Electronic Journal of Differential Equations, Vol. 2008(2008), No. 135, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

QUANTIZATION EFFECTS FOR A VARIANT OF THE GINZBURG-LANDAU TYPE SYSTEM

LI MA

Abstract

The author uses Pohoaev's identity to research the quantization for a Ginzburg-Landau type functional. Under the logarithmic growth condition which is different assumption from that of in [2], the author obtain the analogous quantization results.

1. Introduction

In [2] and [5], the authors have studied the quantization effects for the system

$$
-\Delta u=u\left(1-|u|^{2}\right) \quad \text { in } \mathbb{R}^{2}
$$

which is associated with the Ginzburg-Landau functional

$$
F(u)=\int_{\Omega}\left[\frac{1}{2}|\nabla u|^{2}+\frac{1}{4 \varepsilon^{2}}\left(1-|u|^{2}\right)^{2}\right] d x
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain with smooth boundary, and $\varepsilon>0$ is a small parameter [1]. Lassoued and Lefter have investigated the asymptotic behavior of minimizers $u_{\varepsilon} \in H_{g}^{1}\left(B_{1}, \mathbb{R}^{2}\right)$ to the Ginzburg-Landau type energy

$$
E_{\varepsilon}(u, \Omega)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{4 \varepsilon^{2}} \int_{\Omega}|u|^{2}\left(1-|u|^{2}\right)^{2} d x
$$

when $\varepsilon \rightarrow 0$, where $g: \partial \Omega \rightarrow S^{1}$ is a smooth map [3]. In view of [3, (1.4)], the Euler-Lagrange system of the minimizer u_{ε} is

$$
-\Delta u=\frac{1}{\varepsilon^{2}} u|u|^{2}\left(1-|u|^{2}\right)-\frac{1}{2 \varepsilon^{2}} u\left(1-|u|^{2}\right)^{2} \quad \text { in } \Omega
$$

Let $\Omega_{\varepsilon}=\frac{1}{\varepsilon} \Omega$. Then we have

$$
\begin{equation*}
-\Delta u=u|u|^{2}\left(1-|u|^{2}\right)-\frac{1}{2} u\left(1-|u|^{2}\right)^{2} \tag{1.1}
\end{equation*}
$$

in Ω_{ε}. In a natural way, we shall study the system (1.1) in \mathbb{R}^{2}. In view of (3, Propositions 2.1 and 2.2], we have

$$
\begin{gather*}
|u| \leq 1, \quad \text { in } \mathbb{R}^{2} ; \tag{1.2}\\
\|\nabla u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)}<+\infty \tag{1.3}
\end{gather*}
$$

2000 Mathematics Subject Classification. 35J55, 35Q40.
Key words and phrases. Quantization; Ginzburg-Landau type functional.
(C)2008 Texas State University - San Marcos.

Submitted September 9, 2008. Published October 9, 2008.

Regarding the boundary condition $\left.u_{\varepsilon}\right|_{\partial B_{1}}=g$, we assume that

$$
\begin{equation*}
|u(x)| \rightarrow 1, \quad \text { as } \quad|x| \rightarrow \infty \tag{1.4}
\end{equation*}
$$

Then, $\operatorname{deg}\left(u, \partial B_{r}\right)$ is well defined for r large [2]. We denote $d=\left|\operatorname{deg}\left(u, \partial B_{r}\right)\right|$. In virtue of 1.4 , we see that there exists $R_{0}>0$, such that

$$
\begin{equation*}
|u(x)| \geq \sqrt{\frac{2}{3}}, \quad \text { for }|x|=R \geq R_{0} \tag{1.5}
\end{equation*}
$$

Thus, there is a smooth single-valued function $\psi(x)$, defined for $|x| \geq R_{0}$, such that

$$
\begin{equation*}
u(x)=\varrho(x) e^{i(d \theta+\psi(x))} \tag{1.6}
\end{equation*}
$$

where $\varrho=|u|$. If denote $\phi(x)=d \theta+\psi$, then ϕ is well defined and smooth locally on the set $|x| \geq R_{0}$.

In this paper, we investigate the quantization of the energy functional $E_{\varepsilon}(u, \Omega)$, by an argument as in [2] for the systems (1.1).

Theorem 1.1. Assume that u solves (1.1). If u satisfies (1.4), and there exists an absolute constant $C>0$, such that for any $r>1$,

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} d x+\int_{B_{r}}|u|^{2}\left(1-|u|^{2}\right)^{2} d x \leq C(\ln r+1) \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|u|^{2}\left(1-|u|^{2}\right)^{2} d x=2 \pi d^{2} \tag{1.8}
\end{equation*}
$$

If u is a solution of 1.1 , and under the assumption

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla u|^{2} d x<+\infty \tag{1.9}
\end{equation*}
$$

instead of (1.2)-1.4 and (1.7), then there holds the following stronger conclusion.
Theorem 1.2. Assume u solves (1.1) and satisfies (1.9), then either $u(x) \equiv 0$ or $u \equiv C$ with $|C|=1$ on \mathbb{R}^{2}.

2. Preliminaries

Proposition 2.1 (Pohozaev identity). If u solves 1.1. Then for any $r>0$, there holds

$$
\begin{equation*}
\int_{B_{r}}|u|^{2}\left(1-|u|^{2}\right)^{2} d x=\frac{1}{2} \int_{\partial B_{r}}|u|^{2}\left(1-|u|^{2}\right)^{2}|x| d s+\int_{\partial B_{r}}|x|\left(\left|\partial_{\tau} u\right|^{2}-\left|\partial_{\nu} u\right|^{2}\right) d s \tag{2.1}
\end{equation*}
$$

Proof. Multiply (1.1) with $(x \cdot \nabla u)$, and integrate over a bounded domain Ω with smooth boundary. Noting

$$
\begin{align*}
\int_{\Omega}(x \cdot \nabla u) \Delta u d x & =\int_{\partial \Omega} \partial_{\nu} u(x \cdot \nabla u) d s-\int_{\Omega} \nabla(x \cdot \nabla u) \nabla u d x \\
& =\left.\int_{\partial \Omega}(x \cdot \nu)| | \partial_{\nu} u\right|^{2} d s-\frac{1}{2} \int_{\Omega} x \cdot \nabla\left(|\nabla u|^{2}\right) d x-\int_{\Omega}|\nabla u|^{2} d x \tag{2.2}\\
& =\int_{\partial \Omega}(x \cdot \nu)\left|\partial_{\nu} u\right|^{2} d s-\frac{1}{2} \int_{\partial \Omega}(x \cdot \nu)|\nabla u|^{2} d s
\end{align*}
$$

and

$$
\begin{aligned}
& \int_{\Omega}(x \cdot \nabla u) u|u|^{2}\left(1-|u|^{2}\right) d x-\frac{1}{2} \int_{\Omega}(x \cdot \nabla u) u\left(1-|u|^{2}\right)^{2} d x \\
& =\frac{1}{2} \int_{\Omega}|u|^{2}\left(1-|u|^{2}\right)^{2} d x-\frac{1}{4} \int_{\Omega} \operatorname{div}\left[x|u|^{2}\left(1-|u|^{2}\right)^{2}\right] d x \\
& =\frac{1}{2} \int_{\Omega}|u|^{2}\left(1-|u|^{2}\right)^{2} d x d y-\frac{1}{4} \int_{\partial \Omega}|u|^{2}\left(1-|u|^{2}\right)^{2}(x \cdot \nu) d s
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \int_{\Omega}|u|^{2}\left(1-|u|^{2}\right)^{2} d x \\
& =\frac{1}{2} \int_{\partial \Omega}|u|^{2}\left(1-|u|^{2}\right)^{2}(x \cdot \nu) d s+\int_{\partial \Omega}(x \cdot \nu)|\nabla u|^{2} d s-2 \int_{\partial \Omega}(x \cdot \nu)\left|\partial_{\nu} u\right|^{2} d s \tag{2.3}
\end{align*}
$$

Thus, 2.1 can be seen by taking $\Omega=B_{r}$ in the identity above. The proof is complete.

3. Proof of Theorem 1.1

Proposition 3.1. Assume u solves (1.1). If u satisfies (1.4) and (1.7), then

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left(1-|u|^{2}\right)^{2} d x<+\infty \tag{3.1}
\end{equation*}
$$

Proof. Denote $f(t)=\int_{\partial B_{t}}\left[|\nabla u|^{2}+|u|^{2}\left(1-|u|^{2}\right)^{2}\right] d s$. Applying [4, Proposition 2.2], from (1.7) we are led to

$$
\frac{1}{2} \inf \left\{t f(t) ; t \in[\sqrt{r}, r] \ln r \leq \int_{\sqrt{r}}^{r} \frac{t f(t)}{t} d t \leq E\left(u, B_{r}\right) \leq C \ln r\right.
$$

which implies $\inf \left\{t f(t) ; t \in[\sqrt{r}, r] \leq C\right.$. Thus, there exists $t_{m} \rightarrow \infty$ such that

$$
\begin{equation*}
t_{m} f\left(t_{m}\right) \leq O(1) \tag{3.2}
\end{equation*}
$$

Taking $r=t_{j} \rightarrow \infty$ in (2.1), and substituting $\sqrt{3.2}$ into it, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|u|^{2}\left(1-|u|^{2}\right)^{2} d x<+\infty \tag{3.3}
\end{equation*}
$$

Noting (1.5 we can see the conclusion of the proposition.
Substituting (1.6) into 1.1 yields

$$
\begin{gather*}
-\Delta \varrho+\varrho|\nabla \phi|^{2}=\varrho^{3}\left(1-\varrho^{2}\right)-\frac{1}{2} \varrho\left(1-\varrho^{2}\right)^{2}, \quad \text { in } \mathbb{R}^{2} \backslash B_{R_{0}} \tag{3.4}\\
-\operatorname{div}\left(\varrho^{2} \nabla \phi\right)=0 \quad \text { in } \mathbb{R}^{2} \backslash B_{R_{0}} \tag{3.5}
\end{gather*}
$$

By an analogous argument of Steps 1 and 2 in the proof of [2, Proposition 1], we also derive from (3.5) that

$$
\begin{equation*}
\int_{\mathbb{R}^{2} \backslash B_{R_{0}}}|\nabla \psi|^{2} d x<+\infty \tag{3.6}
\end{equation*}
$$

In addition, we also deduce the following proposition.
Proposition 3.2. Under the assumption of Proposition 3.1, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2} \backslash B_{R_{0}}}|\nabla \varrho|^{2} d x<+\infty \tag{3.7}
\end{equation*}
$$

Proof. Let $\eta \in C^{\infty}\left(\mathbb{R}^{2},[0,1]\right)$ satisfy $\eta(x)=1$ for $|x| \leq 1 / 2$, and $\eta(x)=0$ for $|x| \geq 1$. Set $\eta_{t}(x)=\eta\left(\frac{x}{t}\right)$ for $t<r$. Multiplying 3.4 by $(1-\varrho) \eta_{t}^{2}$ and integrating over $B_{r} \backslash B_{R_{0}}$, we obtain

$$
\begin{align*}
& \int_{B_{r} \backslash B_{R_{0}}}|\nabla \varrho|^{2} \eta_{t}^{2} d x+\int_{B_{r} \backslash B_{R_{0}}}\left[\varrho^{3}\left(1-\varrho^{2}\right)-\frac{1}{2} \varrho\left(1-\varrho^{2}\right)^{2}\right](1-\varrho) \eta_{t}^{2} d x \\
& =-\int_{\partial B_{R_{0}}}(1-\varrho) \eta_{t}^{2} \partial_{\nu} \varrho d s-\frac{1}{2} \int_{B_{r} \backslash B_{R_{0}}} \nabla(1-\varrho)^{2} \nabla \eta_{t}^{2} d x \tag{3.8}\\
& \quad+\int_{B_{r} \backslash B_{R_{0}}}|\nabla \phi|^{2} \varrho(1-\varrho) \eta_{t}^{2} d x .
\end{align*}
$$

Clearly, 1.3 leads to

$$
\begin{equation*}
\int_{\partial B_{R_{0}}}\left|\partial_{\nu} \varrho\right| d s \leq C\left(R_{0}\right)=C \tag{3.9}
\end{equation*}
$$

In addition, in view of Proposition 3.1, it follows that

$$
\begin{align*}
& \left|\int_{B_{r} \backslash B_{R_{0}}} \nabla(1-\varrho)^{2} \nabla \eta_{t}^{2} d x\right| \\
& \leq\left|\int_{\partial B_{R_{0}}}(1-\varrho)^{2} \partial_{\nu} \eta_{t}^{2} d s\right|+\left|\int_{B_{r} \backslash B_{R_{0}}}(1-\varrho)^{2} \Delta \eta_{t}^{2} d x\right| \tag{3.10}\\
& \leq C\left(R_{0}\right)+C t^{-2}\left|\int_{\mathbb{R}^{2}}(1-\varrho)^{2} d x\right|<+\infty, \quad \forall t>R_{0}
\end{align*}
$$

Using Hölder's inequality, from (3.1) and (3.6), we deduce that

$$
\begin{align*}
\int_{B_{r} \backslash B_{R_{0}}}|\nabla \phi|^{2} \varrho(1-\varrho) \eta_{t}^{2} d x \leq & \left(\int_{B_{r} \backslash B_{R_{0}}} \frac{d^{4}}{|x|^{4}} d x\right)^{1 / 2}\left(\int_{\mathbb{R}^{2}}(1-\varrho)^{2} d x\right)^{1 / 2} \tag{3.11}\\
& +\int_{\mathbb{R}^{2} \backslash B_{R_{0}}}|\nabla \psi|^{2} d x<+\infty
\end{align*}
$$

At last, 1.5 implies

$$
\begin{equation*}
\int_{B_{r} \backslash B_{R_{0}}}\left[\varrho^{3}\left(1-\varrho^{2}\right)-\frac{1}{2} \varrho\left(1-\varrho^{2}\right)^{2}\right](1-\varrho) \eta_{t}^{2} d x \geq 0 \tag{3.12}
\end{equation*}
$$

Substituting (3.9)-(3.12) into (3.8), and letting $t \rightarrow \infty$, we can deduce (3.7). The proof is complete.

Proof of Theorem 1.1. First, we have

$$
\begin{align*}
\left|\partial_{\tau} u\right|^{2} & =\left|\partial_{\tau} \varrho\right|^{2}+\varrho^{2}\left(\frac{d}{|x|}+\partial_{\tau} \psi\right)^{2} \\
& =\frac{d^{2}}{|x|^{2}}+\left|\partial_{\tau} \varrho\right|^{2}+\left(\varrho^{2}-1\right) \frac{d^{2}}{|x|^{2}}+2 \varrho^{2} \frac{d}{|x|} \partial_{\tau} \psi+\varrho^{2}\left|\partial_{\tau} \psi\right|^{2} \tag{3.13}
\end{align*}
$$

Obviously, (3.1), (3.3), (3.6) and (3.7) imply

$$
\begin{aligned}
& \int_{B_{r} \backslash B_{R_{0}}}\left[|u|^{2}\left(1-|u|^{2}\right)^{2}+\left|\partial_{\tau} \varrho\right|^{2}+\left(1-\varrho^{2}\right) \frac{d^{2}}{|x|^{2}}\right. \\
& \left.+2 \varrho^{2} \frac{d}{|x|}\left|\partial_{\tau} \psi\right|+\varrho^{2}\left|\partial_{\tau} \psi\right|^{2}+\left|\partial_{\nu} u\right|^{2}\right] d x \leq C
\end{aligned}
$$

where C is independent of r. Similar to the derivation of (3.2), by using (4) Proposition 2.2], it also follows that

$$
\inf \left\{F\left(r_{j}\right) ; r_{j} \in[\sqrt{r}, r]\right\} \leq C(\ln r)^{-1}
$$

where

$$
\begin{aligned}
F\left(r_{j}\right):= & r_{j} \int_{\partial\left(B_{r_{j}} \backslash B_{R_{0}}\right)}\left[|u|^{2}\left(1-|u|^{2}\right)^{2}+\left|\partial_{\tau} \varrho\right|^{2}+\left(1-\varrho^{2}\right) \frac{d^{2}}{|x|^{2}}\right. \\
& \left.+2 \varrho^{2} \frac{d}{|x|}\left|\partial_{\tau} \psi\right|+\varrho^{2}\left|\partial_{\tau} \psi\right|^{2}+\left|\partial_{\nu} u\right|^{2}\right] d s
\end{aligned}
$$

Thus, we see that there exists $r_{j} \rightarrow \infty$, such that $F\left(r_{j}\right) \leq o(1)$. Combining this with (3.13), we can see (1.8) since

$$
\int_{\partial B_{r}}|x| \frac{d^{2}}{|x|^{2}} d s=2 \pi d^{2}
$$

The proof is complete.

4. Proof of Theorem 1.2

First, we shall prove 1.2 . Similar to the derivation of (3.8) in [2], we also have

$$
\Delta h \geq|u|(1+|u|) h\left(3|u|^{2}-1\right) / 2, \quad h=(|u|-1)^{+} .
$$

Write $G=\left\{x \in \mathbb{R}^{2} ;|u(x)|>\sqrt{1 / 3}\right\}$. In the argument of Step 1 in the proof of [2, Theorem 2], we replace \mathbb{R}^{2} by G to be the integral domain. Applying 1.9 we also deduce that

$$
|u| h\left(3|u|^{2}-1\right) \equiv 0, \quad \text { on } G
$$

This implies 1.2. Next, (1.1) leads to

$$
\begin{equation*}
\Delta|u|^{2}=2|\nabla u|^{2}+|u|^{2}\left(|u|^{2}-1\right)\left(3|u|^{2}-1\right), \quad \text { on } B_{r} . \tag{4.1}
\end{equation*}
$$

Multiplying this equality by η_{t} and integrating over B_{r}, we have

$$
\begin{align*}
& \int_{B_{r}}|u|^{2}\left(1-|u|^{2}\right)\left(3|u|^{2}-1\right) \eta_{t} d x \\
& =2 \int_{B_{r}}|\nabla u|^{2} \eta_{t} d x-\int_{\partial B_{r}} \eta_{t} \partial_{\nu}|u|^{2} d s+2 \int_{B_{r}} u \nabla u \nabla \eta_{t} d x . \tag{4.2}
\end{align*}
$$

From 4.2) with $t<r$ (which implies $\eta_{t}=0$ on ∂B_{r}) and 1.9), it is not difficult to deduce that

$$
\int_{B_{r}}|u|^{2}\left(1-|u|^{2}\right) \eta_{t} d x \leq C
$$

Letting $t \rightarrow \infty$, we can see that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|u|^{2}\left(1-|u|^{2}\right) d x<\infty \tag{4.3}
\end{equation*}
$$

Similar to the calculation in the proof of 2.2 , we have that, for $t<r$,

$$
\begin{equation*}
\int_{B_{r}} \Delta u(x \cdot \nabla u) \eta_{t} d x=-\int_{B_{r}}(x \cdot \nabla u) \nabla u \nabla \eta_{t} d x \tag{4.4}
\end{equation*}
$$

Take $\sqrt{r}<t<r$ and let $r \rightarrow \infty$, then by [4, Proposition 2.3], 1.9) leads to

$$
\begin{equation*}
\left|\int_{B_{r}}(x \cdot \nabla u) \nabla u \nabla \eta_{t} d x\right| \leq C \int_{t / 2 \leq|x| \leq t}|\nabla u|^{2} \leq o(1) \tag{4.5}
\end{equation*}
$$

Substituting 4.5 into 4.4, we obtain that as $r \rightarrow \infty$,

$$
\begin{equation*}
\left|\int_{B_{r}} \Delta u(x \cdot \nabla u) \eta_{t} d x\right| \leq o(1) \tag{4.6}
\end{equation*}
$$

By (1.1), we obtain that for $t<r$,

$$
\begin{align*}
\int_{B_{r}} \Delta u(x \cdot \nabla u) \eta_{t} d x & =\frac{1}{4} \int_{B_{r}} \operatorname{div}\left[x|u|^{2}\left(|u|^{2}-1\right)^{2}\right] \eta_{t} d x-\frac{1}{2} \int_{B_{r}}|u|^{2}\left(1-|u|^{2}\right)^{2} \eta_{t} d x \\
& =-\frac{1}{4} \int_{B_{r}}|u|^{2}\left(|u|^{2}-1\right)^{2} x \cdot \nabla \eta_{t} d x-\frac{1}{2} \int_{B_{r}}|u|^{2}\left(|u|^{2}-1\right)^{2} \eta_{t} d x \tag{4.7}
\end{align*}
$$

Using (4, Proposition 2.3], from (4.3) we have

$$
\left.\left|\int_{B_{r}}\right| u\right|^{2}\left(|u|^{2}-1\right)^{2} x \cdot \nabla \eta_{t} d x \mid \leq o(1)
$$

when $r \rightarrow \infty$. Substituting this and 4.6 into 4.7, leads to

$$
\int_{\mathbb{R}^{2}}|u|^{2}\left(1-|u|^{2}\right)^{2} d x=0
$$

This implies either $|u| \equiv 0$ or $|u| \equiv 1$ on \mathbb{R}^{2}.
Assume $|u| \equiv 1$ on \mathbb{R}^{2}. Integrating by parts over B_{r}, we can deduce that, for $t \in(\sqrt{r}, r)$,

$$
\int_{B_{r}} \eta_{t} \Delta|u|^{2} d x=-\int_{B_{r}} \nabla \eta_{t} \nabla|u|^{2} d x
$$

Then there holds

$$
\left.\left.\left|\int_{B_{r}} \eta_{t} \Delta\right| u\right|^{2} d x\left|=\left|\int_{B_{r}} \nabla \eta_{t} \nabla\right| u\right|^{2} d x\left|\leq \frac{C}{t} \int_{t / 2 \leq|x| \leq t}\right| \nabla|u|^{2} \right\rvert\, d x
$$

Letting $t \rightarrow \infty$, from $\sqrt{1.9}$ we see that

$$
\begin{equation*}
\left.\left|\int_{B_{r}} \Delta\right| u\right|^{2} d x \mid \leq o(1) . \tag{4.8}
\end{equation*}
$$

By (4.1), it follows

$$
\int_{B_{r}} \Delta|u|^{2} d x=2 \int_{B_{r}}\left[|\nabla u|^{2}+|u|^{2}\left(|u|^{2}-1\right)\left(3|u|^{2}-1\right)\right] d x .
$$

Substituting 4.8 and $|u| \equiv 1$ into it, we obtain $\int_{\mathbb{R}^{2}}|\nabla u|^{2} d x=0$. Then, $u \equiv C$ with $|C|=1$ on \mathbb{R}^{2}. The proof is complete.

References

[1] F. Bethuel, H. Brezis, F. Helein: Ginzburg-Landau vortices, Birkhauser. Berlin. 1994.
[2] H. Brezis, F. Merle, T. Riviere: Quantization effects for $-\Delta u=u\left(1-|u|^{2}\right)$ in \mathbb{R}^{2}, Arch. Rational Mech. Anal., 126 (1994), 35-58.
[3] L. Lassoued, C. Lefter: On a variant of the Ginzburg-Landau energy, Nonlinear Differ. Equ. Appl. ,5 (1998), 39-51.
[4] Y. Lei: Quantization for a Ginzburg-Landau type energy related to superconductivity with normal impurity inclusion J. Math. Anal. Appl., 335 (2007), 243-259.
[5] I. Shafrir: Remarks on solutions of $-\Delta u=u\left(1-|u|^{2}\right)$ in \mathbb{R}^{2}, C. R. Acad. Sci. Paris t.,318 (1994), 327-331.

Li Ma
Institute of Science, PLA University of Science and Technology, Nanjing, 211101, China
E-mail address: mary96@126.com

