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INTEGRAL REPRESENTATION OF SOLUTIONS TO
BOUNDARY-VALUE PROBLEMS ON THE HALF-LINE FOR
LINEAR ODES WITH SINGULARITY OF THE FIRST KIND

YULIA HORISHNA, IGOR PARASYUK, LYUDMYLA PROTSAK

Abstract. We study the existence of solutions to a non-homogeneous system

of linear ODEs which has the pole of first order at x = 0; these solutions should
vanish at infinity and be continuously differentiable on [0,∞). The resonant

case where the corresponding homogeneous problem has nontrivial solutions
is of great interest to us. Under the conditions that the homogeneous system

is exponentially dichotomic on [1,∞) and the residue of system’s operator at

x = 0 does not have eigenvalues with real part 1, we construct the so-called
generalized Green function. We also establish conditions under which the

main non-homogeneous problem can be reduced to the Noetherian problem

with nonzero index.

1. Introduction

In the space Rn endowed with a scalar product 〈·, ·〉 and the corresponding norm
‖ · ‖, we consider the linear singular system

y′ =
(A

x
+ B(x)

)
y +

a

x
+ f(x). (1.1)

Here A is a linear operator in Hom(Rn), a is a constant in Rn, B(·) : [0,∞) →
Hom(Rn) and f(·) : [0,∞) → Rn are continuous bounded mappings for which there
exists a constant M > 0 such that ‖B(x)‖ ≤ M and ‖f(x)‖ ≤ M for all x ∈ [0,∞).
(The norm of a linear operator in Rn is considered to be concordant with the norm
in Rn.)

We seek a solution y(x) of the system (1.1) which satisfies the following two
conditions:

y(·) ∈ C1
(
[0,∞) → Rn

)
, y(+∞) = 0. (1.2)

The stated problem belongs to the class of singular problems on account of both
having a singularity at the point x = 0 and unboundedness of the interval where
the independent variable is defined. The problems of such a kind often arise when
constructing and investigating solutions of various equations of mathematical phy-
sics. Majority of papers devoted to study of such problems deal with second and
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higher order equations (see e.g. [1, 2, 3, 4, 8, 9, 10, 13, 14, 16, 18, 17, 19]). Despite
the fact that corresponding bibliography amounts to several hundreds of titles,
we failed to find a ready-made procedure for establishing existence conditions and
integral representation of solutions to the problem (1.1)–(1.2). The necessity of
such representation naturally arises when solving the problem about perturbations
of solutions to singular non-linear boundary value problems on the semi-axis [21, 22].

While considering the above problem, we did not exclude the so-called resonance
case when the corresponding homogeneous problem has non-trivial solutions. In this
connection results of papers [5, 6, 7, 11, 20, 23, 25, 24] should be mentioned, which
are devoted to the problem of existence of solutions to linear non-homogeneous sys-
tems bounded on the entire axis, in particular, extension of Fredholm and Noether
theory over such systems. It should be noted that in the papers [2, 4, 13] the au-
thors find quite general sufficient conditions for boundary value problems on finite
interval with nonintegrable singularities to have the Fredholm property with index
zero.

The present paper is organized as follows. The section 2 contains an auxiliary re-
sult about the structure of a fundamental operator of a linear homogeneous system
with continuous (however non-analytic) coefficients on the interval (0, x0) and sin-
gular point of the first kind at x = 0. In section 3, we describe additional conditions
imposed on the linear homogeneous system, and classify its solutions in accordance
with their asymptotical behavior when x → +0 and x → +∞. In section 4, the
existence criterion for the solution to a boundary value problem with homogeneous
boundary conditions is established and the Green function for this problem is con-
structed. Finally, in section 5, the main result is stated — the theorem about
existence and integral representation of solutions to the problem (1.1)–(1.2).

2. Structure of the fundamental operator of linear systems near a
singular point of the first kind

Consider the linear homogeneous system associated with (1.1):

y′ =
(A

x
+ B(x)

)
y. (2.1)

In the analytical theory of differential equations, the structure of the fundamental
operator of the system (2.1) is completely investigated under the assumption that
the mapping B(·) is holomorphic in the neighborhood of the singular point x = 0
(see e.g. [15]). In the case where B(·) is continuous only, the following proposition
which is a simple modification of the result stated in [7, p. 275] holds.

Proposition 2.1. There exist numbers x0 ∈ (0,∞), K > 0 and r > 0 such that
the fundamental operator of the system (2.1) admits the representation in the form

Y (x) = (E + U(x))xA, x ∈ (0, x0], (2.2)
where E ∈ Hom(Rn) is a unit operator, and the mapping U(·) ∈ C1

(
(0,∞) →

Hom(Rn)
)

satisfies the estimate

‖U(x)‖ ≤ Kx| lnx|r, x ∈ (0, x0].

Proof. The mapping Y (·) : (0, x0] → Hom(Rn) defined by (2.2) is a fundamental
operator of the system (2.1) if U(x) satisfies the equation

U ′ =
1
x

(AU − UA) + B(x)(E + U), x ∈ (0, x0].
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After the substitution x = e−t we obtain the following equation for the operator
V (t) := U(e−t):

V̇ = V A−AV − e−tB(e−t) (E + V ) . (2.3)

Thus we are to find the solution to this equation which satisfies the inequality

‖V (t)‖ ≤ Ktre−t, t0 ∈ [t0,∞)

for certain value of t0 > 0.
Equation (2.3) can be identified in Rn2

with the system of the form

v̇ = Av + e−t
(
H(t)v + h(t)

)
, (2.4)

where A ∈ Hom(Rn2
) is a constant operator, and the mappings H(·) ∈ C

(
[t0,∞) →

Hom(Rn2
)
)

and h(·) ∈ C([t0,∞) → Rn2
) satisfy the inequalities ‖H(t)‖ ≤ M ,

‖h(t)‖ ≤ M for t ∈ [t0,∞).
Now the required result can be obtained as an obvious consequence of two lemmas

stated below. �

Lemma 2.2. Let A ∈ Hom(RN )). Then there exists a mapping GA(·) ∈ C∞(
R →

Hom(RN )
)

such that for any function f(t) ∈ C([t0,∞) → RN ) satisfying the esti-
mate

‖f(t)‖ ≤ Mfe
−t, t ∈ [t0,∞),

with some constant Mf > 0, the system

ẏ = Ay + f(t) (2.5)

possesses a bounded on the semi-axis [t0,∞) solution of the form

y(t) =
∫ ∞

t0

GA(t− s)f(s)ds.

This solution satisfies the inequality

‖y(t)‖ ≤ CAMfe
−t (1 + (t− t0)r) , (2.6)

where CA is a positive constant depending on A only, and r is the maximum di-
mension of Jordan blocks corresponding to eigenvalues with the real part equal to
−1 in the normal form matrix of the operator A.

If, in addition, f(t) = o(e−t) as t → ∞, then the solution y(t) has the property
y(t) = o

(
e−ttr

)
as t →∞.

Proof. We give the proof of the first part of the Proposition for the case where
r ≥ 1. Note that there exist three projectors Pi : RN → RN , i = 1, 3, such that
PiPk = 0, i 6= k, P1 + P2 + P3 = E, and for some constants KA > 0, γ1 > −1,
γ2 < −1 the following inequalities hold

‖eAτP1‖ ≤ KAeγ1τ , τ ≤ 0,

‖eAτP2‖ ≤ KA
(
1 + τ r−1

)
e−τ , τ ≥ 0,

‖eAτP3‖ ≤ KAeγ2τ , τ ≥ 0.

Now we define the function

GA(τ) =

{
−eAτP1, τ ≤ 0,

eAτ (P2 + P3), τ > 0.
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The function

y(t) :=
∫ ∞

t0

GA(t− s)f(s)ds

≡
∫ t

t0

eA(t−s)P2f(s)ds +
∫ t

t0

eA(t−s)P3f(s)ds−
∫ ∞

t

eA(t−s)P1f(s)ds

is well defined and there exists a constant CA > 0 dependent on the operator A
only such that

‖y(t)‖ ≤ KAMf

( ∫ t

t0

(
1 + (t− s)r−1

)
e−(t−s)e−sds

+
∫ t

t0

eγ2(t−s)e−sds +
∫ ∞

t

eγ1(t−s)e−sds
)

≤ KAMfe
−t

(
(t− t0) +

(t− t0)r

r
+

1− e−(|γ2|−1)(t−t0)

|γ2| − 1
+

1
γ1 + 1

)
≤ CAMfe

−t
(
1 + (t− t0)r

)
.

Therefore, for y(t) the inequality (2.6) holds. One can easily make sure by the
direct check that this function is in fact the solution to the system (2.5).

Now let f(t) = o(e−t) as t → ∞. Then for an arbitrary ε > 0 one can choose
T (ε) > t0 in such a way that ‖f(t)‖ ≤ εe−t for t ≥ T (ε). Represent the solution y(t)
in the form

y(t) =
∫ T (ε)

t0

GA(t− s)f(s) ds +
∫ ∞

T (ε)

GA(t− s)f(s) ds.

In accordance with what has been proved above, the norm of the second addend
does not exceed CAεe−t(1 + (t− T (ε))r) for any t ≥ T (ε). For the first addend,
when t ≥ T (ε) we have:∫ T (ε)

t0

GA(t− s)f(s) ds =
∫ T (ε)

t0

eA(t−s)P2f(s)ds +
∫ T (ε)

t0

eA(t−s)P3f(s)ds.

If r = 0, then P2 = 0, and∥∥∫ T (ε)

t0

GA(t− s)f(s) ds
∥∥ = O

(
eγ2t

)
= o

(
e−t

)
, t →∞.

If r > 0, then∥∥∫ T (ε)

t0

GA(t− s)f(s) ds
∥∥ = O

(
e−t

)
= o

(
e−ttr

)
, t →∞.

�

Lemma 2.3. Assume that H(·) ∈ C
(
[t0,∞) → Hom(RN )

)
, h(·) ∈ C

(
[t0,∞) →

RN )
)
, and that there exist constants M > 0, m > 0 such that ‖H(t)‖ ≤ M ,

‖h(t)‖ ≤ m for any t ≥ t0. Let CA and r be the numbers defined in Lemma 2.2. If
the inequalities

t0 > r, q := 2CAMtr0e
−t0 < 1, (2.7)

hold true, then the system (2.4) has a solution v(t) such that

‖v(t)‖ ≤ 2CAm

1− q
tre−t, t ≥ t0.
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If, in addition, h(t) → 0 as t →∞, then v(t) = o(tre−t) as t →∞.

Proof. In view of the Lemma 2.2, we are going to find the solution to the system
(2.4) satisfying the integral equation

v(t) =
∫ ∞

t0

GA(t− s)e−s
(
H(s)v(s) + h(s)

)
ds. (2.8)

Denote

G[v(·)](t) :=
∫ ∞

t0

GA(t− s)e−s
(
H(s)v(s) + h(s)

)
ds

and define the space of functions

Mt0,C := {v(t) ∈ C([t0,∞) → RN ) : ‖v(t)‖ ≤ Ctre−t, t ≥ t0}.

Let us show that if (2.7) holds, then it is possible to choose the constant C > 0
in such a way that G : Mt0,C →Mt0,C and this mapping is a contraction in the
uniform metric.

Then Lemma 2.2 implies

‖G[v(·)](t)‖ ≤ CA
(
M sup

t≥t0

(
Ctre−t

)
+ m

)
e−t

(
1 + (t− t0)r

)
≤ 2CA

(
MCtr0e

−t0 + m
)
tre−t, t0 > r,

for any function v(t) ∈Mt0,C . Besides, when t0 > r, for any v(t), u(t) ∈Mt0,C we
obtain:

‖G[v(·)− u(·)](t)‖ ≤ CAMe−t
(
1 + (t− t0)r

)
sup
t≥t0

‖v(t)− u(t)‖

≤ 2CAMtr0e
−t0 sup

t≥t0

‖v(t)− u(t)‖ = q sup
t≥t0

‖v(t)− u(t)‖.

Since q < 1, it is clear that G is a contraction mapping on Mt0,C , once the following
inequality holds

2CA(MCtr0e
−t0 + m) ≤ C.

Hence, by setting

C :=
2CAm

1− q

we guarantee the existence of a unique solution v(t) ∈Mt0,C to the equation (2.8).
Now, suppose in addition that h(t) → 0 as t → ∞. Since the solution v(t) can

be represented in the form

v(t) =
∫ ∞

t0

GA(t− s)f(s)ds

where f(t) = e−t(H(t)v(t) + h(t)) = o(e−t), t → ∞, then in accordance with the
Lemma 2.2 we obtain: v(t) = o(tre−t) as t →∞. �

3. Additional conditions for the linear homogeneous system

Hereafter we assume that for the linear homogeneous system (2.1) the conditions
(A), (B) described below hold. These conditions concern the local properties of the
system in neighborhoods of the points x = 0 and x = +∞.

(A) The characteristic polynomial of the operator A has no roots with real part
equal to 1;
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(B) the system (2.1) is exponentially dichotomic on the semi-axis [x0,∞) for
some (and therefore, for any) positive x0.

Let y(x, y0) be a solution to the system (2.1) satisfying the initial condition
y(x0, y0) = y0. For the sake of generality we assume that the characteristic poly-
nomial of the operator A has roots with real parts both less and greater than 1
and the system (2.1) has both bounded and unbounded solutions on the half-line
[x0,∞).

Under the conditions (A) and (B) there exist subspaces V+ and U− with the
following properties:

(1) There exists α > 0 such that for any subspace V− which is a direct supplement
of V+ to Rn one can choose a constant c0 > 0 in such a way that

‖y(x, y0)‖ ≤ c0

(x

s

)1+α‖y(s, y0)‖, 0 < x ≤ s ≤ x0, ify0 ∈ V+; (3.1)

‖y(x, y0)‖ ≤ c0

(x

s

)1−α‖y(s, y0)‖, 0 < s ≤ x ≤ x0, ify0 ∈ V−. (3.2)

(This property results from the Proposition 2.1 and the condition (A).)
(2) There exists a constant γ > 0 such that for any subspace U+ which is a direct

supplement of U− to Rn one can choose a constant c∗ > 0 in such a way that

‖y(x, y0)‖ ≤ c∗e
−γ(x−s)‖y(s, y0)‖, x0 ≤ s ≤ x, ify0 ∈ U− (3.3)

‖y(x, y0)‖ ≤ c∗e
γ(x−s)‖y(s, y0)‖, x0 ≤ x ≤ s, ify0 ∈ U+. (3.4)

(See [7, Remark 3.4 p. 235])
If the subspace ker A is non-trivial, then there exists a subspace V0

− isomorphic
to the subspace ker A and having the next property:

(3) For each y∗ ∈ V0
− there exists a unique vector ζ ∈ ker A such that

y(x, y∗) =
(
E + Θ(x)

)
ζ, x → +0, (3.5)

where Θ(·) ∈ C1
(
[0, x0] → Hom(Rn)

)
and Θ(x) = x(E−A)−1B(0)+o(x), x → +0.

At the same time V0
− ∩ V+ = {0} and the subspace V+ ⊕ V0

− coincides with
the subspace of initial values (for x = x0) of continuously differentiable on [0,∞)
solutions to the system (2.1). (See the corollary from the Proposition 4.1 which is
stated in section 5.)

Now the space Rn can be represented as the direct sum of six subspaces L1, . . . , L6

defined in the following way:
(1) L1 := U− ∩ V+;
(2) L2 is a direct supplement of the subspace L1 to U− ∩ (V+ ⊕ V0

−), so that

L1 ⊕ L2 = U− ∩ (V+ ⊕ V0
−);

(3) L3 is a direct supplement of the subspace U− ∩ (V+ ⊕ V0
−) to U−, so that

L1 ⊕ L2 ⊕ L3 = U−;

(4) L4 is a direct supplement of the subspace L1 = U− ∩ V+ to V+, so that

V+ = L1 ⊕ L4;

(5) L5 is a direct supplement of the subspace (U−∩(V+⊕V0
−))⊕L4 to V+⊕V0

−,
so that

L1 ⊕ L2 ⊕ L4 ⊕ L5 = V+ ⊕ V0
−,
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and taking into account the equalities (L1 ⊕ L4) ∩V0
− = {0} and dim L2 +

dim L5 = dim V0
− we choose L5 ⊂ V0

−;
(6) L6 is a direct supplement of the subspace L1 ⊕ · · · ⊕L5 = U− ⊕L4 ⊕L5 to

Rn.
If the two subspaces U+ and V−, which are direct supplements of the subspaces
U− and V+ respectively, are defined by the equalities

U+ := L4 ⊕ L5 ⊕ L6, V− := L2 ⊕ L3 ⊕ L5 ⊕ L6,

then above assumptions allow us to distinguish six types of solutions to (2.1).
Namely: if y0 ∈ L1, then the solution y(x, y0) satisfies the inequalities (3.1) and
(3.3); the solution for which y0 ∈ L2 fulfills the inequality (3.3), and there exists
unique y∗ ∈ V0

− such that

‖y(x, y0)− y(x, y∗)‖ = o(x), x → 0;

the solution for which y0 ∈ L3 satisfies the inequalities (3.2) and (3.3), besides, for
this solution the derivative y′(+0; y0) does not exist; for the solution with y0 ∈ L4

the inequalities (3.1) and (3.4) hold true; the solution having initial value from L5

fulfills the inequality (3.4) and there is a unique ζ ∈ ker A for which (3.5) is valid;
finally, if y0 ∈ L6, then the solution y(x, y0) satisfies inequalities (3.2) and (3.4),
and for such a solution the derivative y′(+0; y0) does not exist.

Let E = P1 + · · ·+P6 be the decomposition of the unit operator into the sum of
mutually disjunctive projectors generated by the decomposition Rn = L1⊕· · ·⊕L6.
Define the operators:

Q+ := P1 + P4, Q− := P2 + P3 + P5 + P6,

P− := P1 + P2 + P3, P+ := P4 + P5 + P6.

It is clear that the projectors Q+, Q− correspond to the decomposition Rn =
V+⊕V−, while P−, P+ correspond to the decomposition Rn = U−⊕U+, and there
exist constants C0 > 0 and C∗ > 0 such that for the normalized at the point x0

evolution operator Y (x;x0) of the system (2.1) the following estimates are valid:

‖Y (x;x0)Q+Y −1(s;x0)‖ ≤ C0

(x

s

)1+α
, 0 < x ≤ s ≤ x0, (3.6)

‖Y (x;x0)Q−Y −1(s;x0)‖ ≤ C0

(x

s

)1−α
, 0 < s ≤ x ≤ x0, (3.7)

and

‖Y (x;x0)P−Y −1(s;x0)‖ ≤ C∗e
−γ(x−s), x0 ≤ s ≤ x, (3.8)

‖Y (x;x0)P+Y −1(s;x0)‖ ≤ C∗e
−γ(s−x), x0 ≤ x ≤ s. (3.9)

4. Generalized Green function for boundary-value problems with
homogeneous boundary conditions

Consider the boundary-value problem

y′ =
(A

x
+ B(x)

)
y + g(x), (4.1)

y(·) ∈ C1([0,∞) → Rn), y(+0) = 0, y(+∞) = 0, (4.2)

in the case of function g(·) ∈ C([0,∞) → Rn) vanishing at infinity: g(x) → 0 when
x → +∞. Let m := supx∈[0,∞) ‖g(x)‖.
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First, we prove that any element of ker A can be brought into correspondence
with at least one solution which is continuously differentiable over [0,∞).

Proposition 4.1. Under condition (A), for any ζ ∈ ker A there exists a solution
to the system (4.1) of the form

yζ(x) = ζ + ζ1x + o(x), x → +0, (4.3)

where ζ1 := (E−A)−1
(
B(0)ζ +g(0)

)
. Conversely, every continuously differentiable

on [0,∞) solution to the system (4.1) can be represented in the form (4.3).

Proof. The change of dependent variable y = ζ+ζ1x+z in (4.1) leads to the system

z′ =
(A

x
+ B(x)

)
z + g̃(x)

where g̃(x) = (B(x)− B(0))ζ + g(x)− g(0) + xB(x)ζ1 = o(1), x → +0. After the
substitution x = e−t we obtain the system

ż = −
(
A + e−tB

(
e−t

))
z − e−tg̃

(
e−t

)
. (4.4)

The value t0 > 0 can be chosen sufficiently large, so that the conditions of Lemma 2
hold true for this system. In accordance with this Lemma and taking into account
that the characteristic polynomial of the operator −A has no roots with the real
part equal to −1, there exists the solution z̃(t) to the system (4.4) satisfying the
equality

z̃(t) = −
∫ ∞

t0

G−A(t− s)e−s
(
B

(
e−s

)
z̃(s) + g̃(e−s)

)
ds,

and, having the property z̃(t) = o(e−t) as t →∞. But in such a case the function
z(x) := z̃(− lnx) = o(x) as x → 0, generates the required solution y(x) = ζ + ζ1x+
z(x) of the system (4.1). The second part of this proposition is obvious. �

Corollary 4.2. There exists a mapping Θ(·) ∈ C1
(
[0, x0] → Hom(Rn)

)
of the form

Θ(x) = x(E −A)−1B(0) + o(x), x → +0, such that for any ζ ∈ ker A the function

yζ(x) =
(
E + Θ(x)

)
ζ

is a solution to the homogeneous system (2.1) corresponding to the vector ζ.

Proposition 4.3. The family of functions defined as

ȳv(x) = Y (x;x0)v +
∫ x

0

Y (x;x0)Q−Y −1(s;x0)g(s)ds

+
∫ x

x0

Y (x;x0)Q+Y −1(s;x0)g(s)ds,

(4.5)

where v is an arbitrary vector in V+ ⊕ V0
−, determines all solutions to the system

(4.1) of the class C1([0,∞) → Rn). Each of such solutions satisfies the condition
ȳv(+0) = 0 if and only if v ∈ L1 ⊕ L4 = V+.
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Proof. In view of the estimates (3.6), (3.7), for any x ∈ [0, x0) the integrals in the
formula (4.5) satisfy∥∥∫ x

0

Y (x;x0)Q−Y −1(s;x0)g(s)ds
∥∥ ≤ mC0x

1−α

∫ x

0

sα−1ds = mC0
x

α
;

∥∥∫ x0

x

Y (x;x0)Q+Y −1(s;x0)g(s)ds
∥∥ ≤ mC0x

1+α

∫ x0

x

s−1−αds

≤ mC0
x1+α(x−α − x−α

0 )
α

≤ mC0x

α
.

By a direct check, one can easily verify that each function of the set (4.5) is a
solution to the system (4.1). From the definition of V+, V0

−, properties of the
spaces L1, L2, L4, L5 (see p. 7) it follows that for any v ∈ V+ ⊕ V0

− there exists
a limit limx→+0 Y (x;x0)v =: ζ(v) ∈ ker A, and Y (x;x0)v = ζ(v) + O(x), x → 0.
Therefore, ȳv(x) = ζ(v) + O(x), x → 0, and the difference ȳv(x)− yζ(v)(x), where
yζ(v)(x) is the solution from the Proposition 4.1, is a solution to the system (2.1).
Moreover, ‖ȳv(x)−yζ(v)(x)‖ = O(x), x → 0. This implies that ‖ȳv(x)−yζ(v)(x)‖ =
o(x), x → 0, and thus, ȳv(x0) − yζ(v)(x0) ∈ L1 ⊕ L4. Taking into account the
Proposition 4.3, we can conclude that ȳv(x) ∈ C1([0, x0] → Rn).

Since each non-trivial solution to the system (2.1) with the initial condition
y0 ∈ L2 ⊕ L5 has a non-zero limit when x → +0, the equality ȳv(+0) = 0 is
equivalent to v ∈ L1 ⊕ L4. �

It is well known (see e.g. [7]) that all solutions to the system (4.1) which are
bounded on the semi-axis [x0,∞) form a family

ŷu(x) = Y (x;x0)u +
∫ x

x0

Y (x;x0)P−Y −1(s;x0)g(s)ds

−
∫ ∞

x

Y (x;x0)P+Y −1(s;x0)g(s)ds,

where u is an arbitrary vector from U−.
It is also known that the following proposition holds.

Proposition 4.4. If g(x) → 0 as →∞, then ŷu(x) → 0 as x →∞.

Proof. For the sake of completeness we sketch the proof. For an arbitrary ε > 0 let
choose the value x(ε) > x0 in such a way that ‖g(x)‖ < ε for any x > x(ε). Then
for x > x(ε) we have

ŷu(x) = Y (x;x0)u +
∫ x(ε)

x0

Y (x;x0)P−Y −1(s;x0)g(s) ds

+
∫ x

x(ε)

Y (x;x0)P−Y −1(s;x0)g(s) ds +
∫ ∞

x

Y (x;x0)P+Y −1(s;x0)g(s) ds.

The first addend in this expression tends to zero when x →∞, norm of each of the
last two addends does not exceed εK/γ, and for the second addend it holds∥∥∫ x(ε)

x0

Y (x;x0)P−Y −1(s;x0)g(s) ds
∥∥ = O(e−γx), x →∞.

�
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Now to find all solutions to (4.1) which satisfy the conditions (4.2) we bind
parameters v ∈ L1 ⊕ L4 and u ∈ L1 ⊕ L2 ⊕ L3 by means of the equality ȳv(x0) =
ŷu(x0), which can be rewritten in the form

P−u−Q+v =
∫ x0

0

Q−Y −1(s;x0)g(s) ds +
∫ ∞

x0

P+Y −1(s;x0)g(s) ds,

or, equivalently,

(P1 + P2 + P3)u− (P1 + P4)v =
∫ x0

0

(P2 + P3 + P5 + P6)Y −1(s;x0)g(s) ds

+
∫ ∞

x0

(P4 + P5 + P6)Y −1(s;x0)g(s) ds.

From this it follows that

P1u = P1v, P2u =
∫ x0

0

P2Y
−1(s;x0)g(s) ds,

P3u =
∫ x0

0

P3Y
−1(s;x0)g(s) ds, P4v = −

∫ ∞

x0

P4Y
−1(s;x0)g(s) ds,

and the function g(x) must satisfy the additional condition∫ ∞

0

(P5 + P6)Y −1(s;x0)g(s) ds = 0. (4.6)

Therefore, if the condition (4.6) holds, the solutions to the problem (4.1)–(4.2) can
be given by the formula

y = Y (x;x0)
(
P1v +

∫ x

x0

P1Y
−1(s;x0)g(s) ds

+
∫ x

0

(P2 + P3)Y −1(s;x0)g(s) ds−
∫ ∞

x

(P4 + P5 + P6)Y −1(s;x0)g(s) ds
)
.

(4.7)

This formula can also be rewritten as

y = Y (x;x0)
(
P1v −

∫ ∞

x0

P4Y
−1(s;x0)g(s) ds

+
∫ x

x0

Q+Y −1(s;x0)g(s) ds +
∫ x

0

Q−Y −1(s;x0)g(s) ds
)
.

Having defined the sets

D := {(x, s) : 0 < x < s < x0} ∪ {(x, s) : x0 ≤ s ≤ x},
D+ := {(x, s) : 0 < s ≤ x}, D− := {(x, s) : 0 < x < s},

and the functions

G1(x, s) :=


Y (x;x0)P1Y

−1(s;x0), (x, s) ∈ D ∩D+,

−Y (x;x0)P1Y
−1(s;x0), (x, s) ∈ D ∩D−,

0, (x, s) ∈ (D+ ∪D−) \D,

G2(x, s) :=

{
Y (x;x0)(P2 + P3)Y −1(s;x0), (x, s) ∈ D+,

−Y (x;x0)(P4 + P5 + P6)Y −1(s;x0), (x, s) ∈ D−,

G(x, s) := G1(x, s) + G2(x, s),
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and taking into account (4.7), we get the following result.

Proposition 4.5. There exists a solution to the boundary-value problem (4.1)–
(4.2) if and only if the condition (4.6) holds, and in this case all solutions to the
problem are defined by the formula

y = Y (x;x0)v +
∫ ∞

0

G(x, s)g(s) ds, ∀v ∈ L1.

Now we are going to interpret the condition (4.6) in terms of solutions to the
adjoint (with respect to the scalar product 〈·, ·〉) homogeneous system

η′ = −
(A∗

x
+ B∗(x)

)
η. (4.8)

Let η(x, η0) denote the solution to this system satisfying the initial condition
η(x0, η0) = η0. In what follows, without loss of generality we assume that the
scalar product in Rn is determined in such a way that P ∗

j = Pj , j = 1, . . . , 6.
Let L1([0,∞) → Rn) be the space of functions f(·) : [0,∞) → Rn for which∫∞

0
‖f(x)‖ dx < ∞.

Proposition 4.6. The solution η(x, η0) belongs to L1

(
[0,∞) → Rn

)
if and only if

η0 ∈ L5 ⊕ L6.

Proof. As is well known, [Y −1(x;x0)
]∗ is a fundamental operator of the adjoint

system normalized at the point x0, and

〈η(x, η0), y(x, y0)〉 ≡ 〈η0, y0〉.

Let y0 := (P1 + · · ·+ P4)η0 6= 0. If in addition we suppose that Q+y0 6= 0, then in
view of (3.6)

‖Q+y0‖2 ≤ ‖y(x, Q+y0)‖‖η(x, η0)‖ ≤ c0(x/x0)1+α‖Q+y0‖‖η(x, η0)‖

for all x ∈ (0, x0], and thus ‖η(x, η0)‖ ≥ ‖Q+y0‖(x/x0)−1−α/c0 when x ∈ (0, x0].
This implies that η(x, η0) 6∈ L1([0,∞) → Rn).

If Q+y0 = 0 then y0 = (P2 + P3)y0 = P−y0. Hence, in view of (3.8),

‖P−y0‖2 ≤ ‖y(x, P−y0)‖‖η(x, η0)‖ ≤ c∗e
−γ(x−x0)‖P−y0‖‖η(x, η0)‖

for all x ≥ x0. This also implies that η(x, η0) 6∈ L1([0,∞) → Rn).
On the other hand, if y0 = 0, then η0 = (P5 + P6)η0. Now from the inequalities

(3.7) and (3.9) it follows that

‖η(x, η0)‖ ≤
∥∥[

Y −1(x;x0)
]∗(P5 + P6)

∥∥‖η0‖ ≤ C0

(x0

x

)1−α‖η0‖,

when x ∈ (0, x0], and

‖η(x, η0)‖ ≤
∥∥[Y −1(x;x0)]∗(P5 + P6)

∥∥‖η0‖ ≤ C∗e
−γ(x−x0)‖η0‖

when x ≥ x0. Hence, η(x, η0) belongs to L1

(
[0,∞) → Rn

)
. �

The above proposition leads to the following result.

Proposition 4.7. Condition (4.6) holds if and only if the function g(x) is orthog-
onal (in the sense of the scalar product 〈·, ·〉L2 :=

∫∞
0
〈·, ·〉 dx) to each solution of

the adjoint system (4.8) belonging to the space L1([0,∞) → Rn).
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Now let us show that problem (4.1)–(4.2) has a generalized Green function
G(x, s) defined by the following properties:

1. For any s > 0 and x ∈ [0,∞) \ {s}, it holds

LG(x, s) = −F (x;x0)ΠY −1(s;x0),

where L := d
dx −

(
A
x + B(x)

)
, Π := P5 + P6, and F (·, x0) ∈ C

(
[0,∞) → Hom(Rn)

)
is a bounded mapping with the ”biorthonormality” property with respect to the
space of solutions of the adjoint system which belong to L1([0,∞) → Rn):∫ ∞

0

ΠY −1(x, x0)F (x, x0) dx = Π.

For example, we may set

F (x;x0) :=
κ1+βxβ

Γ(1 + β)eκx
Y (x;x0)Π,

where κ is an arbitrary number greater than γ, and β > 0 is an arbitrary number
with the property that all real parts of eigenvalues of the matrix A exceed −β.
Obviously, F (+0;x0) = F (+∞;x0) = 0.

2. For any x > 0, the unit jump property is valid: G(x+0, x)−G(x−0, x) = E.
3. The condition of orthogonality to the space of solutions to the corresponding

homogeneous boundary value problem is fulfilled:∫ ∞

0

P1Y
∗(x;x0)G(x, s) dx = 0.

4. For any s > 0, the boundary conditions G(+0, s) = G(+∞, s) = 0 are
satisfied.

5. For any g(·) ∈ C([0,∞) → Rn) satisfying (4.6), the boundedness condition
holds:

sup
x∈[0,∞)

∫ ∞

0

‖G(x, s)g(s)‖ ds < ∞

Observe that the operator equation LY = −F (x;x0) has a particular solution

Y = N(x;x0) := −
∫ ∞

0

G(x, t)F (t;x0) dt,

which can be represented in the form

N(x;x0) = Y (x;x0)
(
Π−

∫ x

0

κ1+βtβ

Γ(1 + β)eκt
dtΠ

)
.

(Note that generally N(x;x0) is unbounded on (0, x0), but it vanishes at infinity.)
It is easily seen that the conditions 1–4 hold for the operator

G(x, s) := G(x, s) + Y (x;x0)P1M(s;x0) + N(x;x0)ΠY −1(s;x0), (4.9)

once we set

M(s;x0) := −
[ ∫ ∞

0

P1Y
∗(x;x0)Y (x;x0)P1 dx

∣∣∣
L1

]−1

×
∫ ∞

0

P1Y
∗(x;x0)

(
G(x, s) + N(x;x0)ΠY −1(s;x0)

)
dx.
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To show that the condition 5 is fulfilled it remains only to verify that M(s;x0) is
absolutely integrable on [0,∞). This property can be easily obtained from the next
six estimates for the function

J(s, x;x0) :=
∥∥P1Y

∗(x;x0)(G(x, s) + N(x;x0)ΠY −1(s;x0))
∥∥

which are based on inequalities (3.6)–(3.9).
(1) Let x < s < x0. In this case G(x, s) = −Y (x;x0)(P1 + P4 + Π)Y −1(s;x0),

and therefore there exits a constant C1(x0) > 0 such that

J(s;x, x0) ≤ ‖Y (x;x0)P1‖
(
‖Y (x;x0)(P1 + P4)Y −1(s;x0)‖

+ (κx)1+β‖Y (x;x0)ΠY −1(s;x0)‖
)

≤ C1(x0)x1+α
(
(x/s)1+α + xsα−1

)
≤ C1(x0)x1+α(1 + sα).

(2) Let s ≤ x < x0. Now G(x, s) = Y (x;x0)(P2+P3)Y −1(s;x0), and there exists
a constant C2(x0) > 0 such that

J(s;x;x0)

≤ ‖Y (x;x0)P1‖
(
‖Y (x;x0)Q−Y −1(s;x0)‖+ (κx)1+β‖Y (x;x0)ΠY −1(s;x0)‖

)
≤ C2(x0)x2sα−1.

(3) Let s < x0 ≤ x. Now G(x, s) = Y (x;x0)(P2 + P3)Y −1(s;x0), hence,

J(s;x;x0)

≤ ‖Y (x;x0)P1‖
(
‖Y (x;x0)(P2 + P3)Y −1(s;x0)‖+ ‖N(x;x0)ΠY −1(s;x0)‖

)
≤ C0C∗e

−γ(x−x0)
(x0

s

)1−α(
C∗ + sup

x∈[x0,∞)

‖N(x;x0)‖
)

≤ C3(x0)e−γxsα−1

for some constant C3(x0) > 0.
(4) Let x < x0 ≤ s. Since G(x, s) = −Y (x;x0)(P4 + Π)Y −1(s;x0), it follows

that there exists a constant C4(x0) > 0 such that

J(s;x;x0)

≤ ‖Y (x;x0)P1‖
(
‖Y (x;x0)P4Y

−1(s;x0)‖+ (κx)1+β‖Y (x;x0)ΠY −1(s;x0)‖
)

≤ C4(x0)x1+αe−γs.

(5) Let x0 ≤ x < s. In this case, we also have G(x, s) = −Y (x;x0)(P4 +
Π)Y −1(s;x0). Hence,

J(s;x;x0) ≤ ‖Y (x;x0)P1‖
(
‖Y (x;x0)P4Y

−1(s;x0)‖+ ‖Y (x;x0)ΠY −1(s;x0)‖
)

≤ 2C2
∗e
−γ(x−x0)e−γ(s−x) = C5(x0)e−γs

where C5(x0) := 2C2
∗e

γx0 .
(6) Finally, let x0 ≤ s ≤ x. Now G(x, s) = Y (x;x0)(P1 + P2 + P3)Y −1(s;x0)

and there exists a constant C6(x0) > 0 such that

J(s;x;x0)

≤ ‖Y (x;x0)P1‖
(
‖Y (x;x0)(P1 + P2 + P3)Y −1(s;x0)‖+ ‖N(x;x0)ΠY −1(s;x0)‖

)
≤ C6(x0)

(
e−γ(2x−s) + e−γ(x+s)

)
.
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The above arguments prove the following theorem.

Theorem 4.8. There exists a solution to the boundary-value problem (4.1)–(4.2) if
and only if the function g(x) is orthogonal (in terms of the scalar product 〈·, ·〉L2 :=∫∞
0
〈·, ·〉 dx) to all solutions to the adjoint system (4.8) which belong to L1([0,∞) →

Rn). If the orthogonality condition holds, then the problem (4.1)–(4.2) has the fam-
ily of the solutions which can be represented as the sum of two mutually orthogonal
components

y = Y (x;x0)v +
∫ ∞

0

G(x, s)g(s) ds

where v ∈ L1 is an arbitrary vector and G(x, s) is the generalized Green function
defined by (4.9).

5. The main theorem

Let us turn back to the main problem of finding solutions to the system (1.1)
which possess the properties (1.2). It is clear that a continuously differentiable on
[0,∞) solution y(x) to the system (1.1), provided that it exists, must satisfy the
equality Ay(+0) + a = 0. Thus we require the following condition to hold

(C) a ∈ im A.
The orthogonal decomposition Rn = im A∗⊕ ker A together with the condition (C)
imply the existence of a unique η ∈ im A∗ for which Aη + a = 0.

Hence, it is natural to formulate the main boundary value problem in the follow-
ing way: Find all ζ ∈ ker A for which the boundary-value problem for the system
(1.1) with the boundary conditions

y(+0) = η + ζ, y(∞) = 0,

is solvable in the class C1
(
[0,∞) → Rn

)
, and construct an integral represent-ation

of corresponding solutions. This problem is solved by the following theorem.

Theorem 5.1. Let the system (1.1) satisfies the conditions (A)–(C) and f(x) → 0
as x → +∞. Then the main boundary-value problem is solvable if and only if∫ ∞

0

P6Y
−1(x;x0)

[
f(x) + B(x)η

]
dx = 0. (5.1)

Provided that (5.1) holds, the main boundary-value problem has the family of solu-
tions defined by the formulae

y = Y (x;x0)(v1 + v2) + η +
∫ ∞

0

G(x, s)
(
f(s) + B(s)η

)
ds, (5.2)

ζ = (E + U(x0))−1v2 + (E + Θ(x0))−1w (5.3)

where v1 ∈ L1, v2 ∈ L2 are arbitrary vectors, and

w := −
∫ ∞

0

P5Y
−1(x;x0)

[
f(x) + B(x)η

]
dx. (5.4)

There exist positive constants K1(α, γ, x0), K2(α, γ, x0) such that∫ ∞

0

∥∥G(x, s)
(
f(s) + B(s)η

)∥∥ ds ≤ K1(α, γ, x0) sup
x∈[0,∞)

‖f(s) + B(s)η‖,

‖w‖ ≤ K2(α, γ, x0) sup
x∈[0,∞)

‖f(s) + B(s)η‖.
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Proof. We seek the solution to the problem (1.1)–(1.2) in the form

y = η + ϕ(x) + Y (x;x0)v + e−κxY (x;x0)w + y0(x) (5.5)

where κ > γ is an arbitrary number, v ∈ L1 ⊕ L2 is an arbitrary constant vector,
w ∈ L5 is a constant vector which is to be determined, ϕ(·) ∈ C1([0,∞) → Rn) is
an arbitrary function with the properties

ϕ(0) = 0, lim
x→∞

ϕ(x) = −η, lim
x→∞

ϕ′(x) = 0,

and y0(x) is a solution to the problem (4.1)–(4.2) with

g(x) := f(x) + B(x)η − Lϕ(x) + κe−κxY (x;x0)w whenx > 0.

Observe that there exists limx→+0 g(x). In virtue of Theorem 4.8, the existence
of the solution y0(x) is guaranteed by the orthogonality conditions, which can be
given in the form∫ ∞

0

〈[Y −1(s;x0)]∗P5b, f(s) + B(s)η − Lϕ(s)〉 ds + w = 0,∫ ∞

0

〈[Y −1(s;x0)]∗P6b, f(s) + B(s)η − Lϕ(s)〉 ds = 0 ∀b ∈ Rn.

Since 〈[Y −1(s;x0)]∗Pjb, ϕ(s)〉
∣∣∞
s=0

= 0, j = 5, 6, and L∗[Y −1(s;x0)]∗ = 0, these
conditions are equivalent to (5.4), (5.1). The orthogonality conditions also imply

y0(x) :=
∫ ∞

0

G(x, s)g(s) ds

=
∫ ∞

0

G(x, s)g(s) ds + Y (x;x0)P1

∫ ∞

0

M(s;x0)g(s) ds.

The second addend is inessential owing to the presence of an arbitrary vector v ∈
L1 ⊕ L2 in the formula (5.5).

Next, it is not hard to show that∫ ∞

0

G(x, s)Lϕ(s) ds = ϕ(x)− Y (x, x0)P1ϕ(x0),∫ ∞

0

G(x, s)κe−κsY (s;x0)w ds = −e−κxY (x;x0)w.

Taking into account these equalities, one can rewrite the formula (5.5) in the form
(5.2). Finally, in view of (2.2), (3.5), (5.5) and the equality y0(+0) = 0 we obtain
(5.3).

Now observe that from the definition of L5 it follows that the constant C7(x0) :=
maxx∈[0,x0] ‖Y (x;x0)P5‖ is well defined. Let ḡ(s) := f(s) + B(s)η. Making use
of (5.1) and of estimates similar to those which were obtained for the function
J(s, x, x0) in previous section, we have:
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(1) if 0 ≤ x ≤ x0, then∫ ∞

0

∥∥G(x, s)ḡ(s)
∥∥ ds

≤ sup
s∈[0,∞)

‖ḡ(s)‖
(∫ x

0

‖Y (x;x0)(P2 + P3)Y −1(s;x0)‖ ds

+
∫ x0

x

‖Y (x;x0)(P1 + P4 + P5)Y −1(s;x0)‖ ds

+
∫ ∞

x0

‖Y (x;x0)(P4 + P5)Y −1(s;x0)‖ ds
)

≤ sup
s∈[0,∞)

‖ḡ(s)‖
(
C0

∫ x

0

(x/s)1−α ds + C0

∫ x0

x

(
(x/s)1+α + C7(x0)(x0/s)1−α

)
ds

+ C∗

∫ ∞

x0

(
C0 · (x/x0)1+α + C7(x0)

)
e−γ(s−x0) ds

)
≤ K1(α, γ, x0) sup

s∈[0,∞)

‖ḡ(s)‖;

(2) if 0 < x0 < x, then∫ ∞

0

∥∥G(x, s)ḡ(s)
∥∥ ds ≤ sup

s∈[0,∞)

‖ḡ(s)‖
(∫ x0

0

‖Y (x;x0)(P2 + P3)Y −1(s;x0)‖ ds

+
∫ x

x0

‖Y (x;x0)(P1 + P2 + P3)Y −1(s;x0)‖ ds

+
∫ ∞

x

‖Y (x;x0)(P4 + P5)Y −1(s;x0)‖ ds
)

≤ sup
s∈[0,∞)

‖ḡ(s)‖
(
C0C∗

∫ x0

0

(x0/s)1−αe−γ(x−x0) ds

+ C∗

∫ x

x0

e−γ(x−s) ds + C∗

∫ ∞

x

e−γ(s−x) ds
)

≤ K1(α, γ, x0) sup
s∈[0,∞)

‖ḡ(s)‖.

Finally, the inequality for ‖w‖ is easily obtained with the help of estimates from
the proof of Proposition 4.6. �

Conclusions. The results obtained can be interpreted in terms of linear equations
in Banach spaces in a following way. Let Y be the Banach space of continuous
mappings y(·) : [0,∞) → Rn such that limx→+∞ y(x) = 0, and X ⊂ Y be the
Banach space of mappings satisfying y(0) = 0 (these spaces are endowed with
usual supremum norm). Consider the closed linear operator L : X → Y defined
on the dense domain D(L) = {y(·) ∈ X ∩ C1([0,∞) → Rn) : limx→+∞ y′(x) = 0}
by Ly(x) := y′(x) − Ay(x)/x − B(x)y(x). From Proposition 4.5 it follows that
the range R(L) is a closed subspace of Banach space Y . Hence, the operator L is
normally solvable, moreover, it is both n-normal with n(L) = dim kerL = dim L1

and d-normal with d(L) = codim R(L) = dim(L5 + L6). This means that we have
established conditions under which the operator L is a Noetherian operator with
index n(L)− d(L).
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