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QUANTIZATION EFFECTS FOR A VARIANT OF THE
GINZBURG-LANDAU TYPE SYSTEM

LI MA

Abstract. The author uses Pohoaev’s identity to research the quantization

for a Ginzburg-Landau type functional. Under the logarithmic growth condi-
tion which is different assumption from that of in [2], the author obtain the

analogous quantization results.

1. Introduction

In [2] and [5], the authors have studied the quantization effects for the system

−∆u = u(1− |u|2) in R2,

which is associated with the Ginzburg-Landau functional

F (u) =
∫

Ω

[
1
2
|∇u|2 +

1
4ε2

(1− |u|2)2]dx,

where Ω ⊂ R2 is a bounded domain with smooth boundary, and ε > 0 is a small
parameter [1]. Lassoued and Lefter have investigated the asymptotic behavior of
minimizers uε ∈ H1

g (B1,R2) to the Ginzburg-Landau type energy

Eε(u,Ω) =
1
2

∫
Ω

|∇u|2dx+
1

4ε2

∫
Ω

|u|2(1− |u|2)2dx,

when ε → 0, where g : ∂Ω → S1 is a smooth map [3]. In view of [3, (1.4)], the
Euler-Lagrange system of the minimizer uε is

−∆u =
1
ε2
u|u|2(1− |u|2)− 1

2ε2
u(1− |u|2)2 in Ω.

Let Ωε = 1
εΩ. Then we have

−∆u = u|u|2(1− |u|2)− 1
2
u(1− |u|2)2 (1.1)

in Ωε. In a natural way, we shall study the system (1.1) in R2. In view of [3,
Propositions 2.1 and 2.2], we have

|u| ≤ 1, in R2; (1.2)

‖∇u‖L∞(R2) < +∞. (1.3)
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Regarding the boundary condition uε|∂B1 = g, we assume that

|u(x)| → 1, as |x| → ∞. (1.4)

Then, deg(u, ∂Br) is well defined for r large [2]. We denote d = |deg(u, ∂Br)|. In
virtue of (1.4), we see that there exists R0 > 0, such that

|u(x)| ≥
√

2
3
, for |x| = R ≥ R0. (1.5)

Thus, there is a smooth single-valued function ψ(x), defined for |x| ≥ R0, such that

u(x) = %(x)ei(dθ+ψ(x)), (1.6)

where % = |u|. If denote φ(x) = dθ + ψ, then φ is well defined and smooth locally
on the set |x| ≥ R0.

In this paper, we investigate the quantization of the energy functional Eε(u,Ω),
by an argument as in [2] for the systems (1.1).

Theorem 1.1. Assume that u solves (1.1). If u satisfies (1.4), and there exists an
absolute constant C > 0, such that for any r > 1,∫

Br

|∇u|2dx+
∫
Br

|u|2(1− |u|2)2dx ≤ C(ln r + 1). (1.7)

Then ∫
R2
|u|2(1− |u|2)2dx = 2πd2. (1.8)

If u is a solution of (1.1), and under the assumption∫
R2
|∇u|2dx < +∞, (1.9)

instead of (1.2)-(1.4) and (1.7), then there holds the following stronger conclusion.

Theorem 1.2. Assume u solves (1.1) and satisfies (1.9), then either u(x) ≡ 0 or
u ≡ C with |C| = 1 on R2.

2. Preliminaries

Proposition 2.1 (Pohozaev identity). If u solves (1.1). Then for any r > 0, there
holds∫

Br

|u|2(1− |u|2)2dx =
1
2

∫
∂Br

|u|2(1− |u|2)2|x|ds+
∫
∂Br

|x|(|∂τu|2 − |∂νu|2)ds.

(2.1)

Proof. Multiply (1.1) with (x · ∇u), and integrate over a bounded domain Ω with
smooth boundary. Noting∫

Ω

(x · ∇u)∆udx =
∫
∂Ω

∂νu(x · ∇u)ds−
∫

Ω

∇(x · ∇u)∇u dx

=
∫
∂Ω

(x · ν)||∂νu|2ds−
1
2

∫
Ω

x · ∇(|∇u|2)dx−
∫

Ω

|∇u|2dx

=
∫
∂Ω

(x · ν)|∂νu|2ds−
1
2

∫
∂Ω

(x · ν)|∇u|2ds,

(2.2)
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and ∫
Ω

(x · ∇u)u|u|2(1− |u|2)dx− 1
2

∫
Ω

(x · ∇u)u(1− |u|2)2dx

=
1
2

∫
Ω

|u|2(1− |u|2)2dx− 1
4

∫
Ω

div[x|u|2(1− |u|2)2]dx

=
1
2

∫
Ω

|u|2(1− |u|2)2dxdy − 1
4

∫
∂Ω

|u|2(1− |u|2)2(x · ν)ds,

we obtain∫
Ω

|u|2(1− |u|2)2dx

=
1
2

∫
∂Ω

|u|2(1− |u|2)2(x · ν)ds+
∫
∂Ω

(x · ν)|∇u|2ds− 2
∫
∂Ω

(x · ν)|∂νu|2ds.
(2.3)

Thus, (2.1) can be seen by taking Ω = Br in the identity above. The proof is
complete. �

3. Proof of Theorem 1.1

Proposition 3.1. Assume u solves (1.1). If u satisfies (1.4) and (1.7), then∫
R2

(1− |u|2)2dx < +∞. (3.1)

Proof. Denote f(t) =
∫
∂Bt

[|∇u|2 + |u|2(1−|u|2)2]ds. Applying [4, Proposition 2.2],
from (1.7) we are led to

1
2

inf{tf(t); t ∈ [
√
r, r] ln r ≤

∫ r

√
r

tf(t)
t

dt ≤ E(u,Br) ≤ C ln r,

which implies inf{tf(t); t ∈ [
√
r, r] ≤ C. Thus, there exists tm →∞ such that

tmf(tm) ≤ O(1). (3.2)

Taking r = tj →∞ in (2.1), and substituting (3.2) into it, we obtain∫
R2
|u|2(1− |u|2)2dx < +∞. (3.3)

Noting (1.5) we can see the conclusion of the proposition. �

Substituting (1.6) into (1.1) yields

−∆%+ %|∇φ|2 = %3(1− %2)− 1
2
%(1− %2)2, in R2 \BR0 , (3.4)

−div(%2∇φ) = 0 in R2 \BR0 . (3.5)

By an analogous argument of Steps 1 and 2 in the proof of [2, Proposition 1], we
also derive from (3.5) that ∫

R2\BR0

|∇ψ|2dx < +∞. (3.6)

In addition, we also deduce the following proposition.

Proposition 3.2. Under the assumption of Proposition 3.1, we have∫
R2\BR0

|∇%|2dx < +∞. (3.7)
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Proof. Let η ∈ C∞(R2, [0, 1]) satisfy η(x) = 1 for |x| ≤ 1/2, and η(x) = 0 for
|x| ≥ 1. Set ηt(x) = η(xt ) for t < r. Multiplying (3.4) by (1− %)η2

t and integrating
over Br \BR0 , we obtain∫

Br\BR0

|∇%|2η2
t dx+

∫
Br\BR0

[%3(1− %2)− 1
2
%(1− %2)2](1− %)η2

t dx

= −
∫
∂BR0

(1− %)η2
t ∂ν%ds−

1
2

∫
Br\BR0

∇(1− %)2∇η2
t dx

+
∫
Br\BR0

|∇φ|2%(1− %)η2
t dx.

(3.8)

Clearly, (1.3) leads to ∫
∂BR0

|∂ν%|ds ≤ C(R0) = C. (3.9)

In addition, in view of Proposition 3.1, it follows that∣∣ ∫
Br\BR0

∇(1− %)2∇η2
t dx

∣∣
≤

∣∣ ∫
∂BR0

(1− %)2∂νη2
t ds

∣∣ +
∣∣ ∫
Br\BR0

(1− %)2∆η2
t dx

∣∣
≤ C(R0) + Ct−2

∣∣ ∫
R2

(1− %)2dx
∣∣ < +∞, ∀t > R0.

(3.10)

Using Hölder’s inequality, from (3.1) and (3.6), we deduce that∫
Br\BR0

|∇φ|2%(1− %)η2
t dx ≤

( ∫
Br\BR0

d4

|x|4
dx

)1/2( ∫
R2

(1− %)2dx
)1/2

+
∫

R2\BR0

|∇ψ|2dx < +∞.

(3.11)

At last, (1.5) implies∫
Br\BR0

[%3(1− %2)− 1
2
%(1− %2)2](1− %)η2

t dx ≥ 0. (3.12)

Substituting (3.9)-(3.12) into (3.8), and letting t → ∞, we can deduce (3.7). The
proof is complete. �

Proof of Theorem 1.1. First, we have

|∂τu|2 = |∂τ%|2 + %2(
d

|x|
+ ∂τψ)2

=
d2

|x|2
+ |∂τ%|2 + (%2 − 1)

d2

|x|2
+ 2%2 d

|x|
∂τψ + %2|∂τψ|2,

(3.13)

Obviously, (3.1), (3.3), (3.6) and (3.7) imply∫
Br\BR0

[|u|2(1− |u|2)2 + |∂τ%|2 + (1− %2)
d2

|x|2

+ 2%2 d

|x|
|∂τψ|+ %2|∂τψ|2 + |∂νu|2]dx ≤ C,
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where C is independent of r. Similar to the derivation of (3.2), by using [4, Propo-
sition 2.2], it also follows that

inf{F (rj); rj ∈ [
√
r, r]} ≤ C(ln r)−1,

where

F (rj) := rj

∫
∂(Brj

\BR0 )

[|u|2(1− |u|2)2 + |∂τ%|2 + (1− %2)
d2

|x|2

+ 2%2 d

|x|
|∂τψ|+ %2|∂τψ|2 + |∂νu|2]ds.

Thus, we see that there exists rj → ∞, such that F (rj) ≤ o(1). Combining this
with (3.13), we can see (1.8) since∫

∂Br

|x| d
2

|x|2
ds = 2πd2.

The proof is complete. �

4. Proof of Theorem 1.2

First, we shall prove (1.2). Similar to the derivation of (3.8) in [2], we also have

∆h ≥ |u|(1 + |u|)h(3|u|2 − 1)/2, h = (|u| − 1)+.

Write G = {x ∈ R2; |u(x)| >
√

1/3}. In the argument of Step 1 in the proof of [2,
Theorem 2], we replace R2 by G to be the integral domain. Applying (1.9) we also
deduce that

|u|h(3|u|2 − 1) ≡ 0, on G.
This implies (1.2). Next, (1.1) leads to

∆|u|2 = 2|∇u|2 + |u|2(|u|2 − 1)(3|u|2 − 1), on Br. (4.1)

Multiplying this equality by ηt and integrating over Br, we have∫
Br

|u|2(1− |u|2)(3|u|2 − 1)ηtdx

= 2
∫
Br

|∇u|2ηtdx−
∫
∂Br

ηt∂ν |u|2ds+ 2
∫
Br

u∇u∇ηtdx.
(4.2)

From (4.2) with t < r (which implies ηt = 0 on ∂Br) and (1.9), it is not difficult to
deduce that ∫

Br

|u|2(1− |u|2)ηtdx ≤ C.

Letting t→∞, we can see that∫
R2
|u|2(1− |u|2)dx <∞. (4.3)

Similar to the calculation in the proof of (2.2), we have that, for t < r,∫
Br

∆u(x · ∇u)ηtdx = −
∫
Br

(x · ∇u)∇u∇ηtdx. (4.4)

Take
√
r < t < r and let r →∞, then by [4, Proposition 2.3], (1.9) leads to∣∣ ∫

Br

(x · ∇u)∇u∇ηtdx
∣∣ ≤ C

∫
t/2≤|x|≤t

|∇u|2 ≤ o(1). (4.5)
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Substituting (4.5) into (4.4), we obtain that as r →∞,∣∣ ∫
Br

∆u(x · ∇u)ηtdx
∣∣ ≤ o(1). (4.6)

By (1.1), we obtain that for t < r,∫
Br

∆u(x · ∇u)ηtdx =
1
4

∫
Br

div[x|u|2(|u|2 − 1)2]ηtdx−
1
2

∫
Br

|u|2(1− |u|2)2ηtdx

= −1
4

∫
Br

|u|2(|u|2 − 1)2x · ∇ηtdx−
1
2

∫
Br

|u|2(|u|2 − 1)2ηtdx.

(4.7)
Using [4, Proposition 2.3], from (4.3) we have∣∣ ∫

Br

|u|2(|u|2 − 1)2x · ∇ηtdx
∣∣ ≤ o(1),

when r →∞. Substituting this and (4.6) into (4.7), leads to∫
R2
|u|2(1− |u|2)2dx = 0.

This implies either |u| ≡ 0 or |u| ≡ 1 on R2.
Assume |u| ≡ 1 on R2. Integrating by parts over Br, we can deduce that, for

t ∈ (
√
r, r), ∫

Br

ηt∆|u|2dx = −
∫
Br

∇ηt∇|u|2dx.

Then there holds∣∣ ∫
Br

ηt∆|u|2dx
∣∣ =

∣∣ ∫
Br

∇ηt∇|u|2dx
∣∣ ≤ C

t

∫
t/2≤|x|≤t

|∇|u|2|dx.

Letting t→∞, from (1.9) we see that∣∣ ∫
Br

∆|u|2dx
∣∣ ≤ o(1). (4.8)

By (4.1), it follows∫
Br

∆|u|2dx = 2
∫
Br

[|∇u|2 + |u|2(|u|2 − 1)(3|u|2 − 1)]dx.

Substituting (4.8) and |u| ≡ 1 into it, we obtain
∫

R2 |∇u|2dx = 0. Then, u ≡ C

with |C| = 1 on R2. The proof is complete.
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