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LONG TERM BEHAVIOR OF SOLUTIONS FOR RICCATI
INITIAL-VALUE PROBLEMS

SARAH Y. BAHK, NADEJDA E. DYAKEVICH, STEFAN C. JOHNSON

Abstract. The Riccati equation has been known since the early 1700s. Nu-

merous papers have been written on the solvability of its special cases. How-

ever, to the best of our knowledge, there are no papers that investigate the
exact (equation specific) conditions for unbounded growth in finite time of

solutions for Riccati initial-value problems. In this paper, we first derive con-

ditions that are necessary and sufficient for the solutions of Riccati problems
with constant coefficients to grow unbounded in finite time. Then we use a

comparison method to extend these results to Riccati problems with variable

coefficients.

1. Introduction

Count Jacopolo Francesco Riccati (May 28, 1676 - April 15, 1754) is famous
for introducing and researching the solvability of the equation that now bears his
name:

y′(t) = a(t)y2 + b(t)y + c(t). (1.1)

The matrix form of this equation is very important in modern times since it is
used extensively in design problems in filtering and control [1, 3]. Even though
the Riccati equation (1.1) is not solvable in general, numerous methods have been
developed for finding solutions for many of its special cases [2], [6]-[10].

In Section 2, we consider real solutions of the initial-value problem

y′(t) = ay2 + by + c,

y(0) = d,
(1.2)

where a, b, c, and d are real numbers and t ≥ 0 represents time. We determine
conditions on the constants a, b, c, and d that are necessary and sufficient for y(t)
to approach either +∞ or −∞ as t approaches some finite value tb. We provide
exact values for the time tb for the cases when 4ac − b2 is positive, negative, or
zero. In particular, we are interested in the first occurrence of blow-up. We do not
consider behavior of y(t) for t > tb.
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In Section 3, we use a comparison theorem to extend the results to the more
general initial-value problem

y′(t) = a(t)y2 + b(t)y + c(t),

y(0) = d,

where a(t), b(t), c(t) are continuous and differentiable functions for t ≥ 0, and d is
a real number.

2. Riccati Problems with Constant Coefficients

Theorem 2.1. The following is true for the solution y(t) of (1.2):
(1) Let 4ac − b2 > 0. If a > 0, then y(t) → +∞, while if a < 0, then

y(t)→ −∞.
(2) Let 4ac − b2 = 0. If a > 0 and d > − b

2a , then y(t) → +∞. If a < 0 and
d < − b

2a , then y(t)→ −∞. Otherwise, y(t) is bounded for any finite t > 0.
If d = − b

2a , then y(t) ≡ d.
(3) Let 4ac− b2 < 0. If a > 0 and d > −b+

√
b2−4ac
2a , then y(t)→ +∞. If a < 0

and d < −b+
√

b2−4ac
2a , then y(t)→ −∞. Otherwise, y(t) is bounded for any

finite t > 0. If d = −b±
√

b2−4ac
2a , then y(t) ≡ d.

(4) If a = 0, then y(t) is bounded for all t > 0.

Proof. (1) Let 4ac− b2 > 0. The solution of the initial value problem (1.2) can be
found using separation of variables:

y(t) =
√

4ac− b2
2a

tan
[ t√4ac− b2

2
+ arctan

( b+ 2ad√
4ac− b2

)]
− b

2a
. (2.1)

We can find the blow-up time tb by solving for t in equation

t
√

4ac− b2
2

+ arctan
( b+ 2ad√

4ac− b2
)

=
π

2
,

tb =
π√

4ac− b2
− 2√

4ac− b2
arctan

[ b+ 2ad√
4ac− b2

]
.

Also,

−π
2
< arctan

[ b+ 2ad√
4ac− b2

]
<
π

2
.

This implies that tb is always positive and that the solution y(t) of (1.2) is guar-
anteed to blow-up as t approaches tb. Also, from equation (2.1) we notice that if
a > 0, then y(t) → +∞, while if a < 0, then y(t) → −∞. Changing the initial
value d cannot prevent blow-up from occurring. However, d influences the blow-up
time tb. For example, if a < 0, then decreasing d will accelerate the blow-up. If
a > 0, then increasing d will accelerate the blow-up.

(2) Let 4ac− b2 = 0. Using separation of variables, we obtain∫
dy

a(y + b
2a )2

=
∫
dt.

Integration leads to the solution:

y(t) =
2ad+ b

a(2− 2adt− bt)
− b

2a
. (2.2)
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To find the blow-up time, we set the denominator of the first term in (2.2) equal
to 0 and solve for t in 2− 2adt− bt = 0,

tb =
2

2ad+ b
.

From the inequality tb > 0, and from (2.2) we obtain the following: If a > 0 and
d > − b

2a , then y(t) → +∞, while if a < 0 and d < − b
2a , then y(t) → −∞. Initial

value d is very important since certain values can prevent blow-up from occurring.
Also, d influences the blow-up time tb. If blow-up occurs for some value d, then
decreasing d (if a < 0) or increasing d (if a > 0) will accelerate the blow-up. If
d = − b

2a , then y(t) ≡ d satisfies the initial-value problem (1.2). Therefore, in this
special case, y(t) is bounded for all finite t > 0.

(3) Let 4ac− b2 < 0. We notice that if

d =
−b±

√
b2 − 4ac

2a
,

then y ≡ d is the solution of the initial-value problem (1.2). Therefore, in this case
y(t) is bounded for all t > 0. Now let us consider the case when

d 6= −b±
√
b2 − 4ac

2a
.

Using separation of variables, we have∫
dy

ay2 + by + c
=

∫
dt,

1√
b2 − 4ac

ln
∣∣2ay + b−

√
b2 − 4ac

2ay + b+
√
b2 − 4ac

∣∣ = t+ C1, (2.3)

where C1 is a constant of integration. We can find C1 by substituting the initial
condition y(0) = d into equation (2.3). Thus,

C1 =
1√

b2 − 4ac
ln

∣∣2ad+ b−
√
b2 − 4ac

2ad+ b+
√
b2 − 4ac

∣∣. (2.4)

We will consider the two possible cases:

2ad+ b−
√
b2 − 4ac

2ad+ b+
√
b2 − 4ac

> 0 (2.5)

and
2ad+ b−

√
b2 − 4ac

2ad+ b+
√
b2 − 4ac

< 0. (2.6)

We now substitute (2.4) into (2.3) and solve for y(t). In case (2.5), we can omit
the absolute value symbol:

1√
b2 − 4ac

ln
(2ay + b−

√
b2 − 4ac

2ay + b+
√
b2 − 4ac

)
= t+

1√
b2 − 4ac

ln
(2ad+ b−

√
b2 − 4ac

2ad+ b+
√
b2 − 4ac

)
.

In the case (2.6), we have

1√
b2 − 4ac

ln
(
− 2ay + b−

√
b2 − 4ac

2ay + b+
√
b2 − 4ac

)
= t+

1√
b2 − 4ac

ln
(
− 2ad+ b−

√
b2 − 4ac

2ad+ b+
√
b2 − 4ac

)
.
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In both cases (2.5) and (2.6), the solution of (1.2) is given by the formula

y(t) =
−bd+ d

√
b2 − 4ac− 2c+ (bd+ d

√
b2 − 4ac+ 2c)et

√
b2−4ac

2ad+ b+
√
b2 − 4ac− (2ad+ b−

√
b2 − 4ac)et

√
b2−4ac

. (2.7)

To find the blow-up time we set the denominator equal to 0,

2ad+ b+
√
b2 − 4ac− (2ad+ b−

√
b2 − 4ac)et

√
b2−4ac = 0 (2.8)

and solve for t to obtain

tb =
1√

b2 − 4ac
ln

(2ad+ b+
√
b2 − 4ac

2ad+ b−
√
b2 − 4ac

)
.

Since the blow-up time tb must be positive, we have

2ad+ b+
√
b2 − 4ac

2ad+ b−
√
b2 − 4ac

> 1. (2.9)

Let us observe that if (2.6) holds, then (2.8) can never be satisfied, thus, there is no
blowup. On the other hand, if (2.5) holds, then there are two possibilities: either

2ad+ b−
√
b2 − 4ac > 0 and 2ad+ b+

√
b2 − 4ac > 0 (2.10)

or
2ad+ b−

√
b2 − 4ac < 0 and 2ad+ b+

√
b2 − 4ac < 0. (2.11)

Solving (2.10) and (2.9) simultaneously, we obtain the conditions on d that lead to
blow-up in finite time:

d >
−b+

√
b2 − 4ac

2a
, if a > 0,

d <
−b+

√
b2 − 4ac

2a
, if a < 0.

Solving (2.11) and (2.9) simultaneously, we obtain a contradiction which implies
that there is no blow-up in this case. We notice from (2.7) that if a > 0 and
d > −b+

√
b2−4ac
2a , then y(t)→ +∞. If a < 0 and d < −b+

√
b2−4ac
2a , then y(t)→ −∞.

Thus, initial value d is very important since certain values can prevent blow-up
from occurring. Also, d influences the value of tb at which blow-up occurs.

(4) If a = 0, then the equation is linear. Using separation of variables, we obtain∫
dy

by + c
=

∫
dt,

y(t) =
(bd+ c)ebt − c

b
.

Here we find that y(t) is bounded for any finite time t > 0. �

Example. Let us investigate the blow-up property of the solution for the initial-
value problem

y′(t) = −4y2 + 5y − 1,

y(0) = d
(2.12)

with three different values of d as indicated below.
First, we note that a = −4 < 0, b = 5, c = −1, and 4ac − b2 = −9 < 0.

Also, (−b +
√
b2 − 4ac)/(2a) = 0.25. According to Theorem 2.1, we expect that
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the solution of problem (2.12) blows up for any d < 0.25 and is bounded otherwise.
The solution of problem (2.12) is given by formula (2.7):

y(t) =
−2d+ 2 + (8d− 2)e3t

−8d+ 8− (−8d+ 2)e3t
.

Let us notice that if we differentiate function y with respect to d, then the corre-
sponding derivative is as follows:

9e3t

(−4d+ 4 + 4de3t − e3t)2
.

Therefore, the function y and its derivative with respect to d are both discontinuous
when

t =
1
3

ln
(4d− 4
4d− 1

)
,

which holds only for d < 0.25.
If d = 2, we have

y(t) =
−2 + 14e3t

−8 + 14e3t
.

This function is bounded for any finite time t > 0.
If d = 0.5, we have

y(t) =
1 + 2e3t

4 + 2e3t
.

This function is bounded for any finite time t > 0.
If d = 0, we have

y(t) =
1− e3t

4− e3t
.

Here y(t)→ −∞ when tb = ln(4)/3.

3. Riccati Problems with Variable Coefficients

Let a(t), b(t), and c(t) be continuous and differentiable functions for t ≥ 0. We
consider the initial-value problem

y′(t) = a(t)y2 + b(t)y + c(t),

y(0) = d.
(3.1)

We notice that ϕ(t) = exp
( ∫ t

0
b(t̂)dt̂

)
is the unique solution of the initial-value

problem

ϕ′(t) = b(t)ϕ(t),

ϕ(0) = 1.

Also, ϕ(t) is bounded for any finite t ≥ 0. Let ψ(t) satisfy the initial-value problem

ψ′(t) = a(t)ψ2(t)ϕ(t) +
c(t)
ϕ(t)

,

ψ(0) = d.

(3.2)

Then y(t) = ϕ(t)ψ(t) satisfies the Riccati initial-value problem (3.1). We now
investigate conditions on a(t), c(t), and d that lead to unbounded growth of ψ(t),
and therefore, of y(t).
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Theorem 3.1. Let a(t)c(t) ≥ 0. Then the following is true for the solution y(t) of
(3.1):

(1) If a(t) exp
( ∫ t

0
b(t̂)dt̂

)
≥ k1 > 0 and c(t) exp

(
−

∫ t

0
b(t̂)dt̂

)
≥ k2 > 0 for all

t > 0, then y(t)→ +∞ for any initial condition d.
(2) If a(t) exp

( ∫ t

0
b(t̂)dt̂

)
≤ k3 < 0 and c(t) exp

(
−

∫ t

0
b(t̂)dt̂

)
≤ k4 < 0 for all

t > 0, then y(t)→ −∞ for any initial condition d.
(3) Let a(t)c(t) have zeroes at t = t1, t2, t3, . . . and let g1(t) and g2(t) be non-

trivial, continuous, and differentiable functions such that for all t ≥ 0,

g1(t) ≤ min
{
a(t)e

R t
0 b(t̂)dt̂, c(t)e−

R t
0 b(t̂)dt̂

}
,

g2(t) ≥ max
{
a(t)e

R t
0 b(t̂)dt̂, c(t)e−

R t
0 b(t̂)dt̂

}
.

Then one of the following three statements is true:
(a) y(t)→ +∞ if for some tb1 > 0,∫ tb1

0

g1(t)dt =
π

2
− arctan(d). (3.3)

(b) y(t)→ −∞ if for some tb2 > 0,∫ tb2

0

g2(t)dt = −π
2
− arctan(d). (3.4)

(c) y(t) is bounded for all t > 0 if the following two inequalities hold simulta-
neously:∫ t

0

g2(t̂)dt̂ <
π

2
− arctan(d),

∫ t

0

g1(t̂)dt̂ > −
π

2
− arctan(d).

Proof. (1) By the comparison theorem [4, pp. 221-223], the solution ψ̄(t) of the
initial-value problem

ψ̄′(t) = k1ψ̄
2(t) + k2,

ψ̄(0) = d̄,

where d̄ ≤ d, is a lower solution for (3.2). By Theorem 2.1, ψ̄(t) approaches +∞ as
t approaches t̄b. Therefore, ψ(t) ≥ ψ̄(t) also approaches +∞ as t approaches some
tb ≤ t̄b.

(2) By the comparison theorem, solution ψ̃(t) of the initial-value problem

ψ̃′(t) = k3ψ̃
2(t) + k4,

ψ̃(0) = d̃,

where d̃ ≥ d, is an upper solution for (3.2). By Theorem 2.1, ψ̃(t) approaches −∞
as t approaches t̃b. Therefore, ψ(t) ≤ ψ̃(t) also approaches −∞ as t approaches
tb ≤ t̃b.

(3)(a). By the comparison theorem, the solution ψ̂(t) of the initial-value problem

ψ̂′(t) = g1(t)ψ̂2(t) + g1(t),

ψ̂(0) = d̂,

where d̂ ≥ d, is a lower solution for (3.2). Using the separation of variables method,
we obtain that ψ̂(t) approaches +∞ as t approaches t̂b provided that (3.3) holds.
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Therefore, ψ(t) ≥ ψ̂(t) also approaches +∞ as t approaches tb1 ≤ t̂b. If condition
(3.3) does not hold, then ψ̂(t) and ψ(t) are bounded from above for all t > 0.

(3)(b) By the comparison theorem, the solution ψ̆(t) of the initial-value problem

ψ̆′(t) = g2(t)ψ̆2(t) + g2(t),

ψ̆(0) = d̆,

where d̆ ≥ d, is an upper solution for (3.2). Using the separation of variables
method, we obtain that ψ̆(t) approaches −∞ as t approaches t̆b provided that (3.4)
holds. Therefore, ψ(t) ≤ ψ̆(t) also approaches −∞ as t approaches tb2 ≤ t̆b. If
condition (3.4) does not hold, then ψ̆(t) and ψ(t) are bounded from below for all
t > 0.

(3)(c) The proof of this part follows directly from the proofs described in parts
(a) and (b) above. �

Theorem 3.2. Let c(t) = 0. One of the following three statements is true for the
solution y(t) of problem (3.1):

(1) y(t)→ +∞ provided d > 0 and∫ tb1

0

a(t)e
R t
0 b(t̂)dt̂dt =

1
d

(3.5)

for some tb1 > 0.
(2) y(t)→ −∞ provided d < 0 and∫ tb2

0

a(t)e
R t
0 b(t̂)dt̂dt =

1
d

(3.6)

for some tb2 > 0.
(3) If

−|1
d
| <

∫ t

0

a(t̄)e
R t̄
0 b(t̂)dt̂dt̄ < |1

d
|

for all t ≥ 0, then y(t) is bounded for all t ≥ 0.

Proof. (1) Applying the separation of variables method to the problem

ψ′(t) = a(t)ψ2(t),

ψ(0) = d,

we obtain that ψ(t) approaches +∞ as t approaches tb1 provided that d > 0, and
(3.5) holds. Otherwise, ψ(t) is bounded from above for all t > 0.

(2) Similarly, we obtain that ψ(t) approaches −∞ as t approaches tb2 provided
that d < 0, and (3.6) holds. Otherwise, ψ(t) is bounded from below for all t > 0.

(3) The proof of this part follows directly from the proofs of parts 1 and 2
above. �

Theorem 3.3. For the case a(t)c(t) < 0, one of the following two statements is
true for the solution y(t) of (3.1):

(1) If a(t) exp
( ∫ t

0
b(t̂)dt̂

)
≥ k5 > 0 and 0 > c(t) exp

(
−

∫ t

0
b(t̂)dt̂

)
≥ k6 for all

t > 0, then y(t)→ +∞ for any d >
√
|k6/k5|.

(2) If a(t) exp
( ∫ t

0
b(t̂)dt̂

)
≤ k7 < 0 and 0 < c(t) exp

(
−

∫ t

0
b(t̂)dt̂

)
≤ k8 for all

t > 0, then y(t)→ −∞ for any d < −
√
|k8/k7|.
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Proof. (1) By the comparison theorem [4, pp. 221-223], the solution ψ̄(t) of the
initial-value problem

ψ̄′(t) = k5ψ̄
2(t) + k6,

ψ̄(0) = d̄,

where
√
|k6/k5| < d̄ ≤ d, is a lower solution for (3.2). By Theorem 2.1, ψ̄(t)

approaches +∞ as t approaches t̄b. Therefore, ψ(t) ≥ ψ̄(t) also approaches +∞ as
t approaches some tb ≤ t̄b.

(2) By the comparison theorem, the solution ψ̃(t) of the initial-value problem

ψ̃′(t) = k7ψ̃
2(t) + k8,

ψ̃(0) = d̃,

where −
√
|k8/k7| > d̃ ≥ d is an upper solution for (3.2). By Theorem 2.1, ψ̃(t)

approaches −∞ as t approaches t̃b. Therefore, ψ(t) ≤ ψ̃(t) also approaches −∞ as
t approaches tb ≤ t̃b. �
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