
partitioned into three parts Γ = Γ̄1∪ Γ̄2∪ Γ̄3 where Γ1,Γ2,Γ3 are disjoint open sets
and meas Γ1 > 0. The body is acted upon by a volume force of density ϕ1 on Ω
and a surface traction of density ϕ2 on Γ2. On Γ3 the body is in adhesive frictional
contact with a foundation.

Thus, the classical formulation of the mechanical problem is written as follows.

Problem P1. Find a displacement field u : Ω × [0, T ] → Rd and a bonding field
β : Γ3 × [0, T ] → [0, 1] such that

div σ + ϕ1 = 0 in Ω× (0, T ), (2.1)

σ = Fε(u) in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σν = ϕ2 on Γ2 × (0, T ), (2.4)

−σν = p(uν)− cνβ2Rν(uν) on Γ3 × (0, T ), (2.5)
|στ + cτβ2Rτ (uτ )| ≤ µp(uν),

|στ + cτβ2Rτ (uτ )| < µp(uν) =⇒ u̇τ = 0,

|στ + cτβ2Rτ (uτ )| = µp(uν) =⇒
∃λ ≥ 0 such that u̇τ = −λ(στ + cτβ2Rτ (uτ )),

on Γ3 × (0, T ), (2.6)

β̇ = −
[
β
(
cν

(
Rν(uν)

)2 + cτ

(
|Rτ (uτ )|

)2)− εa

]
+

on Γ3 × (0, T ), (2.7)

u(0) = u0 in Ω, (2.8)

β(0) = β0 on Γ3. (2.9)

Equation (2.1) represents the equilibrium equation. Equation (2.2) represents the
elastic constitutive law of the material in which σ denotes the stress tensor F is
a nonlinear elasticity operator and ε(u) denotes the strain tensor; (2.3) and (2.4)
are the displacement and traction boundary conditions, respectively, in which ν
denotes the unit outward normal vector on Γ and σν represents the stress vector.
Condition (2.5) represents the normal compliance and adhesion. Condition (2.6)
is the associated Coulomb’s law of dry friction. u̇τ is the tangential velocity on
the boundary Γ3. Here p is a given function, µ is the coefficient of friction and
the parameters cν , cτ and εa are given adhesion coefficients which may depend on
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x ∈ Γ3. As in [20], Rν , Rτ are truncation operators defined by

Rν(s) =


L if s < −L

−s if − L ≤ s ≤ 0
0 if s > 0,

Rτ (v) =

{
v if |v| ≤ L

L v
|v| if |v| > L,

where L > 0 is a characteristic length of the bonds. Equation (2.7) represents the
ordinary differential equation which describes the evolution of the bonding field and
it was already used in [20] where [s]+ = max(s, 0) for all s ∈ R. Since β̇ ≤ 0 on
Γ3× (0, T ), once debonding occurs, bonding cannot be reestablished. Also we wish
to make it clear that from [13] it follows that the model does not allow for complete
debonding field in finite time. Finally, (2.8) and (2.9) are the initial conditions, in
which u0 and β0 denotes respectively the initial displacement field and the initial
bonding field. In (2.7) a dot above a variable represents its derivative with respect
to time. We recall that the inner products and the corresponding norms on Rd and
Sd are given by

u.v = uivi, |v| = (v.v)1/2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3). Here and
below, the indices i and j run between 1 and d and the summation convention over
repeated indices is adopted. Now, to proceed with the variational formulation, we
need the following function spaces:

H = (L2(Ω))d, Q = {τ = (τij) : τij = τji ∈ L2(Ω)},

H1 = (H1(Ω))d, Q1 = {σ ∈ Q : div σ ∈ H}.

Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

〈u, v〉H =
∫

Ω

uividx, (σ, τ)Q =
∫

Ω

σijτijdx.

The small strain tensor is

ε(u) = (εij(u)) =
1
2
(ui,j + uj,i), i, j = {1, . . . , d},

where div σ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote
by vν and vτ the normal and the tangential components of v on the boundary Γ
given by

vν = v.ν, vτ = v − vνν.

Similary, for a regular tensor field σ ∈ Q1, we define its normal and tangential
components by

σν = (σν).ν, στ = σν − σνν

and we recall that the following Green’s formula holds:

(σ, ε(v))Q + 〈div σ, v〉H =
∫

Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1

defined by
V = {v ∈ H1 : v = 0 on Γ1} .
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Since measΓ1 > 0, the following Korn’s inequality holds,

‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V, (2.10)

where the constant cΩ > 0 depends only on Ω and Γ1; see [7]. We equip V with
the inner product

(u, v)V = (ε(u), ε(v))Q

and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.10) that the
norms ‖.‖H1 and ‖.‖V are equivalent on V . Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which depends only on
the domain Ω, Γ1 and Γ3 such that

‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V. (2.11)

For p ∈ [1,∞] , we use the standard norm of Lp(0, T ;V ). We also use the Sobolev
space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C([0, T ];X)
for the space of continuous functions from [0, T ] to X; recall that C([0, T ];X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity

ϕ1 ∈ W 1,∞(0, T ;H), ϕ2 ∈ W 1,∞(0, T ; (L2(Γ2))d) (2.12)

and we denote by f(t) the element of V defined by

(f(t), v)V =
∫

Ω

ϕ1(t).vdx +
∫

Γ2

ϕ2(t).vda ∀v ∈ V, for t ∈ [0, T ]. (2.13)

Using (2.12) and (2.13), we obtain f ∈ W 1,∞(0, T ;V ).
In the study of the mechanical problem P1 we assume that F : Ω × Sd → Sd,

satisfies the following four conditions:
(a) there exists M > 0 such that

|F (x, ε1)− F (x, ε2)| ≤ M |ε1 − ε2|
for all ε1, ε2 in Sd, a.e. x in Ω;

(b) there exists m > 0 such that

(F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ m|ε1 − ε2|2, (2.14)

for all ε1, ε2 in Sd, a.e. x in Ω;
(c) the mapping x → F (x, ε) is Lebesgue measurable on Ω

for any ε in Sd;
(d) F (x, 0) = 0 for a.e. x in Ω.

Also we assume that the normal compliance function p satisfies the following five
conditions:

(a) p : Γ3 × R → R+;
(b) there exists Lp > 0 such that |p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|

for all r1, r2 ∈ R, a.e. x in Γ3;
(c)

(p(x, r1)− p(x, r2))(r1 − r2) ≥ 0 for all r1, r2 ∈ R, a.e. x in Γ3; (2.15)



EJDE-2008/131 A QUASISTATIC FRICTIONAL CONTACT PROBLEM 5

(d) the mapping x → p(x, r) is measurable on Γ3 for any r ∈ R;
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

We define the functional j : V × V → R by

j(u, v) =
∫

Γ3

(p(uν)vν + µp(uν)|vτ |)da ∀(u, v) ∈ V × V.

As in [19] we suppose that the adhesion coefficients cν , cτ and εa satisfy the condi-
tions

cν , cτ ∈ L∞(Γ3), εa ∈ L∞(Γ3), cν , cτ , εa ≥ 0 a.e. on Γ3. (2.16)

We suppose that µ satisfies

µ ∈ L∞(Γ3), and µ ≥ 0 a.e. on Γ3. (2.17)

We need the following set for the bonding fields,

B =
{
β ∈ L∞(0, T ;L2(Γ3)); 0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3

}
,

and finally we assume that the initial displacement field u0 belongs to V and satisfies

(Fε(u0), ε(v − u0))Q + j(u0, v − u0) + r(β0, u0, v − u0) ≥ (f(0), v − u0)V (2.18)

for all v ∈ V , where the initial bonding field β0 satisfies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (2.19)

As in [5], using Green’s formula, we obtain the following variational formulation to
Problem P1.

Problem P2. Find a displacement field u ∈ W 1,∞(0, T ;V ) and a bonding field
β ∈ W 1,∞(0, T ;L2(Γ3)) ∩ B such that u(0) = u0, β(0) = β0 and for almost all
t ∈ [0, T ]:(

Fε(u(t)), ε(v − u̇(t))
)

Q
+ j(u(t), v)− j(u(t), u̇(t)) + r(β(t), u(t), v − u̇(t))

≥ (f(t), v − u̇(t))V ∀v ∈ V,

(2.20)

β̇(t) = −[β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)− εa]+ a.e. on Γ3, (2.21)

where

r = rν + rτ , rν(β, u, v) = −
∫

Γ3

cνβ2Rν(uν)vνda, (2.22)

rτ (β, u, v) =
∫

Γ3

cτβ2Rτ (uτ ).vτda. (2.23)

Our main result of this section, which will be established in the next is the following
theorem.

Theorem 2.1. Let T > 0 and assume (2.12), (2.14), (2.15), (2.16), (2.17), (2.18),
and (2.19). Then there exists a constant µ∗ > 0 such that for ‖µ‖L∞(Γ3) < µ∗,
Problem P2 has at least one solution.
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3. A time-discretization

As in [5], we adopt the following time-discretization. For all n ∈ N∗, we set
ti = i∆t, 0 ≤ i ≤ n, and ∆t = T/n. We denote respectively by ui and βi the
approximation of u adn β at time ti and ∆ui = ui+1 − ui, ∆βi = βi+1 − βi. For
a continuous function w(t), we use the notation wi = w(ti). Then we obtain a
sequence of time-discretized problems P i

n defined for u0 = u0 and β) = β0 by:

Problem P i
n. For ui ∈ V , βi ∈ L∞(Γ3), find ui+1 ∈ V , βi+1 ∈ L∞(Γ3) such that

(Fε(ui+1), ε(w − ui+1))Q + j(ui+1, w − ui)

− j(ui+1,∆ui) + r(βi+1, ui+1, w − ui+1)

≥ (f i+1, w − ui+1)V ∀w ∈ V,

βi+1 − βi

∆t
= −[βi+1(cν(Rν(ui+1

ν ))2 + cτ (|Rτ (ui+1
τ )|)2)− εa]+ a.e. on Γ3.

(3.1)

We have the following result.

Proposition 3.1. There exists µc > 0 such that for ‖µ‖L∞(Γ3) < µc, Problem P i
n

has a unique solution.

To show this proposition we introduce an intermediate problem. For η ∈ V , we
introduce the following problem

Problem P i
ηn. For ui ∈ V , βi ∈ L∞(Γ3), find uη ∈ V , βη ∈ L∞(Γ3) such that

(Fε(uη), ε(w − uη))Q + j(η, w − ui)− j(η, uη − ui) + r(βη, uη, v − uη)

≥ (f i+1, w − uη)V ∀w ∈ V,

βη − βi

∆t
= −[βη(cν(Rν(uην))2 + cτ (|Rτ (uητ )|)2)− εa]+ a.e. on Γ3.

(3.2)

As in [5] we have the following lemma.

Lemma 3.2. For any η ∈ V , Problem P i
ηn has a unique solution (uη, βη), if ∆t is

small enough.

To prove this lemma we introduce the following auxiliary problem.

Problem P1β. For ui ∈ V , β ∈ L∞(Γ3), find uβ ∈ V such that

(Fε(uβ), ε(v − uβ))Q + j(η, v − ui)− j(η, uβ − ui) + r(β, uβ , v − uβ)

≥ (f i+1, v − uβ)V ∀ v ∈ V.
(3.3)

We have the following lemma.

Lemma 3.3. Problem P1β has a unique solution.

Proof. Let A : V → V be the operator given by

(Au, v)V = (Fε(u), ε(v))Q +
∫

Γ3

(−cνβ2Rν(uν)vν + cτβ2Rτ (uτ ).vτ )da.

Using (2.14)(a), (2.11), (2.16), the properties of the operators Rν and Rτ (see [18])
such that

|Rν(a)−Rν(b)| ≤ |a− b|,∀a, b ∈ R; |Rτ (a)−Rτ (b)| ≤ |a− b|,∀a, b ∈ Rd, (3.4)
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it follows that A satisfies

|(Au−Av,w)V | ≤ [M + (‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))d
2
Ω]‖u− v‖V ‖w‖V .

Also, we use (2.14)(b) to see that

(Au−Av, u− v)V ≥ m‖u− v‖2
V −

∫
Γ3

β2cν(Rν(uν)−Rν(vν))(uν − vν)da

+
∫

Γ3

β2cτ (Rτ (uτ )−Rτ (vτ )).(uτ − vτ )da.

As
(Rν(uν)−Rν(vν))(uν − vν) ≤ 0 a.e. on Γ3,

(Rτ (uτ )−Rτ (vτ )).(uτ − vτ ) ≥ 0 a.e. on Γ3,
(3.5)

we get

(Au−Av, u− v)V ≥ m‖u− v‖2
V ,

which implies that A is strongly monotone. Therefore, A is an operator strongly
monotone and Lipschitz continuous. On the other hand the functional jη : V → R
defined by

jη(v) = j(η, v − ui) ∀v ∈ V,

is convex, proper and lowly semicontinuous, then by a classical argument of elliptic
variational inequalities [1], we deduce that the problem P1β has a unique solution
uβ . �

We also consider the following problem.

Problem P2β. For βi ∈ L∞(Γ3), u ∈ V , find β ∈ L∞(Γ3) such that

β − βi

∆t
= −

[
β(cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)− εa

]
+
a.e. on Γ3.

Obviously, Problem P2β has a unique solution which is given by

β =


βi, if (cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)βi − εa < 0,

βi + εa∆t

1 + ∆t(cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)
,

if (cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)βi − εa > 0,

and it satisfies β ∈ [0, 1]. To complete the proof of Lemma 3.2, let v ∈ V and
β(v) be the corresponding solution of Problem P2β . Let uβ(v) be the corresponding
solution of Problem P1β , and define the mapping Ψ : V → V as

v → Ψ(v) = uβ(v) .

Take v = ui, i = 1, 2. As in [5, Lemma 2.3], there exists a positive constant C such
that

‖Ψ(u2)−Ψ(u1)‖V ≤ C∆t‖u2 − u1‖, ∀u1, u2 ∈ V .

Then we conclude by a contraction argument that for ∆t sufficiently small, Problem
P i

ηn has a unique solution (uη, βη). Next, we shall establish the proof of Proposition
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3.1. Indeed, write the inequality (3.2) for η = ηi and take v = uηj
, i, j = 1, 2.

Adding the two inequalities we have

(Fε(uη1)− Fε(uη2), ε(uη1 − uη2))Q

≤ r(βη1 , uη1 , uη2 − uη1) + r(βη2 , uη2 , uη1 − uη2) + j(η1, uη2 − ui)

− j(η1, uη1 − ui) + j(η2, uη1 − ui)− j(η2, uη2 − ui).

Then

r(βg1 , ug1 , ug2 − ug1) + r(βg2 , ug2 , ug1 − ug2)

=
∫

Γ3

[cτ (βη1 − β
η2

)(βη1 + β
η2

)R(uη1τ
)(uη2τ

− uη1τ
)]da

−
∫

Γ3

[cν(βη1 − β
η2

)(βη1 + β
η2

)R(uη1ν
)(uη1ν

− uη2ν
)]da

+
∫

Γ3

[cνβ2
η2

(R(uη1ν
)−R(uη2ν

))(uη1ν
− uη2ν

)]da

+
∫

Γ3

[cτβ2
η2

(R(uη1τ
)−R(uη2τ

))(uη2τ
− uη1τ

)]da.

Using the properties (3.5), we deduce

(Fε(uη1)− Fε(uη2), ε(uη1 − uη2))Q

≤
∫

Γ3

[cτ (βη1 − βη2)(βη1 + βη2)R(uη1τ
)(uη2τ

− uη1τ
)]da

−
∫

Γ3

[cν(βη1 − βη2)(βuη21 + βη2)R(uη1ν
)(uη1ν

− uη2ν
)]da

+ j(η1, uη2 − ui)− j(η1, uη1 − ui) + j(η2, uη1 − ui)− j(η2, uη2 − ui).

Now, using (2.11), (2.14)(b), (2.15)(b), (2.15)(c), the properties (3.4), |Rν(uν)| ≤ L,
and |Rτ (uτ )| ≤ L, it follows that

m‖uη1 − uη2‖V ≤ LdΩ(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖βη1 − βη2‖L2(Γ3)

+ Lpd
2
Ω‖µ‖L∞(Γ3)‖η1 − η2‖V .

(3.6)

On the other hand using that for a, b ∈ R, |a+ − b+| ≤ |a− b|, we deduce from the
equality to relation (3.2) that

‖βη1 − βη2

∆t
‖L2(Γ3) ≤ ‖(βη1 − βη2)

(
cν(Rν(uβη1ν))2 + cτ (|Rτ (uβη1τ )|)2

)
‖L2(Γ3)

+ ‖βη2

[(
cν(Rν(uβη1ν))2 + cτ (|Rτ (uβη1τ )|)2

)
−

(
cν(Rν(uβη2ν))2 + cτ (|Rτ (uβη2τ )|)2

)]
‖L2(Γ3).

The above inequality implies

‖βη1 − βη2

∆t
‖L2(Γ3) ≤ L2(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖βη1 − βη2‖L2(Γ3)

+ 2L(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))dΩ‖uη1 − uη2‖V .
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Therefore,

[1−∆tL2(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))]‖βη1 − βη2‖L2(Γ3)

≤ 2L(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))dΩ∆t‖uη1 − uη2‖V .

If
∆t <

1
L2(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))

,

there exists a constant C1 > 0 such that

‖βη1 − βη2‖L2(Γ3) ≤ C1∆t‖uη1 − uη2‖V .

Then from (3.6) we get

[m− C1LdΩ(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))∆t]‖uη1 − uη2‖V

≤ Lpd
2
Ω‖µ‖L∞(Γ3)‖η1 − η2‖V ,

and thus for

∆t < min
( m

C1LdΩ(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))
,

1
L2(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))

)
,

there exists a constant C2 > 0 such that

‖uη1 − uη2‖V ≤ C2Lpd
2
Ω‖µ‖L∞(Γ3)‖η1 − η2‖V . (3.7)

To complete the proof let us define the mapping Φ : V → V as Φ(η) = uη. Then
from (3.7) it follows

‖Φ(η1)− Φ(η2)‖V ≤ C2Lpd
2
Ω‖µ‖L∞(Γ3)‖η1 − η2‖V , ∀η1, η2 ∈ V .

Then when µc = 1
Lpd2

ΩC2
, the mapping Φ is a contraction for ‖µ‖L∞(Γ3) < µc, thus

it admits a unique fixed point ηc and (uηc
, βηc

) is a unique solution to Problem P i
n.

Now, to prove Theorem 2.1 it is necessary to establish the following estimates.

Lemma 3.4. There exist two constants C3 > 0, C4 > 0 such that

‖ui+1‖V ≤ C3‖f i+1‖V , ‖∆ui‖V ≤ C4(‖∆f i‖V + ∆t). (3.8)

Proof. We take v = 0 in (3.1) to deduce(
Fε(ui+1), ε(ui+1)

)
Q

≤ j(ui+1,−ui)− j(ui+1,∆ui) + r(βi+1, ui+1,−ui+1) + (f i+1, ui+1)V .

Using the properties of j we have

j(ui+1,−ui)− j(ui+1,∆ui) ≤ d2
ΩLp‖µ‖L∞(Γ3)‖u

i+1‖2
V .

On the other hand using |R(uν)| ≤ L, |R(uτ )| ≤ L, and the relation (2.11), we have

|r(βi+1, ui+1,−ui+1)| ≤ dΩL
√

meas Γ3

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)
‖ui+1‖V

Using (2.14)(b), we get

m‖ui+1‖2
V ≤ d2

ΩLp‖µ‖L∞(Γ3)‖u
i+1‖2

V . + ‖f i+1‖V ‖ui+1‖V

+ dΩL
√

meas Γ3(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖u
i+1‖V .

Therefore, if we take
µ∗ = min(µc,

m

Lpd2
Ω

),
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we deduce that for
‖µ‖L∞(Γ3) < µ∗, (3.9)

there exists a constant C3 > 0 such that the first inequality holds. To show the
second inequality (3.8) we consider the translated inequality to relation (3.1) at
time ti; that is,

(Fε(ui), ε(w − ui))Q + j(ui, w − ui−1)− j(ui, ui − ui−1) + r(βi, ui, w − ui)

≥ (f i, w − ui)V ∀w ∈ V.

(3.10)
Taking w = ui in the inequality to relation (3.1) and w = ui+1 in the inequality
(3.10) and adding the two inequalities, we obtain the inequality

− (Fε(ui+1)− Fε(ui), ε(∆ui))Q − j(ui+1,∆ui) + j(ui, ui+1 − ui−1)

− j(ui, ui − ui−1) + r(βi+1, ui+1, ui − ui+1) + r(βi, ui, ui+1 − ui)

≥ (−∆f i,∆ui)V .

Then using the inequality∣∣|uti+1
τ − uti−1

τ | − |uti
τ − uti−1

τ |
∣∣ ≤ |uti+1

τ − uti
τ |,

we have
j(ui, ui+1 − ui−1)− j(ui, ui − ui−1) ≤ j(ui,∆ui).

Therefore,

(Fε(ui+1)− Fε(ui), ε(∆ui))Q ≤ j(ui,∆ui)− j(ui+1,∆ui) + r(βi+1, ui+1,−∆ui)

+ r(βi, ui,∆ui) + (∆f i,∆ui)V .

(3.11)
Using (2.11), (2.15)(b) and (2.15)(c), it follows that

j(ui+1,∆ui)− j(ui,∆ui) ≤ ‖µ‖L∞(Γ3)Lpd
2
Ω‖∆ui‖2

V .

Moreover, using (2.11), |Rν(uj)| ≤ L, |Rτ (uj)| ≤ L, j = i, i + 1, and (3.5), we have

r(βi+1, ui+1,−∆ui) + r(βi, ui,∆ui)

≤ LdΩ(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖∆ui‖V ‖∆βi‖L2(Γ3).

On the other hand,
‖∆βi‖L2(Γ3) ≤ ∆td1,

where d1 > 0. Combining the previous relations, we obtain from inequality (3.11)
that for the same condition (3.9), there exists a constant C4 > 0 such that

‖∆ui‖V ≤ C4(‖∆f i‖V + ∆t).

�

4. Existence

In this section we prove our main result, Theorem 2.1. We consider the sequences
of functions (un), (βn) defined on [0, T ] by

un(t) = ui +
(t− ti)

∆t
∆ui, βn(t) = βi +

(t− ti)
∆t

∆βi

for t ∈ [ti, ti+1], i = 0, . . . , n− 1. As in [21, Proposition 4.2] we have the following
lemma.
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Lemma 4.1. There exists u ∈ W 1,∞(0, T ;V ) and a subsequence (un), still denoted
(un), such that

un → u weak ∗ in W 1,∞(0, T ;V ).

Proof. From (3.5) it follows that there exists a constant C5 > 0 such that

‖un‖W 1,∞(0,T ;V ) ≤ C5(‖f‖W 1,∞(0,T ;V ) + 1)

Consequently the sequence (un) is bounded in W 1,∞(0, T ;V ). Therefore, there
exists a function u ∈ W 1,∞(0, T ;V ) and a subsequence, still denoted by (un), such
that

un → u weak ∗ in W 1,∞(0, T ;V ) as n →∞.

�

Remark 4.2. As W 1,∞(0, T ;V ) ↪→ C([0, T ];V ) we have un(t) → u(t) weakly in
V for all t ∈ [0, T ].

Now let us introduce the sequences of functions (ũn), (f̃n), (β̃n) defined on [0, T ]
by

ũn(t) = ui+1, f̃n(t) = f(ti+1), β̃n(t) = βi+1

for t ∈ (ti, ti+1], i = 0, . . . , n− 1 and ũn(0) = u0, f̃n(0) = f(0), β̃n(0) = β0. As in
[21] we have the following result.

Lemma 4.3. Passing to a subsequence again denoted (ũn) we have
(i) ũn → u weak ∗ in L∞(0, T ;V ),
(ii) ũn(t) → u(t) weakly in V a.e. t ∈ [0, T ],
(iii) ũn → u strongly in L2(0, T ;V ).

Proof. For (i) and (ii) we refer the reader to [21, lemma 4.3]. For (iii) it suffices to
give only some partial proof. Indeed, from the inequality of the relation (3.1) we
deduce the inequality

(Fε(ui+1), ε(w − ui+1))Q + j(ui+1, w − ui+1) + r(βi+1, ui+1, w − ui+1)

≥ (f i+1, w − ui+1)V ∀w ∈ V,

which implies the inequality

(Fε(ũn(t)), ε(w − ũn(t)))Q + j(ũn(t), w − ũn(t))

+ r
(
β̃n(t), ũn(t), w − ũn(t)

)
≥ (f̃n(t), w − ũn(t))V ∀w ∈ V, a.e. t ∈ [0, T ].

(4.1)

To show the strong convergence, we take w = ũn+m(t) in (4.1) and v = ũn(t) in the
same inequality satisfied by ũn+m(t), and adding the two inequalities, we obtain
by using (2.15)(c)

(Fε(ũn+m(t))− Fε(ũn(t)), ε(ũn+m(t)− ũn(t)))Q

≤
∫

Γ3

µ(p(ũn+m
ν (t)) + p(ũn

ν (t)))|ũn+m(t)− ũn(t)|da

+ r
(
β̃n(t), ũn(t), ũn+m(t)− ũn(t)

)
+ r

(
β̃n+m(t), ũn+m(t), ũn(t)− ũn+m(t)

)
, a.e. t ∈ [0, T ].
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Using (2.15)(b) and (2.11) we deduce that there exists a constant C6 > 0 such that∫
Γ3

µ(p(ũn+m
ν (t)) + p(ũn

ν (t)))|ũn+m
τ (t)− ũn

τ (t)|da

≤ C6‖ũn+m
τ (t)− ũn

τ (t)‖(L2(Γ3))d .

In the same away there exists a constant C7 > 0 such that

r
(
β̃n(t), ũn(t), ũn+m(t)− ũn(t)

)
+ r

(
β̃n+m(t), ũn+m(t), ũn(t)− ũn+m(t)

)
≤ C7

(
‖ũn+m

τ (t)− ũn
τ (t)‖(L2(Γ3))d + ‖ũn+m

ν (t)− ũn
ν (t)‖L2(Γ3)

)
.

Using (2.14)(b) it follows that there exists a constant C8 > 0 such that

m‖ũn+m(t)− ũn(t)‖2
V

≤ C8

(
‖ũn+m

τ (t)− ũn
τ (t)‖(L2(Γ3))d + ‖ũn+m

ν (t)− ũn
ν (t)‖L2(Γ3)

)
, a.e. t ∈ [0, T ].

Now, to complete the proof we refer the reader to [21, Proposition 4.5]. �

Next, we consider the problem.

Problem Pa. Find a bonding field β : [0, T ] → L∞(Γ3) such that

β̇(t) = −[β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)− εa]+ a.e. t ∈ (0, T ),

β(0) = β0 on Γ3,

where u is a weak limit founded in Lemma 4.1. We have the following result.

Proposition 4.4. There exists a unique solution to Problem Pa and it satisfies

β ∈ W 1,∞(0, T ;L2(Γ3)) ∩B.

Proof. As in [5] let k > 0 and

X =
{
β ∈ C([0, T ];L2(Γ3)); sup

t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)] < +∞
}
.

X is a Banach space with the norm

‖β‖X = sup
t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)],

and consider the mapping T : X → X given by

Tβ(t) = β0 −
∫ t

0

[β(s)(cν(Rν(uν(s)))2 + cτ (|Rτ (uτ (s))|)2)− εa]+ds.

Then there exists a constant c′1 > 0 such that

|Tβ1(t)− Tβ2(t)|2

≤ c′1

∫ t

0

(cν(Rν(uν(s)))2 + cτ |Rτ (uτ (s))|2)(β1(s)− β2(s))2ds.
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Using |Rν(uν(s))| ≤ L, |Rτ (uτ (s))| ≤ L, it follows that

‖Tβ1(t)− Tβ2(t)‖2
L2(Γ3)

≤ c′2

∫ t

0

‖β1(s)− β2(s)‖2
L2(Γ3)

ds

≤ c′2‖β1 − β2‖2
X

exp(2kt)
2k

,

for some constant c′2 > 0. So we obtain

‖Tβ1 − Tβ2‖X ≤
√

c′2
2k
‖β1 − β2‖X ,

and then for k sufficiently large T has a unique fixed point β. To show that β ∈ [0, 1]
for all t ∈ [0, T ], a.e. on Γ3, we refer the reader to [19, Remark 3.1]. �

Next, we prove a convergence result.

Lemma 4.5. Let β be the unique solution to Problem Pa. Then we have:
(i) βn → β strongly in L∞(0, T ;L2(Γ3)),
(ii) β̃n → β strongly in L∞(0, T ;L2(Γ3)).

Proof. (i), Since β̇n(t) = ∆βi

∆t , for all t ∈]ti, ti+1[, we have

βn(t) = βi −
∫ t

ti

[β̃n(s)(cν(Rν(ũn
ν (s)))2 + cτ (|Rτ (ũn

τ (s))|)2)− εa]+ds,

β(t) = β(ti)−
∫ t

ti

[β(s)(cν(Rν(uν(s)))2 + cτ (|Rτ (uτ (s))|)2)− εa]+ds.

Then

βn(t)− β(t) = βi − β(ti)−
∫ t

ti

[β̃n(s)(cν(Rν(ũn
ν (s)))2 + cτ (|Rτ (ũn

τ (s))|)2)− εa]+ds

+
∫ t

ti

[β(s)(cν(Rν(uν(s)))2 + cτ (|Rτ (uτ (s))|)2)− εa]+ds.

Thus,

‖βn(t)− β(t)‖L2(Γ3) ≤ ‖βi − β(ti)‖L2(Γ3)

+
∫ t

0

‖β̃n(s)
(
cν(Rν(ũn

ν (s)))2 + cτ (|Rτ (ũn
τ (s))|)2

)
− β(s)

(
cν(Rν(uν(s)))2 + cτ (|Rτ (uτ (s))|)2

)
‖

L2(Γ3)
ds.

Using the properties of Rl, l = ν, τ (see [18]) such that |Rl(ul)| ≤ L and (3.4), we
have

‖cν β̃n(s)(Rν(ũn
ν (s)))2 − cνβ(s)(Rν(uν(s)))2‖L2(Γ3)

≤
∥∥β̃n(s)cν

(
(Rν(ũn

ν (s)))2 − (Rν(uν(s)))2
)

+
(
β̃n(s)− βn(s)

)
cν(Rν(uν(s)))2

∥∥
L2(Γ3)

+ ‖(βn(s)− β(s))cν(Rν(uν(s)))2‖L2(Γ3)

≤ 2L‖cν‖L∞(Γ3)‖ũ
n
ν (s)− uν(s)‖L2(Γ3)

+ L2‖cν‖L∞(Γ3)∆tc′1 + L2‖cν‖L∞(Γ3)‖β
n(s)− β(s)‖L2(Γ3).
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Also we have

‖β̃n(s)cτ (|Rτ (ũn
ν (s))|)2 − cτβ(t)(|Rτ (uτ (s))|)2‖L2(Γ3)

≤ ‖β̃n(s)cτ

(
(|Rτ (ũn

τ (s))|)2 − (|Rτ (uτ (s))|)2
)

+
(
β̃n(s)− βn(s)

)
cτ (|Rτ (uτ (s))|)2‖L2(Γ3)

+ ‖(βn(s)− β(s))cτ (|Rτ (uτ (s))|)2‖L2(Γ3)

≤ 2L‖cτ‖L∞(Γ3)‖ũ
n
τ (s)− uτ (s)‖(L2(Γ3))d

+ L2‖cτ‖L∞(Γ3)∆tc′1 + L2‖cτ‖L∞(Γ3)‖β
n(s)− β(s)‖L2(Γ3).

From the above inequalities, we deduce

‖βn(t)− β(t)‖L2(Γ3)

≤ ‖βi − β(ti)‖L2(Γ3) + 2L
(
‖cν‖L∞(Γ3)

∫ t

0

‖ũn
ν (s)− uν(s)‖L2(Γ3)ds

+ ‖cτ‖L∞(Γ3)

∫ t

0

‖ũn
τ (s)− uτ (s)‖(L2(Γ3))dds

)
+ L2

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

) ∫ t

0

‖βn(s)− β(s)‖L2(Γ3)ds

+
(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)
TL2∆tc′1.

Now using a Gronwall-type argument it follows that there exists a constant C9 > 0
such that

‖βn(t)− β(t)‖L2(Γ3) ≤ C9

(
‖βi − β(ti)‖L2(Γ3) +

∫ t

0

(
‖ũn

ν (s)− uν(s)‖L2(Γ3)

+ ‖ũn
τ (s)− uτ (s)‖(L2(Γ3))d

)
ds + ∆t

)
.

Using (2.11), the above inequality implies

max
t∈[0,T ]

‖βn(t)− β(t)‖L2(Γ3)

≤ C9

(
max

i=0,...,n
‖βi − β(ti)‖L2(Γ3) + 2dΩ

∫ T

0

‖ũn(s)− u(s)‖V ds + ∆t
)

and

max
t∈[0,T ]

‖βn(t)− β(t)‖L2(Γ3)

≤ C9

(
max

i=0,...,n
‖βi − β(ti)‖L2(Γ3) + 2dΩ

√
T‖ũn − u‖L2(0,T ;V ) + ∆t

)
.

As in [5, Lemma 3.5], we still have

lim
n→+∞

max
i=0,...,n

‖βi − β(ti)‖L2(Γ3) = 0 .

Using (iii) of Lemma 4.3, one obtains

lim
n→+∞

max
t∈[0,T ]

‖βn(t)− β(t)‖L2(Γ3) = 0 .
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So (i) is proved. To prove (ii) it suffices to remark that there exists a constant
C10 > 0 such that

‖β̃n(t)− β(t)‖L2(Γ3) ≤ ‖β̃n(t)− βn(t)‖L2(Γ3) + ‖βn(t)− β(t)‖L2(Γ3)

≤ C10∆t + ‖βn(t)− β(t)‖L2(Γ3).

�

Now we have all the ingredients to prove the following proposition.

Proposition 4.6. (u, β) is a solution to Problem P2.

Proof. In the inequality (3.1), for v ∈ V set w = ui + v∆t and divide by ∆t; we
obtain the inequality

(Fε(ui+1), ε(v − ∆ui

∆t
))Q + j(ui+1, v)− j(ui+1,

∆ui

∆t
) + r(βi+1, ui+1, v − ∆ui

∆t
)

≥ (f i+1, v − ∆ui

∆t
)V

Whence for any v ∈ L2(0, T ;V ), we have

(Fε(ũn(t)), ε(v(t)− u̇n(t)))Q + j(ũn(t), v(t))− j(ũn(t), u̇n(t))

+ r(β̃n(t), ũn(t), v(t)− u̇n(t))

≥ (f̃n(t), v(t)− u̇n(t))V a.e. t ∈ [0, T ].

Integrating both sides of the above inequality on (0, T ), we obtain∫ T

0

(Fε(ũn(t)), ε(v(t)− u̇n(t)))Qdt +
∫ T

0

j(ũn(t), v(t))dt

−
∫ T

0

j(ũn(t), u̇n(t))dt +
∫ T

0

r
(
β̃n(t), ũn(t), v(t)− u̇n(t)

)
dt

≥
∫ T

0

(f̃n(t), v(t)− u̇n(t))V dt.

(4.2)

To pass in the limit in this inequality we need to establish the following properties.
�

Lemma 4.7. We have the following properties for v ∈ L2(0, T ;V ):

lim
n→∞

∫ T

0

(Fε(ũn(t)), ε(v(t)− u̇n))Qdt =
∫ T

0

(Fε(u(t)), ε(v(t)− u̇(t)))Qdt, (4.3)

lim inf
n→∞

∫ T

0

j(ũn(t), u̇n(t))dt ≥
∫ T

0

j(u(t), u̇(t))dt, (4.4)

lim
n→∞

∫ T

0

j(ũn(t), v(t))dt =
∫ T

0

j(u(t), v(t))dt, (4.5)

lim
n→∞

∫ T

0

(f̃n(t), v(t)− u̇n(t))V dt =
∫ T

0

(f(t), v(t)− u̇(t))V dt, (4.6)

lim
n→∞

∫ T

0

r(β̃n(t), un(t), v(t)− u̇n(t))dt =
∫ T

0

r(β(t), u(t), v(t)− u̇(t))dt. (4.7)
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Proof. For the proof of (4.3) and (4.6) we refer the reader to [21, Lemma 4.6]. To
prove (4.4), it suffices to see [12, Lemma 3.5]. To prove (4.5), it suffices to use (iii)
of Lemma 4.3. Finally for the proof of (4.7) we refer the reader to [5, Lemma 3.8]
and use the properties (3.4).

Now using lemma 4.5 (ii) and Lemma 4.7 we pass to the limit as n → +∞ in
the inequality (4.2) to obtain∫ T

0

(Fε(u(t)), ε(v(t)− u̇(t)))Qdt +
∫ T

0

j(u(t), v(t))dt

−
∫ T

0

j(u(t), u̇(t))dt +
∫ T

0

r(β(t), u(t), v(t)− u̇(t))dt

≥
∫ T

0

(f(t), v(t)− u̇(t))V dt,

from which we deduce the inequality (2.20) and also that β is the unique solution
of the differential equation (2.21). �

Remark 4.8. We can consider another quasistatic frictional contact problem with
adhesion. In Problem P1 the contact conditions on Γ3 (2.5) and (2.6) are modified
as follows.

−σν = p(uν)− cνβ2Rν(uν) on Γ3 × (0, T ),
|στ + cτβ2Rτ (uτ )| ≤ µ|p(uν)− cνβ2Rν(uν)|,
|στ + cτβ2Rτ (uτ )| < µ|p(uν)− cνβ2Rν(uν)| =⇒ u̇τ = 0,

|στ + cτβ2Rτ (uτ )| = µ|p(uν)− cνβ2Rν(uν)| =⇒
∃λ ≥ 0 such that u̇τ = −λ(στ + cτβ2Rτ (uτ )),

on Γ3 × (0, T ),

Using the new contact conditions, as in Problem P2 the corresponding variational
problem is written with the functional j : V × V → R defined by

j(u, v) =
∫

Γ3

(p(uν)vν + µ|p(uν)− cνβ2Rν(uν)||vτ |)da ∀u, v ∈ V.

In the same away we show that if there exists a constant µ∗ > 0, this problem
admits at least one solution for

‖µ‖L∞(Γ3) < µ∗.

Conclusion. In this paper we have studied a mathematical model which describes
a quasistatic frictional contact problem with adhesion for nonlinear elastic mate-
rials. The adhesive and frictional contact is modelled with a normal compliance
condition and the associated version of Coulomb’s law of dry friction. An exis-
tence result of a weak solution was proved under a smallness assumption of the
friction coefficient. Finally, we note that the important question of uniqueness of
the solution is not resolved here, and remains still open.
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Addendum posted on January 8, 2009.

The author wants to correct some misprints:

• Page 7: In the first displayed inequality, the norm of β has been included:

|(Au−Av,w)V | ≤
[
M +

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)
‖β‖2

L∞(Γ3)
d2
Ω

]
‖u− v‖V ‖w‖V
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• Page 7, Problem P2β : In the second part of the definition of β, > 0 has
been replaced by ≥ 0:

β =


βi, if (cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)βi − εa < 0,

βi + εa∆t

1 + ∆t(cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)
,

if (cν(Rν(uβν))2 + cτ (|Rτ (uβτ )|)2)βi − εa ≥ 0,

• Page 9, Lemma 3.4: +1 has been attached to the right-hand side of the
first inequality:

‖ui+1‖V ≤ C3

(
‖f i+1‖V + 1

)
, ‖∆ui‖V ≤ C4(‖∆f i‖V + ∆t). (3.8)

• Page 11, in the last displayed inequality: The second and third terms on
the right-hand side have been modified as follows:

(Fε(ũn+m(t))− Fε(ũn(t)), ε(ũn+m(t)− ũn(t)))Q

≤
∫

Γ3

µ(p(ũn+m
ν (t)) + p(ũn

ν (t)))|ũn+m(t)− ũn(t)|da

+ r
(
β̃n+m(t), ũn+m(t), ũn(t)− ũn+m(t)

)
+

(
f̃n+m(t)− f̃n(t), ũn+m(t)− ũn(t)

)
V

, a.e. t ∈ [0, T ].

• Page 12, lines 9 and 10, after “Using (2.14)(b) it follows that there exists a
constant C8 > 0 such that”: Replace the displayed inequality by

‖ũn+m(t)− ũn(t)‖2
V ≤ C8

(
‖ũn+m

τ (t)− ũn
τ (t)‖(L2(Γ3))d + ‖ũn+m

ν (t)− ũn
ν (t)‖L2Γ3)

+ ‖f̃n+m(t)− f̃n(t)‖2
V

)
, a.e. t ∈ [0, T ].

End of addendum.
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