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HOMOGENIZED MODELS FOR A SHORT-TIME FILTRATION
IN ELASTIC POROUS MEDIA

ANVARBEK M. MEIRMANOV

Abstract. We consider a linear system of differential equations describing a

joint motion of elastic porous body and fluid occupying porous space. The rig-

orous justification, under various conditions imposed on physical parameters,
is fulfilled for homogenization procedures as the dimensionless size of the pores

tends to zero, while the porous body is geometrically periodic and a charac-

teristic time of processes is small enough. Such kind of models may describe,
for example, hydraulic fracturing or acoustic or seismic waves propagation. As

the results, we derive homogenized equations involving non-isotropic Stokes

system for fluid velocity coupled with two different types of acoustic equations
for the solid component, depending on ratios between physical parameters, or

non-isotropic Stokes system for one-velocity continuum. The proofs are based

on Nguetseng’s two-scale convergence method of homogenization in periodic
structures.

1. Introduction

In the present paper we consider a problem of joint motion of a deformable solid
(elastic skeleton), perforated by system of pores (pore space) and a fluid, occupying
pore space. In dimensionless variables (without primes)

x′ = Lx, t′ = τt, w′ =
L2

gτ2
w, ρ′s = ρ0ρs, ρ′f = ρ0ρf , F′ = gF,

differential equations of the problem in a domain Ω ∈ R3 for the dimensionless
displacement vector w of the continuum medium have the form

ρ̄
∂2w
∂t2

= div P + ρ̄F, (1.1)

P = χ̄Pf + (1− χ̄)Ps, (1.2)

Pf = αµD
(
x,
∂w
∂t

)
− pf I, (1.3)

Ps = αλD(x,w) + αη(div w)I, (1.4)

pf + χ̄αp div w = 0. (1.5)
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Hereafter we use notation

D(x,u) = (1/2)
(
∇u + (∇u)T

)
, ρ̄ = χ̄ρf + (1− χ̄)ρs,

The vector I is a unit tensor, the given function χ̄(x) is a characteristic function of
the pore space, the given function F(x, t) is a dimensionless vector of distributed
mass forces, Pf is a liquid stress tensor, Ps is a stress tensor in a solid skeleton and
pf is a liquid pressure.

These differential equations (1.1)–(1.5) mean that the the displacement vector
w satisfies the Stokes equations in the pore space Ωf and the Lame’s equations in
the solid skeleton Ωs.

On the common boundary Γ ”solid skeleton-pore space” the displacement vector
w and the liquid pressure pf satisfy the usual continuity condition

[w](x0, t) = 0, x0 ∈ Γ, t ≥ 0 (1.6)

and the momentum conservation law in the form

[P · n](x0, t) = 0, x0 ∈ Γ, t ≥ 0, (1.7)

where n(x0) is a unit normal to the boundary at the point x0 ∈ Γ and

[ϕ](x0, t) = ϕ(s)(x0, t)− ϕ(f)(x0, t),

ϕ(s)(x0, t) = lim
x→x0, x∈Ωs

ϕ(x, t),

ϕ(f)(x0, t) = lim
x→x0, x∈Ωf

ϕ(x, t).

The problem is endowed with homogeneous initial and boundary conditions

w(x, 0) = 0,
∂w
∂t

(x, 0) = 0, x ∈ Ω, (1.8)

w(x, t) = 0, x ∈ S = ∂Ω, t ≥ 0. (1.9)

The dimensionless constants αi (i = τ, ν, . . .) are defined by the formulas

αµ =
2µτ
L2ρ0

, αλ =
2λτ2

L2ρ0
, αp = ρfc

2 τ
2

L2
, αη =

ητ2

L2ρ0
,

where µ is the viscosity of fluid, λ and η are elastic Lamé’s constants, c is a speed
of sound in fluid, L is a characteristic size of the domain in consideration, τ is a
characteristic time of the process, ρf and ρs are respectively mean dimensionless
densities of liquid and rigid phases, correlated with mean density of water and g is
the value of acceleration of gravity.

The corresponding mathematical model, describing by the system (1.1)–(1.9) is
commonly accepted (see [2, 10]) and contains a natural small parameter ε, which
is a characteristic size of pores l divided by the characteristic size L of the entire
porous body:

ε =
l

L
.

Our aim is to derive all possible limiting regimes (homogenized equations) as ε↘ 0.
Such an approximation significantly simplifies the original problem and at the same
time preserves all of its main features. But even this approach is too hard to
work out, and some additional simplifying assumptions are necessary. In terms
of geometrical properties of the medium, the most appropriate is to simplify the
problem postulating that the porous structure is periodic.

We accept the following constraints
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Assumption 1.1. The domain Ω = (0, 1)3 is a periodic repetition of an elementary
cell Y ε = εY , where Y = (0, 1)3 and quantity 1/ε is integer, so that Ω always
contains an integer number of elementary cells Y ε. Let Ys be a ”solid part” of Y ,
and the ”liquid part” Yf – is its open complement. We denote as γ = ∂Yf ∩ ∂Ys

and γ is a Lipschitz continuous surface. A pore space Ωε
f is the periodic repetition

of the elementary cell εYf , and a solid skeleton Ωε
s is the periodic repetition of

the elementary cell εYs. A Lipschitz continuous boundary Γε = ∂Ωε
s ∩ ∂Ωε

f is
the periodic repetition in Ω of the boundary εγ. The “solid skeleton” Ωε

s and the
“pore space” Ωε

f are connected domains and an intersection Ωε
f with any plane

{xi = constant, 0 < xi < 1, i = 1, 2, 3} is an open (in plane topology) set.

In these assumptions

χ̄(x) = χε(x) = χ (x/ε) ,

ρ̄ = ρε(x) = χε(x)ρf + (1− χε(x))ρs,

where χ(y) is a characteristic function of Yf in Y .
Suppose that all dimensionless parameters depend on the small parameter ε and

there exist limits (finite or infinite)

lim
ε↘0

αµ(ε) = µ0, lim
ε↘0

αλ(ε) = λ0,

lim
ε↘0

αη(ε) = η0, lim
ε↘0

αp(ε) = p∗,

lim
ε↘0

αµ

ε2
= µ1, lim

ε↘0

αλ

ε2
= λ1.

The first research with the aim of finding limiting regimes in the case when the
skeleton was assumed to be an absolutely rigid body was carried out by Sanchez-
Palencia and Tartar. Sanchez-Palencia [10, Sec. 7.2] formally obtained Darcy’s
law of filtration using the method of two-scale asymptotic expansions, and Tartar
[10, Appendix] rigorously justified the homogenization procedure. Using the same
method of two-scale expansions Keller and Burridge [2] derived formally the system
of Biot’s equations from the problem (1.1)–(1.9) in the case when the parameter αµ

was of order ε2, and the rest of the coefficients were fixed independent of ε. Under
the same assumptions as in the article [2], the rigorous justification of Biot’s model
was given by Nguetseng [9] and later by Clopeaut et al. [3]. The most general case
of the problem (1.1)–(1.9) when

µ0, λ
−1
0 , p−1

∗ , η−1
0 <∞

has been studied in [7]. All these authors have used Nguetseng’s two-scale conver-
gence method [8, 6].

In the present work by means of the same method we investigate all possible
limiting regimes in the problem (1.1)–(1.9) in the cases, when

0 < µ0 <∞; λ0 = 0; 0 < p∗, η0. (1.10)

These cases correspond, for example, to the hydraulic fracturing, when all processes
end during the seconds (τ ↘ 0).

We show that for the case λ1 < ∞ the homogenized equations describe two
velocity continuum and consist of non-isotropic Stokes equations for fluid velocity
coupled with acoustic equations for the solid component and for the case λ1 = ∞
the homogenized equations describe one-velocity continuum and consist of non-
isotropic Stokes system for the limiting displacements of the continuum.



4 A. M. MEIRMANOV EJDE-2007/14

This property of the mathematical model, which initially describes one-velocity
continuum and becomes a model describing two-velocity continuum after homog-
enization procedure, appears as a result of different smoothness of the solution in
the solid and in the liquid components:∫

Ω

αµ(ε)χε|∇wε|2dx ≤ C0,

∫
Ω

αλ(ε)(1− χε)|∇wε|2)dx ≤ C0,

where C0 is a constant independent of the small parameter ε. To preserve the best
properties of the solution we must use the well-known extension lemma [1, 4] and
extend the solution from the solid part to the liquid one and vice-versa. On this
stage criterion λ1 becomes crucial. Namely, let wε

s be an extension of the solid
displacements to the liquid part and λ1 = ∞. Then the limiting (homogenized)
system describes one-velocity continuum. It takes place because each of sequences
{wε} and {wε

s} two –scale converges to the function independent of the fast variable.
This statement easily follows from Nguetseng’s theorem.

2. Formulation of the main results

There are various equivalent in the sense of distributions forms of representation
of equation (1.1) in each domain Ωε

f and Ωε
s and boundary conditions (1.6)–(1.7)

on the common boundary Γε between pore space Ωε
f and solid skeleton Ωε

s. In what
follows, it is convenient to write them in the form of the integral equalities.

We say that functions
(
wε, pε

f , p
ε
s

)
are called a generalized solution of the prob-

lem (1.1)–(1.9), if they satisfy the regularity conditions

wε, D(x,wε), pε
f , p

ε
s ∈ L2(ΩT ) (2.1)

in the domain ΩT = Ω× (0, T ), boundary condition (1.9) on the outer boundary S
in the trace sense, equations

1
αp
pε

f = −χε
(
div wε − βε

m

)
, (2.2)

1
αη
pε

s = −(1− χε)
(
div wε +

βε

1−m

)
(2.3)

a.e. in ΩT and, finally, integral identity∫
ΩT

(
ρεwε · ∂

2ϕ

∂t2
− χεαµD(x,wε) : D(x,

∂ϕ

∂t
)− ρεF · ϕ

+{(1− χε)αλD(x,wε)− (pε
f + pε

s)I} : D(x, ϕ)
)
dx dt = 0

(2.4)

for all smooth vector-functions ϕ = ϕ(x, t) such that

ϕ(x, t) = 0, x ∈ S, t > 0; ϕ(x, T ) =
∂ϕ

∂t
(x, T ) = 0, x ∈ Ω.

In this definition we changed the form of representation of the stress tensor P
in the integral identity (2.4) by introducing new unknown function pε

s, which in
a certain way has a sense of pressure. In what follows we call this function pε

s as
a solid pressure and equations (2.2) and (2.3)– as continuity equations. We also
introduced functionals

βε =
∫

Ω

χε div wεdx if p∗ + η0 = ∞ and βε = 0 if p∗ + η0 <∞,
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which have been chosen from the conditions∫
Ω

pε
fdx =

∫
Ω

pε
sdx = 0, (2.5)

if p∗ + η0 = ∞. This special choice of continuity equations permits to estimate
pressures, even if p∗ = ∞ (incompressible liquid) or η0 = ∞ (incompressible solid)
and simplifies the use of homogenization procedure.

In (2.3) by A : B we denote the convolution (or, equivalently, the inner tensor
product) of two second-rank tensors along the both indexes, i.e., A : B = tr (B∗ ◦
A) =

∑3
i,j=1AijBji.

The following two theorems are the main results of the paper.

Theorem 2.1. Let F and ∂F/∂t are bounded in L2(ΩT ). Then for all ε > 0 on
the arbitrary time interval [0, T ] there exists a unique generalized solution of the
problem (1.1)–(1.9) and

max
0≤t≤T

‖∂
2wε

∂t2
(t)‖2,Ω + ‖χε√αµ∇

∂2wε

∂t2
|‖2,ΩT

≤ C0, (2.6)

max
0≤t≤T

‖χε√αµ|∇x
∂wε

∂t
(t)|+ (1− χε)

√
αλ|∇x

∂wε

∂t
(t)|‖2,Ω ≤ C0, (2.7)

max
0≤t≤T

‖|pε
f (t)|+ |pε

s(t)|‖2,Ω ≤ C0, (2.8)

where C0 does not depend on the small parameter ε.

Theorem 2.2. Assume that the hypotheses in theorem 2.1 and restrictions (1.10)
hold. Then functions ∂wε/∂t admit an extension vε from Ωε

f × (0, T ) into ΩT such
that sequence {vε} converges strongly in L2(ΩT ) and weakly in L2((0, T );W 1

2 (Ω))
to the function v. At the same time, sequences {wε}, {(1−χε)wε}, {pε

f} and {pε
s}

converge weakly in L2(ΩT ) to w, us, pf and ps, respectively.
(I) If λ1 = ∞, then ∂us/∂t = (1 −m)v = (1 −m)∂w/∂t and weak and strong

limits pf , ps and v satisfy in ΩT the initial-boundary value problem

ρ̂
∂v
∂t

+∇(pf + ps)− ρ̂F

= div{µ0Af
0 : D(x,v) + Bf

0ps + Bf
1 div v +

∫ t

0

Bf
2 (t− τ) div v(x, τ)dτ},

(2.9)

p−1
∗ ∂pf/∂t+ Cf

0 : D(x,v) + af
0ps

+ (af
1 +m) div v +

∫ t

0

af
2 (t− τ) div v(x, τ)dτ = 0,

(2.10)

1
p∗

∂pf

∂t
+

1
η0

∂ps

∂t
+ div v = 0, (2.11)

where ρ̂ = mρf + (1 −m)ρs is the average density of the mixture, m =
∫

Y
χdy is

a porosity and the symmetric strictly positively defined constant fourth-rank tensor
Af

0 , matrices Cf
0 ,B

f
0 , Bf

1 and Bf
2 (t) and scalars af

0 , af
1 and af

2 (t) are defined below
by formulas (1.10), (5.33) and (5.35), where Bf

1 = 0, af
1 = 0 if p∗ <∞, and Bf

2 = 0,
af
2 = 0 if p∗ = ∞.
Differential equations (2.9) are endowed with homogeneous initial and boundary

conditions

v(x, 0) = 0, x ∈ Ω; v(x, t) = 0, x ∈ S, t > 0. (2.12)
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(II) If λ1 < ∞, then weak and strong limits us, pf , ps and v satisfy in ΩT the
initial-boundary value problem, which consists of Stokes like system

ρfm
∂v
∂t

+ ρs
∂2us

∂t2
+∇(pf + ps)− ρ̂F

= div{Bf
0ps + µ0Af

0 : D(x,v) + Bf
1 div v +

∫ t

0

Bf
2 (t− τ) div v(x, τ)dτ},

(2.13)

p−1
∗ ∂pf/∂t+ Cf

0 : D(x,v) + af
0ps

+ (af
1 +m) div v +

∫ t

0

af
2 (t− τ) div v(x, τ)dτ = 0,

(2.14)

for the liquid component, coupled with the continuity equation
1
p∗

∂pf

∂t
+

1
η0

∂ps

∂t
+ div

∂us

∂t
+mdiv v = 0, (2.15)

the relation
∂us

∂t
= (1−m)v(x, t) +

∫ t

0

Bs
1(t− τ) · z(x, τ)dτ,

z(x, t) = − 1
1−m

∇ps(x, t) + ρsF(x, t)− ρs
∂v
∂t

(x, t)
(2.16)

in the case of λ1 > 0, or the balance of momentum equation in the form

ρs
∂2us

∂t2
= ρsBs

2 ·
∂v
∂t

+ ((1−m)I − Bs
2) · (−

1
1−m

∇ps + ρsF) (2.17)

in the case of λ1 = 0 for the solid component. The problem is supplemented by
boundary and initial conditions (2.12) for the velocity v of the liquid component
and by the homogeneous initial conditions

us(x, 0) =
∂us

∂t
(x, 0) = 0, (x, t) ∈ Ω (2.18)

and homogeneous boundary condition

us(x, t) · n(x) = 0, (x, t) ∈ S, t > 0, (2.19)

for the displacements us of the solid component. In (2.16)–(2.19) n(x) is the unit
normal vector to S at a point x ∈ S, and matrices Bs

1(t) and Bs
2 are given below

by (5.40) and (5.42), where the matrix ((1 −m)I − Bs
2) is symmetric and strictly

positively definite.

3. Preliminaries

3.1. Nguetseng’s theorem. Justification of theorem 2.2 relies on systematic use
of the method of two-scale convergence, which had been proposed by G. Nguetseng
[8] and has been applied recently to a wide range of homogenization problems (see,
for example, the survey [6]).

Definition 3.1. A sequence {wε} ⊂ L2(ΩT ) is said to be two-scale convergent to a
1- periodic in y function W (x,y, t) ∈ L2(ΩT × Y ), if and only if for any 1-periodic
in y function σ = σ(x, t,y)∫

ΩT

wε(x, t)σ
(
x, t,

x
ε

)
dx dt→

∫
ΩT

∫
Y

W (x, t,y)σ(x, t,y)dy dx dt (3.1)

as ε→ 0.
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Existence and main properties of weakly convergent sequences are established
by the following fundamental theorem [8, 6].

Theorem 3.2 (Nguetseng’s theorem). (1) Any bounded in L2(ΩT ) sequence
contains a subsequence, two-scale convergent to some limit W ∈ L2(ΩT ×
Y ).

(2) Let sequences {wε} and {ε∇xw
ε} be uniformly bounded in L2(ΩT ). Then

there exist a 1-periodic in y function W = W (x, t,y) and a subsequence
{wε} such that W, ∇yW ∈ L2(ΩT × Y ), and the subsequences {wε} and
{ε∇wε} two-scale converge to W and ∇yW , respectively.

(3) Let sequences {wε} and {∇wε} be bounded in L2(Q). Then there exist
functions w ∈ L2(ΩT ) and W ∈ L2(ΩT × Y ) and a subsequence from
{∇wε} such that the function W is 1-periodic in y, ∇w ∈ L2(ΩT ), ∇yW ∈
L2(ΩT ×Y ), and the subsequence {∇wε} two-scale converge to the function
(∇w(x, t) +∇yW (x, t,y)).

Corollary 3.3. Let σ ∈ L2(Y ) and σε(x) = σ(x/ε). Assume that a sequence
{wε} ⊂ L2(ΩT ) two-scale converges to W ∈ L2(ΩT × Y ). Then the sequence
{σεwε} two-scale converges to the function σW .

3.2. An extension lemma. The typical difficulty in homogenization problems,
like problem (1.1)–(1.9), while passing to a limit as ε↘ 0 arises because of the fact
that the bounds on the gradient of displacement ∇xwε may be distinct in liquid
and rigid components. The classical approach in overcoming this difficulty consists
of constructing of extension to the whole Ω of the displacement field defined merely
on Ωs or Ωf . The following lemma is valid due to the well-known results from [1, 4].
We formulate it in appropriate for us form:

Lemma 3.4. Suppose that assumption 1.1 on geometry of periodic structure holds,
wε ∈W 1

2 (Ωε
f ) and wε = 0 on Sε

f = ∂Ωε
f ∩∂Ω in the trace sense. Then there exists a

function wε
f ∈W 1

2 (Ω) such that its restriction on the sub-domain Ωε
f coincide with

wε, i.e.,
χε(x)(wε

f (x)− wε(x)) = 0, x ∈ Ω, (3.2)
and, moreover, the estimate

‖wε
f‖2,Ω ≤ C‖wε‖2,Ωε

f
, ‖∇wε

f‖2,Ω ≤ C‖∇wε‖2,Ωε
f

(3.3)

hold true, where the constant C depends only on geometry Y and does not depend
on ε.

3.3. Friedrichs–Poincaré’s inequality in periodic structure. The following
lemma was proved by Tartar in [10, Appendix]. It specifies Friedrichs–Poincaré’s
inequality for ε-periodic structure. We formulate this lemma for our particular case
just to estimate functions in the ε–layer Qε of the boundary S. This domain Qε

consists of all elementary cells εY touching the boundary ∂Ω. We consider special
class of functions wε

f , which are extensions of functions wε ∈ W 1
2 (Ωε

f ), vanishing
on the part Sε

f = ∂Ωε
f ∩ ∂Ω of the boundary S = ∂Ω, from subdomain Ωε

f onto
whole domain Ω (see lemma 3.4). Due to supposition on the structure of the pore
space, the intersection of the boundary of the ”liquid part” Yf with each sides of
the boundary ∂Y is a set with nonempty interior and strictly positive measure.
Therefore on the each side of the boundary S the function wε

f is equal to zero on
some set with nonempty interior, periodic structure and strictly positive measure,
independent of ε.
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Lemma 3.5. Suppose that assumptions on the geometry of Ωε
f hold true. Then

for any function wε
f ∈ W 1

2 (Ω) such that wε
f = 0 on the part Sε

f = ∂Ωε
f ∩ ∂Ω of the

boundary S, the inequality∫
Qε

|wε
f |2dx ≤ Cε2

∫
Qε

|∇wε
f |2dx (3.4)

holds true with some constant C independent of the small parameter ε.

3.4. Some notation. Further we denote (1)

〈Φ〉Y =
∫

Y

Φdy, 〈Φ〉Yf
=

∫
Y

χΦdy, 〈Φ〉Ys
=

∫
Y

(1− χ)Φdy,

〈ϕ〉Ω =
∫

Ω

ϕdx, 〈ϕ〉ΩT
=

∫
ΩT

ϕdx dt.

(2) If a and b are two vectors then the matrix a⊗ b is defined by the formula

(a⊗ b) · c = a(b · c)

for any vector c.
(3) If B and C are two matrices, then B⊗ C is a forth-rank tensor such that its

convolution with any matrix A is defined by the formula

(B⊗ C) : A = B(C : A).

(4) By Iij = ei ⊗ ej we denote the 3 × 3-matrix with just one non-vanishing
entry, which is equal to one and stands in the i-th row and the j-th column.

(5) We also introduce

Jij =
1
2
(Iij + Iji) =

1
2
(ei ⊗ ej + ej ⊗ ei), J =

3∑
i,j=1

Jij ⊗ Jij ,

where (e1, e2, e3) are the standard Cartesian basis vectors.

4. Proof of theorem 2.2

Estimates (2.6)-(2.7) follow from the energy equality in the form

d

dt
{
∫

Ω

ρε(
∂2wε

∂t2
)2dx+ αλ

∫
Ω

(1− χε)D(x,
∂wε

∂t
) : D(x,

∂wε

∂t
)dx

+ αp

∫
Ω

χε(div
∂wε

∂t
)2dx+ αη

∫
Ω

(1− χε)(div
∂wε

∂t
)2dx}

+ αµ

∫
Ω

χεD(x,
∂2wε

∂t2
) : D(x,

∂2wε

∂t2
)dx

=
∫

Ω

∂F
∂t

· ∂
2wε

∂t2
dx

+
∂βε

∂t

(αp

m

∫
Ω

χε div
∂2wε

∂t2
dx+

αη

(1−m)

∫
Ω

(1− χε) div
∂2wε

∂t2
dx

)
.

(4.1)

We obtain this equality if we differentiate equation for wε with respect to time,
multiply the result by ∂2wε/∂t2 and integrate the product by parts using continuity
equations (2.2) and (2.3). Note, that all terms on the common interface Γε ”solid
skeleton–pore space” disappear due to boundary conditions (1.6)–(1.7).
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In fact, if p∗+η0 <∞ (βε = 0), then we just use Hölder and Gronwall inequalities
in (4.1) and get

max
0<t<T

(
‖|∂

2wε

∂t2
(t)|+ (1− χε)(

√
αλ|∇

∂wε

∂t
(t)|+√

αη|div
∂wε

∂t
(t)|)‖2,Ω

+
√
αp‖χε div

∂wε

∂t
(t)‖2,Ω

)
+ ‖χε∇∂

2wε

∂t2
|‖2,ΩT

≤ C0,

(4.2)

where C0 is independent of the small parameter ε.
Estimates (2.8) for pressures follow from estimates (4.2) and continuity equa-

tions.
For the case p∗ + η0 = ∞ estimates (2.6) and (2.7) follow again from energy

identity (4.1) in the same way as before, if we additionally use inequalities

1
m

(
∫

Ω

χε div
∂wε

∂t
dx)2 ≤

∫
Ω

χε(div
∂wε

∂t
)2dx,

1
(1−m)

(
∫

Ω

(1− χε) div
∂wε

∂t
dx)2 ≤

∫
Ω

(1− χε)(div
∂wε

∂t
)2dx.

To estimate pressures we use estimates (2.6) and (2.7) and integral identity (2.4)
in the form∫

Ω

(
pε

f + pε
s

)
divψdx

=
∫

Ω

(
ρε

(∂2wε

∂t2
− F

)
· ψ + {χεαµD(x,

∂wε

∂t
) + (1− χε)αλD(x,wε)} : D(x, ψ)

)
dx,

Considering the sum of pressures q = pf + ps as a linear functional on the space
◦
W 1

2 (Ω) we get

|
∫

Ω

q divψdx| ≤ C0 max
0≤t≤T

‖ψ(t)‖W 1
2 (Ω),

where C0 is independent of the small parameter ε.
Choosing now ψ such that divψ = q we arrive at

max
0≤t≤T

‖divψ(t)‖2Ω = max
0≤t≤T

‖q(t)‖2Ω ≤ C0 max
0≤t≤T

‖ψ(t)‖W 1
2 (Ω). (4.3)

Such a choice of the function ψ is always possible (see [5]), if we put

ψ = ∇ϕ+ ψ0,

where

∆ϕ = q, x ∈ Ω, ϕ = 0, x ∈ ∂Ω, (4.4)

divψ0 = 0, x ∈ Ω, ψ0 = −∇ϕ, x ∈ ∂Ω. (4.5)

In fact, extending the solution ϕ of the problem (4.4) as odd function over bound-
aries {xi = 0, 1; i = 1, 2, 3} we conclude that

ϕ ∈
◦
W 2

2 (Ω), and max
0≤t≤T

‖∇ϕ(t)‖W 1
2 (Ω) ≤ C max

0≤t≤T
‖q(t)‖Ω.

Now we look for the solution ψ0 of the problem (4.5) as a solution of the Stokes
system

∆ψ0 +∇p = 0, divψ0 = 0, x ∈ Ω
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with non-homogeneous boundary condition

ψ0 = −∇ϕ, x ∈ ∂Ω.

The above problem has unique solution, such that

max
0≤t≤T

‖ψ0(t)‖W 1
2 (Ω) ≤ C max

0≤t≤T
‖∇ϕ(t)‖W 1

2 (Ω),

if and only if ∫
Ω

div(∇ϕ)dx ≡
∫

Ω

∆ϕdx =
∫

Ω

qdx = 0.

This solvability condition follows from conditions (2.5). Thus, gathering all esti-
mates together we obtain the desired estimates for the sum of pressures (pε

f + pε
s).

Finally, thanks to the property that the product of these two functions is equal to
zero, we get bounds for each of pressures pε

f and pε
s.

5. Proof of theorem 2.2

Weak and two-scale limits of sequences of displacement and pressures.
On the strength of theorem 2.1, the sequences {pε

f}, {pε
s} and {wε} are uniformly in

ε bounded in L2(ΩT ). Hence there exist a subsequence of small parameters {ε > 0}
and functions pf , ps and w such that

pε
f → pf , pε

s → ps, wε → w

weakly in L2(ΩT ) as ε↘ 0. Relabeling if necessary, we assume that the sequences
converge themselves. At the same time

(1− χε)αλD(x,wε) → 0. (5.1)

strongly in L2(ΩT ) and the sequence {div wε} converges weakly in L2(ΩT ) to div w
as ε↘ 0.

Moreover, due to extension lemma 3.4 there are functions

vε ∈ L∞(0, T ;W 1
2 (Ω))

such that vε = ∂wε/∂t in Ωf × (0, T ), vε = 0 on the part Sε
f of the boundary S

and

‖∂v
ε

∂t
‖2,ΩT

+ ‖∇∂v
ε

∂t
‖2,ΩT

≤ C0, (5.2)

max
0≤t≤T

(
‖vε(t)‖2,Ω + ‖∇vε(t)‖2,Ω

)
≤ C0, (5.3)

where C0 does not depend on the small parameter ε.

Lemma 5.1. There exist a subsequence of {ε > 0} and function

v ∈ L∞
(
0, T ;W 1

2 (Ω)
)
,

such that
(1) vε( , t) → v( , t) weakly in W 1

2 (Ω) as ε↘ 0 for all t ∈ [0, T ], and
(2) v( , t) ∈ W̊ 1

2 (Ω) for all t ∈ [0, T ].

Proof. First of all note, that there are a subsequence of small parameters {ε > 0}
and function v, such that

v,
∂v
∂t

∈ L2
(
0, T ;W 1

2 (Ω)
)
,

and vε( , t) → v( , t) weakly in L2
(
0, T ;W 1

2 (Ω)
)

as ε↘ 0.
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Now, let ϕ(x) be an arbitrary smooth function, and

Jε
ϕ(t) =

∫
Ω

((
vε(x, t)− v(x, t)

)
· ϕ(x) +∇

(
vε(x, t)− v(x, t)

)
· ∇ϕ(x)

)
dx.

By construction ∫ T

0

Jε
ϕ(t)ψ(t)dt→ 0

as ε↘ 0 for any ψ ∈ L2(0, T ). The first statement of the lemma means that

Jε
ϕ(t) → 0

as ε↘ 0 for all t ∈ [0, T ]. Estimates (5.2) and (5.3) imply∫ T

0

|
dJε

ϕ

dt
(t)|2dt ≤ C2

0 .

Using this estimate, the initial condition Jε
ϕ(0) = 0, and the weak convergence in

L2(0, T ) of the sequence {Jε
ϕ} to zero, one may easily prove that

Jε
ϕ(t) → 0 in C[0, T ],

which proves the first part of the lemma.
To prove the second part of the lemma note, that

vε( , t) → v( , t) strongly in L2(S) as ε↘ 0 for all t ∈ [0, T ].

This fact follows from the well-known imbedding theorem, which states that any
weakly convergent sequence in W 1

2 (Ω) converges strongly in L2(S).
Now we use lemma 3.5 and estimate (3.4) to conclude that

max
0≤t≤T

‖vε(t)‖22,S ≤ εC0. (5.4)

In fact, we may prove it for each facet separately. Considering, for example, the
facet S3,0 = {x3 = 0, x

′
= (x1, x2) ∈ (0, 1)× (0, 1)} one has

|vε(x
′
, 0, t)|2

= |vε(x
′
, x3, t)|2 + 2

∫ x3

0

vε(x
′
, y3, t)

∂vε

∂y3
(x

′
, y3, t)dy3

≤ |vε(x
′
, x3, t)|2 + 2

( ∫ ε

0

|vε(x
′
, y3, t)|2dy3

)1/2( ∫ ε

0

|∂v
ε

∂y3
(x

′
, y3, t)|2dy3

)1/2

and consequently, after integration over S3,0 and interval x3 ∈ (0, ε),

ε

∫
S3,0

|vε|2dx
′
≤

∫
Qε

|vε|2dx+ 2ε
( ∫

Qε

|vε|2dx
)1/2( ∫

Ω

|∇vε|2dx
)1/2

.

Using estimates (3.4) and (5.3) we finally get estimate (5.4), which means that

vε( , t) → 0 strongly in L2(S)

as ε↘ 0 for all t ∈ [0, T ] and that v = 0 on the boundary S. �

On the strength of Nguetseng’s theorem, there exist 1-periodic in y functions
Pf (x, t,y), Ps(x, t,y), W(x, t,y) and V(x, t,y) such that the sequences {pε

f},
{pε

s}, {wε} and {∇vε} two-scale converge to Pf (x, t,y), Ps(x, t,y), W(x, t,y) and
∇v(x, t) +∇yV(x, t,y), respectively.
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5.1. Micro- and macroscopic equations I.

Lemma 5.2. For all x ∈ Ω and y ∈ Y weak and two-scale limits of the sequences
{pε

f}, {pε
s}, {wε}, and {vε} satisfy the relations

Ps = ps
(1− χ)
(1−m)

, Pf = χPf , (5.5)

1
p∗

∂pf

∂t
+mdiv v + 〈div yV〉Yf

=
∂β

∂t
, (5.6)

1
p∗

∂Pf

∂t
+ χ(div v + div yV) =

χ

m

∂β

∂t
, (5.7)

1
p∗
pf +

1
η0
ps + div w = 0, (5.8)

w(x, t) · n(x) = 0, x ∈ S, (5.9)

div yW = 0, (5.10)
∂W
∂t

= χv + (1− χ)
∂W
∂t

, (5.11)

where ∂β/∂t = 〈〈div yV〉Yf
〉Ω, if p∗ + η0 = ∞ and β = 0, if p∗ + η0 <∞ and n(x)

is the unit normal vector to S at a point x ∈ S.

Proof. To prove (5.5), into (2.4) we insert a test function ψε = εψ (x, t,x/ε), where
ψ(x, t,y) is an arbitrary 1-periodic and finite on Ys function in y. Passing to the
limit as ε↘ 0, we get

∇yPs(x, t,y) = 0, y ∈ Ys. (5.12)
Next, fulfilling the two-scale limiting passage in equality

χεpε
s = 0

we arrive at χPs = 0 which along with (5.12) justifies (5.5).
Equations (5.6)–(5.9) appear as the results of two-scale limiting passages in (2.2)–

(2.3) with the proper test functions being involved. Thus, for example, (5.8) and
(5.9) arise, if we consider the sum of (2.2) and (2.3),

1
αp
pε

f +
1
αη
pε

s + div wε =
1

m(1−m)
βε(χε −m); (5.13)

multiply by an arbitrary function, independent of the “fast” variable x/ε, and
then pass to the limit as ε ↘ 0. In order to prove (5.10), it is sufficient to con-
sider the two-scale limiting relations in (5.13) as ε ↘ 0 with the test functions
εψ (x/ε)h(x, t), where ψ and h are arbitrary smooth functions. In order to prove
(5.11) it is sufficient to consider the two-scale limiting relations in

χε(
∂wε

∂t
− vε) = 0.

�

Corollary 5.3. If p∗ + η0 = ∞, then weak limits pf and ps satisfy relations

〈pf 〉Ω = 〈ps〉Ω = 0. (5.14)

Lemma 5.4. For all (x, t) ∈ ΩT the relations

div y{µ0χ(D(y,V) + D(x,v))− (Pf +
(1− χ)
(1−m)

ps) · I} = 0, (5.15)
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holds true.

Proof. Substituting a test function of the form ψε = εψ (x, t,x/ε), where ψ(x, t,y)
is an arbitrary 1-periodic in y function vanishing on the boundary S, into integral
identity (2.4), and passing to the limit as ε↘ 0, we arrive at (5.15). �

Lemma 5.5. Let ρ̂ = mρf + (1 −m)ρs. Then functions us = 〈W〉Ys , v, pf and
ps satisfy in ΩT the system of macroscopic equations

ρfm
∂v
∂t

+ ρs
∂2us

∂t2
− ρ̂F = div{µ0(mD(x,v) + 〈D(y,V)〉Yf

)− (pf + ps) · I}, (5.16)

and the homogeneous initial conditions

us(x, 0) = ρfmv(x, 0) + ρs
∂us

∂t
(x, 0) = 0, x ∈ Ω. (5.17)

Proof. Equations (5.16) and initial conditions (5.17) arise as the limit of (2.4) with
test functions being independent of ε in ΩT . �

Micro- and macroscopic equations II.

Lemma 5.6. If λ1 = ∞, then the weak limits of {vε} and {∂wε/∂t} coincide and

(1−m)v =
∂us

∂t
.

Proof. Let Ψ(x, t,y) be an arbitrary smooth function periodic in y. The sequence
{σε

ij}, where

σε
ij =

∫
Ω

√
αλ
∂wε

i

∂xj
(x, t)Ψ(x, t,x/ε)dx, wε = (wε

1, w
ε
2, w

ε
3)

is uniformly bounded in ε. Therefore,∫
Ω

ε
∂wε

i

∂xj
(x, t)Ψ(x, t,x/ε)dx =

ε
√
αλ
σε

ij → 0

as ε↘ 0, which is equivalent to∫
Ω

∫
Y

Wi(x, t,y)
∂Ψ
∂yj

(x, t,y)dxdy = 0, W = (W1,W2,W3),

or W(x, t,y) = w(x, t). Therefore, taking the two-scale limit as ε ↘ 0 in the
equality

χε(vε − ∂wε

∂t
) = 0

we arrive at the first statement of the lemma. The last statement follows from the
definition of us. �

Lemma 5.7. Let λ1 < ∞. Then the weak and two-scale limits ps and W satisfy
the microscopic relations

ρs
∂2W
∂t2

= λ1∆yW −∇yR−
1

1−m
∇ps + ρsF, y ∈ Ys, (5.18)

∂W
∂t

= v, y ∈ γ (5.19)
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in the case λ1 > 0, and relations

ρs
∂2W
∂t2

= −∇yR−
1

1−m
∇ps + ρsF, y ∈ Ys, (5.20)

(
∂W
∂t

− v) · n = 0, y ∈ γ (5.21)

in the case λ1 = 0.
Differential equations (5.18) and (5.20) are endowed with homogeneous initial

conditions

W(y, 0) =
∂W
∂t

(y, 0) = 0, y ∈ Ys. (5.22)

In (5.21), n is the unit normal to γ.

Proof. Differential equations (5.18), (5.20) and initial conditions (5.22) follow as
ε ↘ 0 from integral equality (2.4) with the test function ψ = ϕ(xε−1) · h(x, t),
where ϕ is solenoidal and finite in Ys.

Boundary condition (5.19) is a consequence of the two-scale convergence of
{√αλ∇wε} to the function

√
λ1∇yW(x, t,y). On the strength of this conver-

gence, the function ∇yW(x, t,y) is L2-integrable in Y . The boundary condition
(5.21) follows from Eqs. (5.10)-(5.11). �

5.2. Homogenized equations I. In this section we derive homogenized equations
for the liquid component.

Lemma 5.8. If λ1 = ∞ then ∂w/∂t = v and the weak limits v, pf and ps satisfy
in ΩT the initial-boundary value problem

ρ̂
∂v
∂t

+∇(pf + ps)− ρ̂F

= div{µ0Af
0 : D(x,v) + Bf

0ps + Bf
1 div v +

∫ t

0

Bf
2 (t− τ) div v(x, τ)dτ},

(5.23)

p−1
∗ ∂pf/∂t+ Cf

0 : D(x,v) + af
0ps + (af

1 +m) div v

+
∫ t

0

af
2 (t− τ) div v(x, τ)dτ = 0,

(5.24)

1
p∗

∂pf

∂t
+

1
η0

∂ps

∂t
+ div v = 0, (5.25)

where the symmetric strictly positively defined constant fourth-rank tensor Af
0 , ma-

trices Cf
0 ,B

f
0 , Bf

1 and Bf
2 (t) and scalars af

0 , af
1 and af

2 (t) are defined below by
formulas (1.10), (5.33) and (5.35), where Bf

1 = 0, af
1 = 0 if p∗ < ∞, and Bf

2 = 0,
af
2 = 0 if p∗ = ∞.
Differential equations (5.23) are endowed with homogeneous initial and boundary

conditions

v(x, 0) = 0, x ∈ Ω, v(x, t) = 0, x ∈ S, t > 0. (5.26)

Proof. First note that v = ∂w/∂t due to lemma 5.6.
The homogenized equations (5.23) follow from the macroscopic equations (5.16),

after we insert in them the expression

µ0〈D(y,V)〉Yf
= µ0Af

1 : D(x,v)+Bf
0ps+Bf

1 div v+
∫ t

0

Bf
2 (t−τ) div v(x, τ)dτ+A(t).
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In turn, this expression follows by virtue of solutions of (5.7) and (5.15) on the
pattern cell Yf . In fact, if p∗ <∞, then setting

V =
3∑

i,j=1

V(ij)(y)Dij + V(0)(y)ps +
∫ t

0

V(2)(y, t− τ) div v(x, τ)dτ,

Pf = µ0

3∑
i,j=1

P ij(y)Dij + P 0(y)ps +
∫ t

0

P (2)(y, t− τ) div v(x, τ)dτ,

where

Dij(x, t) =
1
2
(
∂vi

∂xj
(x, t) +

∂vj

∂xi
(x, t)),

we arrive at the following periodic-boundary value problems in Y :

div y{χD(y,V(ij))− χP (ij)I + χJ ij} = 0, χdiv yV(ij) = 0; (5.27)

div y{µ0χD(y,V(0))−
(
χP (0) +

1− χ

1−m

)
I} = 0, χdiv yV(0) = 0; (5.28)

div y{µ0χD(y,V(2))− χP (2)I} = 0, (5.29)

1
p∗

∂P (2)

∂t
+ χdiv yV(2) = 0,

1
p∗
P (2)(y, 0) = −χ(y). (5.30)

For the case p∗ = ∞ we put

V =
3∑

i,j=1

V(ij)(y)Dij + V(0)(y)ps + V(1)(y) div v,

Pf =
3∑

i,j=1

P ij(y)Dij + P 0(y)ps + P (1)(y) div v,

where functions V(1) and P (1) satisfy in Y the following periodic-boundary value
problem in Y :

div y{µ0χD(y,V(1))− χP (1)I} = 0, χ(div yV(1) + 1) = 0. (5.31)

Note, that for all cases the functional β is equal to zero due to the special choice
of the function V, boundary condition (5.26) for the function v and conditions
(5.14).

On the strength of the assumptions on the geometry of the pattern “liquid” cell
Yf , problems (5.27)–(5.31) have unique solution, up to an arbitrary constant vector.
In order to discard the arbitrary constant vectors we demand

〈V(ij)〉Yf
= 〈V(0)〉Yf

= 〈V(1)〉Yf
= 〈V(2)〉Yf

= 0.

Thus

Af
0 = mJ + Af

1 , Af
1 =

3∑
i,j=1

〈D(y,V(ij))〉Yf
⊗ Jij , (5.32)

Bf
i = µ0〈D(y,V(i))〉Yf

, i = 0, 1, 2. (5.33)

Symmetry of the tensor Af
0 follows from symmetry of the tensor Af

1 . And symmetry
of the latter one follows from the equality

〈D(y,V(ij))〉Yf
: Jkl = −〈D(y,V(ij)) : D(y,V(kl))〉Yf

(5.34)
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which appears by means of multiplication of (5.27) for V(ij) by V(kl) and by inte-
gration by parts.

This equality also implies positive definiteness of the tensor Af
0 . Indeed, let

Z = (Zij) be an arbitrary symmetric matrix. Setting Z =
∑3

i,j=1 V(ij)Zij and
taking into account (5.34) we get

〈D(y,Z)〉Yf
: Z = −〈D(y,Z) : D(y,Z)〉Yf

.

This equality and the definition of the tensor Af
0 give

(Af
0 : Z) : Z = 〈(D(y,Z) + Z) : (D(y,Z) + Z)〉Yf

.

Now the strict positive definiteness of the tensor Af
0 follows immediately from the

equality above and the geometry of the elementary cell Yf . Namely, suppose that
(As

0 : Z) : Z = 0 for some matrix Z, such that Z : Z = 1. Then (D(y,Z) + Z) = 0,
which is possible if and only if Z is a linear function in y. On the other hand, all
linear periodic functions on Yf are constant. Finally, the normalization condition
〈V(ij)〉Yf

= 0 yields that Z = 0. However, this is impossible because the functions
V(ij) are linearly independent.

Equations (5.24) and (5.25) for the pressures follow from (5.6), (5.8) and equality

〈div yV〉Yf
= Cf

0 : D(x,v) + af
0ps + af

1 div v +
∫ t

0

af
2 (t− τ) div v(x, τ)dτ

with

Cf
0 =

3∑
i,j=1

〈div yV(ij)〉Yf
Jij , af

i = 〈div yV(i)〉Yf
, i = 0, 1, 2. (5.35)

Finally note, that initial conditions (5.26) follow from initial conditions (5.17) and
lemma 5.6. �

5.3. Homogenized equations II. We complete the proof of theorem 2.2 with
homogenized equations for the solid component.

Let λ1 < ∞. In the same manner as above, we verify that the limit v of
the sequence {vε} satisfies the initial-boundary value problem likes (5.23)– (5.25).
The main difference here that, in general, the weak limit ∂w/∂t of the sequence
{∂wε/∂t} differs from v. More precisely, the following statement is true.

Lemma 5.9. Let λ1 <∞. Then the weak limits v, us, pf , and ps of the sequences
{vε}, {(1 − χε)wε}, {pε

f}, and {pε
s} satisfy the initial-boundary value problem in

ΩT , consisting of the balance of momentum equation

ρfm
∂v
∂t

+ ρs
∂2us

∂t2
+∇(pf + ps)− ρ̂F

= div{µ0Af
0 : D(x,v) + Bf

0ps + Bf
1 div v +

∫ t

0

Bf
2 (t− τ) div v(x, τ)dτ},

(5.36)

and the continuity equation (5.24) for the liquid component, where Af
0 , Bf

0– Bf
2 are

the same as in (5.23), the continuity equation

1
p∗

∂pf

∂t
+

1
η0

∂ps

∂t
+ div

∂us

∂t
+mdivv = 0, (5.37)
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the relation

∂us

∂t
= (1−m)v(x, t) +

∫ t

0

Bs
1(t− τ) · z(x, τ)dτ, (5.38)

z(x, t) = − 1
1−m

∇xps(x, t) + ρsF(x, t)− ρs
∂v
∂t

(x, t) (5.39)

in the case λ1 > 0, or the balance of momentum equation in the form

ρs
∂2us

∂t2
= ρsBs

2 ·
∂v
∂t

+ ((1−m)I − Bs
2) · (−

1
1−m

∇ps + ρsF) (5.40)

in the case of λ1 = 0 for the solid component. The problem is supplemented by
boundary and initial conditions (5.26) for the velocity v of the liquid component
and by homogeneous initial conditions and the boundary condition

us(x, t) · n(x) = 0, (x, t) ∈ S, t > 0, (5.41)

for the displacement us of the solid component. In Eqs. (5.38)–(5.41) n(x) is the
unit normal vector to S at a point x ∈ S, and matrices Bs

1(t) and Bs
2 are given

below by Eqs. (5.43) and (5.45).

Proof. The boundary condition (5.41) follows from (5.9), the equality

∂w
∂t

=
∂us

∂t
+mv,

and the homogeneous boundary condition for v.
The same equality and (5.8) imply (5.37). The homogenized equations of balance

of momentum (5.36) derives exactly as before. Therefore we omit the relevant proofs
now and focus ourself only on derivation of homogenized equation of the balance
of momentum for the solid displacements us.

(a) If λ1 > 0, then the solution of the system of microscopic equations (5.10),
(5.18), and (5.19), provided with the homogeneous initial data (5.22), is given by
formula

W =
∫ t

0

(v(x, τ) +
3∑

i=1

Wi(y, t− τ)⊗ ei · z(x, τ))dτ,

R =
∫ t

0

3∑
i=1

Ri(y, t− τ)ei · z(x, τ)dτ,

in which functions Wi(y, t) and Ri(y, t) are defined by virtue of the periodic initial-
boundary value problem

ρs
∂2Wi

∂t2
− λ1∆Wi +∇Ri = 0, div yWi = 0, y ∈ Ys, t > 0,

Wi = 0, y ∈ γ, t > 0,

Wi(y, 0) = 0, ρs
∂Wi

∂t
(y, 0) = ei, y ∈ Ys.

(5.42)

In (5.42), ei is the standard Cartesian basis vector. Therefore,

Bs
1(t) =

3∑
i=1

〈∂W
i

∂t
〉Ys

⊗ ei(t). (5.43)
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Note, that differential equations in (5.42) are understood in the sense of distribu-
tions (the compatibility conditions on the boundary γ at t = 0 have no place) and
therefore the functions ∂Wi/∂t have no time derivative at t = 0.

(b) If λ1 = 0 then in the process of solving the system (5.10), (5.18), and (5.19)
we firstly find the pressure R(x, t,y) by virtue of solving the Neumann problem for
Laplace’s equation in Ys in the form

R(x, t,y) =
3∑

i=1

Ri(y)ei · z(x, t),

where Ri(y) is the solution of the problem

∆yRi = 0, y ∈ Ys; ∇yRi · n = n · ei, y ∈ γ. (5.44)

Formula (5.36) appears as the result of homogenization of (5.18) and

Bs
2 =

3∑
i=1

〈∇Ri(y)〉Ys
⊗ ei, (5.45)

where the matrix ((1−m)I −Bs
2) is symmetric and positively definite. In fact, let

R̃ =
∑3

i=1Rixii for any unit vector ξ. Then

(B · ξ) · ξ = 〈(ξ −∇R̃)2〉Yf
> 0

due to the same reasons as in lemma 5.7. On the strength of the assumptions on
the geometry of the pattern “solid” cell Ys, problem (5.42) has unique solution and
problem (5.44) has unique solution up to an arbitrary constant. �
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