Electronic Journal of Differential Equations, Vol. 2008(2008), No. 151, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS TO FIRST-ORDER SINGULAR AND NONSINGULAR INITIAL VALUE PROBLEMS

PETIO S. KELEVEDJIEV

ABSTRACT. Under barrier strip type arguments we investigate the existence of global solutions to the initial value problem x' = f(t, x, x'), x(0) = A, where the scalar function f(t, x, p) may be singular at t = 0.

1. INTRODUCTION

Results presented in Kelevedjiev O'Regan [12] show the solvability of the singular initial-value problem (IVP)

$$x' = f(t, x, x'), \quad x(0) = A,$$
 (1.1)

where the function f may be unbounded when $t \to 0^-$. In this paper we give existence results for problem (1.1) under less restrictive assumptions which alow f to be unbounded when $t \to 0$; i.e., here f may be unbounded for t tending to 0 from both sides. In fact, we consider the nonsingular problem (1.1) with $f: D_t \times D_x \times D_p \to \mathbb{R}$ continuous on a suitable subset of $D_t \times D_x \times D_p$ containing (0, A) and the singular problem (1.1) with f(t, x, p) discontinuous for $(t, x, p) \in S$ and defined at least for $(t, x, p) \in (D_t \times D_x \times D_p) \setminus S$, where $D_t, D_x, D_p \subseteq \mathbb{R}$ may be bounded, and $S = \{0\} \times X \times P$ for some sets $X \subseteq D_x$ and $P \subseteq D_p$.

Singular and nonsingular IVPs for the equation x' = f(t, x) have been discussed extensively in the literature; see, for example, [2, 3, 4, 5, 6, 7, 8, 9, 11, 14]. Singular IVPs of the form (1.1) have been received very little attention; we mention only [1, 12].

This paper is divided into three main sections. For the sake of completeness, in Section 2 we state the Topological transversality theorem [10]. In Section 3 we discus the nonsingular problem (1.1). Obtain a new existence result applying the approach [10]. Moreover, we again use the barrier strips technique initiated in [13]. In Section 4 we use the obtained existence result for the nonsingular problem (1.1) to study the solvability of the singular problem (1.1).

²⁰⁰⁰ Mathematics Subject Classification. 34B15, 34B16.

Key words and phrases. Initial value problem; first order differential equation; singularity; sign conditions.

^{©2008} Texas State University - San Marcos.

Submitted July 20, 2008. Published November 1, 2008.

2. TOPOLOGICAL PRELIMINARIES

Let X be a metric space, and Y be a convex subset of a Banach space E. We say that the homotopy $\{H_{\lambda} : X \to Y\}$, $0 \leq \lambda \leq 1$, is compact if the map $H(x,\lambda) : X \times [0,1] \to Y$ given by $H(x,\lambda) \equiv H_{\lambda}(x)$ for $(x,\lambda) \in X \times [0,1]$ is compact.

Let $U \subset Y$ be open in Y, ∂U be the boundary of U in Y, and $\overline{U} = \partial U \cup U$. The compact map $F : \overline{U} \to Y$ is called admissible if it is fixed point free on ∂U . We denote the set of all such maps by $\mathbf{L}_{\partial U}(\overline{U}, Y)$.

Definition 2.1 ([10, Chapter I, Def. 2.1]). The map F in $\mathbf{L}_{\partial U}(\overline{U}, Y)$ is inessential if there is a fixed point free compact map $G : \overline{U} \to Y$ such that $G|\partial U = F|\partial U$. The map F in $\mathbf{L}_{\partial U}(\overline{U}, Y)$ which is not inessential is called essential.

Theorem 2.2 ([10, Chapter I, Theorem 2.2]). Let $p \in U$ be arbitrary and $F \in \mathbf{L}_{\partial U}(\overline{U}, Y)$ be the constant map F(x) = p for $x \in \overline{U}$. Then F is essential.

Proof. Let $G: \overline{U} \to Y$ be a compact map such that $G|\partial U = F|\partial U$. Define the map $H: Y \to Y$ by

$$H(x) = \begin{cases} p & \text{for } x \in Y \setminus \overline{U}, \\ G(x) & \text{for } x \in \overline{U}. \end{cases}$$

Clearly $H: Y \to Y$ is a compact map. By Shauder fixed point theorem, H has a fixed point $x_0 \in Y$; i. e., $H(x_0) = x_0$. By definition of H we have $x_0 \in U$. Thus, $G(x_0) = x_0$ since H equals G on U. So every compact map from \overline{U} into Y which agrees with F on ∂U has a fixed point. That is, F is essential.

Definition 2.3 ([10, Chapter I, Def. 2.3]). The maps $F, G \in \mathbf{L}_{\partial U}(\overline{U}, Y)$ are called homotopic $(F \sim G)$ if there is a compact homotopy $H_{\lambda} : \overline{U} \to Y$, such that H_{λ} is admissible for each $\lambda \in [0, 1]$ and $G = H_0$, $F = H_1$.

Lemma 2.4 ([10, Chapter I, Theorem 2.4]). The map $F \in \mathbf{L}_{\partial U}(\overline{U}, Y)$ is inessential if and only if it is homotopic to a fixed point free map.

Proof. Let F be inessential and $G: \overline{U} \to Y$ be a compact fixed point free map such that $G|\partial U = F|\partial U$. Then the homotopy $H_{\lambda}: \overline{U} \to Y$, defined by

$$H_{\lambda}(x) = \lambda F(x) + (1 - \lambda)G(x), \quad \lambda \in [0, 1],$$

is compact, admissible and such that $G = H_0$, $F = H_1$.

Now let $H_0: \overline{U} \to Y$ be a compact fixed point free map, and $H_{\lambda}: \overline{U} \to Y$ be an admissible homotopy joining H_0 and F. To show that $H_{\lambda}, \lambda \in [0, 1]$, is an inessential map consider the map $H: \overline{U} \times [0, 1] \to Y$ such that $H(x, \lambda) \equiv H_{\lambda}(x)$ for each $x \in \overline{U}$ and $\lambda \in [0, 1]$ and define the set $B \subset \overline{U}$ by

$$B = \{ x \in U : H_{\lambda}(x) \equiv H(x, \lambda) = x \text{ for some } \lambda \in [0, 1] \}.$$

If B is empty, then $H_1 = F$ has no fixed point which means that F is inessential. So we may assume that B is non-empty. In addition B is closed and such that $B \cap \partial U = \emptyset$ since $H_{\lambda}, \lambda \in [0, 1]$, is an admissible map. Now consider the Urysohn function $\theta : \overline{U} \to [0, 1]$ with

$$\theta(x) = 1$$
 for $x \in \partial U$ and $\theta(x) = 0$ for $x \in B$

and define the homotopy $H^*_{\lambda}: \overline{U} \to Y, \lambda \in [0, 1]$, by

$$H_{\lambda}^* = H(x, \theta(x)\lambda) \text{ for } (x, \lambda) \in \overline{U} \times [0, 1].$$

EJDE-2008/151

It easy to see that $H_{\lambda}^* : \overline{U} \to Y$ is inessential. In particular $H_1 = F$ is inessential, too. The proof is complete.

Lemma 2.4 leads to the Topological transversality theorem:

Theorem 2.5 ([10, Chapter I, Theorem 2.6]). Let Y be a convex subset of a Banach space E, and $U \subset Y$ be open. Suppose that

- (i) $F, G: \overline{U} \to Y$ are compact maps.
- (ii) $G \in \mathbf{L}_{\partial U}(\overline{U}, Y)$ is essential.
- (iii) $H_{\lambda}(x), \lambda \in [0,1]$, is a compact homotopy joining F and G; i.e., $H_0(x) = G(x), H_1(x) = F(x)$.
- (iv) $H_{\lambda}(x), \lambda \in [0, 1]$, is fixed point free on ∂U .

Then $H_{\lambda}, \lambda \in [0, 1]$, has a least one fixed point $x_0 \in U$, and in particular there is a $x_0 \in U$ such that $x_0 = F(x_0)$.

3. Nonsingular problem

Consider the problem

$$x' = f(t, x, x'), \quad x(a) = A,$$
(3.1)

where $f: D_t \times D_x \times D_p \to R$, and the sets $D_t, D_x, D_p \subseteq \mathbb{R}$ may be bounded. Assume that:

(R1) There are constants T > a, Q > 0, L_i, F_i , i = 1, 2, and a sufficiently small $\tau > 0$ such that $[a, T] \subseteq D_t$, $L_2 - \tau \ge L_1 \ge \max\{0, A\}$, $F_2 + \tau \le F_1 \le \min\{0, A\}$, $[F_2, L_2] \subseteq D_x$, $[h - \tau, H + \tau] \subseteq D_p$ for $h = -Q - L_1$ and $H = Q - F_1$,

$$f(t, x, p) \leq 0 \quad \text{for } (t, x, p) \in [a, T] \times [L_1, L_2] \times D_p^+ \quad \text{where } D_p^+ = D_p \cap (0, \infty),$$

$$f(t, x, p) \geq 0 \quad \text{for } (t, x, p) \in [a, T] \times [F_2, F_1] \times D_p^- \quad \text{where } D_p^- = D_p \cap (-\infty, 0),$$

$$pf(t, x, p) \leq 0 \quad \text{for } (t, x, p) \in [a, T] \times [F_1 - \tau, L_1 + \tau] \times (D_Q^- \cup D_Q^+),$$

$$(3.2)$$

where $D_Q^- = \{p \in D_p : p < -Q\} \text{ and } D_Q^+ = \{p \in D_p : p > Q\}.$

Remark. The sets D_p^-, D_p^+, D_Q^- and D_Q^+ are not empty because $h - \tau < h = -Q - L_1 < -Q < 0$, $H + \tau > H = Q - F_1 > Q > 0$ and $[h - \tau, H + \tau] \subseteq D_p$. (R2) f(t, x, p) and $f_p(t, x, p)$ are continuous for $(t, x, p) \in \Omega_\tau = [a, T] \times [F_1 - C_1]$

 $\tau, L_1 + \tau] \times [h - \tau, H + \tau]$ and for some $\varepsilon > 0$

$$f_p(t, x, p) \le 1 - \varepsilon \quad \text{for } (t, x, p) \in \Omega_{\tau},$$

where T, F_1, L_1, h, H and τ are as in (R1).

Now for $\lambda \in [0, 1]$ construct the family of IVPs

$$x' + (1 - \lambda)x = \lambda f(t, x, x' + (1 - \lambda)x), \quad x(a) = A.$$
 (3.3)

Note that (3.3) with $\lambda = 1$ is problem (1.1), and that when $\lambda = 0$, this problem has a unique solution $x(t) = Ae^{a-t}, t \in \mathbb{R}$.

For the proof of the main result of this section we need the following auxiliary result.

Lemma 3.1 ([12, Lemma 3.1]). Let (R1) hold and $x(t) \in C^1[a, T]$ be a solution to (3.3) with $\lambda \in [0, 1]$. Then

$$F_1 \le x(t) \le L_1$$
 and $-Q - L_1 \le x'(t) \le Q - F_1$ for $t \in [a, T]$.

We will omit the proof of the above lemma. Note only that (3.2) yields

$$-Q \le x'(t) + (1-\lambda)x(t) \le Q \quad \text{for } \lambda \in [0,1] \text{ and } t \in [a,T],$$
(3.4)

which together with the obtained bounds for x(t) gives the bounds for x'(t).

Lemma 3.2. Let (R1) and (R2) hold. Then there exists a function $\Phi(\lambda, t, x)$ continuous for $(\lambda, t, x) \in [0, 1] \times [a, T] \times [F_1 - \tau, L_1 + \tau]$ and such that:

(i) The family

$$x' + (1 - \lambda)x = \Phi(\lambda, t, x), \quad x(a) = A,$$

- and family (3.3) are equivalent.
- (ii) $\Phi(0,t,x) = 0$ for $(t,x) \in [a,T] \times [F_1 \tau, L_1 + \tau].$

Proof. (i) Consider the function

$$G(\lambda, t, x, p) = \lambda f(t, x, p) - p \quad \text{for } (\lambda, t, x, p) \in [0, 1] \times \Omega_{\tau}$$

Since $h - \tau < -Q$ and $H + \tau > Q$, (3.2) implies

$$f(t, x, h - \tau) \ge 0, \quad f(t, x, H + \tau) \le 0 \quad \text{for } (t, x) \in [a, T] \times [F_1 - \tau, L_1 + \tau],$$

which together with the definition of the function G yields

$$\begin{split} G(\lambda,t,x,h-\tau)\,G(\lambda,t,x,H+\tau) < 0, \quad (\lambda,t,x) \in [0,1] \times [a,T] \times [F_1-\tau,L_1+\tau]. \eqno(3.5) \\ \text{In addition}, \eqno(\lambda,t,x,p) \eqno(3.5) \end{split}$$

$$G_p(\lambda, t, x, p) = \lambda f_p(t, x, p) - 1 \tag{3.6}$$

are continuous for $(\lambda, t, x, p) \in [0, 1] \times \Omega_{\tau}$ because f(t, x, p) and $f_p(t, x, p)$ are continuous for $(t, x, p) \in \Omega_{\tau}$. Besides, from $f_p(t, x, p) \leq 1 - \varepsilon$ for $(t, x, p) \in \Omega_{\tau}$ we have

$$G_p(\lambda, t, x, p) \le \lambda(1 - \varepsilon) - 1 \le \max\{-\varepsilon, -1\} \quad \text{for } (\lambda, t, x, p) \in [0, 1] \times \Omega_{\tau}.$$
(3.7)

Using (3.5), (3.6) and (3.7) we conclude that the equation

$$G(\lambda, t, x, p) = 0, \quad (\lambda, t, x, p) \in [0, 1] \times \Omega_{\tau}$$

defines a unique function $\Phi(\lambda, t, x)$ continuous for $(\lambda, t, x) \in [0, 1] \times [a, T] \times [F_1 - \tau, L_1 + \tau]$ and such that

$$G(\lambda, t, x, \Phi(\lambda, t, x)) = 0 \quad \text{for } (\lambda, t, x) \in [0, 1] \times [a, T] \times [F_1 - \tau, L_1 + \tau];$$

i.e., $p = \Phi(\lambda, t, x)$ for $(\lambda, t, x) \in [0, 1] \times [a, T] \times [F_1 - \tau, L_1 + \tau]$.

Now write the differential equation (3.3) as

$$\lambda f(t, x, x' + (1 - \lambda)x) - (x' + (1 - \lambda)x) = 0$$

and use that for $\lambda \in [0, 1]$ and $t \in [a, T]$,

$$x(t) \in [F_1, L_1] \subset [F_1 - \tau, L_1 + \tau]$$

by lemma 3.1, and

$$x'(t) + (1 - \lambda)x(t) \in [-Q, Q] \subset [h - \tau, H + \tau],$$

according to (3.4), to conclude that the first part of the assertion is true.

EJDE-2008/151

(ii) It follows immediately from G(0, t, x, 0) = 0 for $(t, x) \in \times[a, T] \times [F_1 - \tau, L_1 + \tau]$.

We will only sketch the proof of the following result since it is similar to the proof of [12, Theorem 2.3].

Theorem 3.3. Let (R1) and (R2) hold. Then the nonsingular IVP (1.1) has at least one solution in $C^{1}[a, T]$.

Proof. Consider the family of IVPs

$$x' + (1 - \lambda)x = \Phi(\lambda, t, x), \ x(a) = A,$$
 (3.8)

where Φ is the function from Lemma 3.2, define the maps

$$j: C_I^1[a, T] \to C[a, T] \quad \text{by} \quad jx = x,$$
$$V_{\lambda}: C_I^1[a, T] \to C[a, T] \quad \text{by} \quad V_{\lambda}x = x' + (1 - \lambda)x, \lambda \in [0, 1],$$

 $\Phi_{\lambda}: C[a,T] \to C[a,T] \quad \text{by} \quad (\Phi_{\lambda}x)(t) = \Phi(\lambda,t,x(t)), \ t \in [a,T], \ \lambda \in [0,1],$

where $C_I^1[a,T] = \{x(t) \in C^1[a,T] : x(a) = A\}$, and introduce the set

$$U = \left\{ x \in C_I^1[a, T] : F_1 - \tau < x < L_1 + \tau, \ h - \tau < x' < H + \tau \right\}.$$

Next, define the compact homotopy

$$H: \overline{U} \times [0,1] \to C^1_I[a,T]$$
 by $H(x,\lambda) \equiv H_\lambda(x) \equiv V_\lambda^{-1} \Phi_\lambda j(x).$

By Lemma 3.1, the $C^1[a, T]$ -solutions to the family (3.3) do not belong to ∂U . This means, according to (i) of Lemma 3.2, that the family (3.8) has no solutions in ∂U . Consequently, the homotopy is admissible because its fixed points are solutions to (3.8). Besides, from (ii) of Lemma 3.2 it follows $(\Phi_0 x)(t) = 0$ for each $x \in U$. Then for each $x \in U$ we have

$$H_0(x) = V_0^{-1} \Phi_0 j(x) = V_0^{-1}(0) = Ae^{a-t}$$

where Ae^{a-t} is the unique solution to the problem

$$x' + x = 0, \quad x(a) = A.$$

According to Theorem 2.2 the constant map $H_0 = Ae^{a-t}$ is essential. Then, by Theorem 2.5, H_1 has a fixed point in U. This means that problem (3.8) with $\lambda = 1$ has at least one solution $x(t) \in C^1[a, T]$. Finally, use Lemma 3.2 to see that x(t) is also a solution to problem (3.3) with $\lambda = 1$ which coincides with problem (1.1). \Box

The following result is known, but we state it for completeness. We will need it in Section 4.

Lemma 3.4. Suppose that there are constants $m_i, M_i, i = 0, 1$, such that:

- (i) f(t, x, p) is continuously differentiable for $(t, x, p) \in [a, T] \times [m_0, M_0] \times [m_1, M_1]$.
- (ii) $1 f_p(t, x, p) \neq 0$ for $(t, x, p) \in [a, T] \times [m_0, M_0] \times [m_1, M_1]$.
- (iii) $x(t) \in C^1[a,T]$ is a solution to the IVP (1.1) satisfying the bounds

$$m_0 \le x(t) \le M_0, \quad m_1 \le x'(t) \le M_1 \quad \text{for } t \in [a, T].$$

Then x''(t) exists and is continuous on [a, T] and

$$x''(t) = \frac{f_t(t, x(t), x'(t)) + x'(t)f_x(t, x(t), x'(t))}{1 - f_p(t, x(t), x'(t))}$$

for $t \in [a, T]$.

Proof. In view of (i) and (iii) for $t, t + h \in [a, T]$ we can work out the identity

$$f(t, x, x') - f(t, x, x') + f(t_h, x, x') - f(t_h, x, x') + f(t_h, x_h, x') - f(t_h, x_h, x') + f(t_h, x_h, x'_h) - f(t_h, x_h, x'_h) + x' - x' + x'_h - x'_h = 0,$$

where $t_h = t + h$, $x_h = x(t + h)$ and $x'_h = x'(t + h)$. Using that x(t) is a solution to (1.1) we obtain

$$f(t_h, x, x') - f(t, x, x') + f(t_h, x_h, x') - f(t_h, x, x') + f(t_h, x_h, x'_h) - f(t_h, x_h, x') + x' - x'_h = 0$$

and apply the mean value theorem to get

$$(1 - f_p(t_h, x_h, x' + \theta_p(x'_h - x')))(x'_h - x') = f_t(t + \theta_t h, x, x')h + f_x(t_h, x + \theta_x(x_h - x), x')(x_h - x)$$

for some $\theta_t, \theta_x, \theta_p \in (0, 1)$. Dividing by $(1 - f_p(t_h, x_h, x' + \theta_p(x'_h - x')))h$, (ii) allows us to obtain

$$\lim_{h \to 0} \frac{x'(t+h) - x'(t)}{h}$$

= $\lim_{h \to 0} \left(f_t(t+\theta_t h, x(t), x'(t)) + f_x(t+h, x(t) + \theta_x(x(t+h) - x(t)), x'(t)) \frac{x(t+h) - x(t)}{h} \right)$
 $\div \left(1 - f_p(t+h, x(t+h), x' + \theta_p(x'(t+h) - x'(t))) \right),$

from where the lemma follows.

4. Singular problem

Consider problem (1.1) for

$$f(t, x, p) \text{ is discontinuous for } (t, x, p) \in S \text{ and is defined at}$$

least for $(t, x, p) \in (D_t \times D_x \times D_p) \setminus S$, where $D_t, D_x, D_p \subseteq$ (4.1)
 $R, S = \{0\} \times X \times P, X \subseteq D_x \text{ and } P \subseteq D_p.$

which allows f to be unbounded at t = 0.

In this section we assume the following:

(S1) There exist constants $T, Q > 0, L_i, F_i, i = 1, 2$, and a sufficiently small $\tau > 0$ such that $(0,T] \subseteq D_t, L_2 - \tau \ge L_1 \ge \max\{0,A\}, F_2 + \tau \le F_1 \le \min\{0,A\}, [F_2,L_2] \subseteq D_x, [h - \tau, H + \tau] \subseteq D_p$ for $h = -Q - L_1$ and $H = Q - F_1,$

$$f(t,x,p) \le 0 \quad \text{for } (t,x,p) \in (0,T] \times [L_1,L_2] \times D_p^+,$$

$$f(t,x,p) \ge 0 \quad \text{for } (t,x,p) \in (0,T] \times [F_2,F_1] \times D_p^-,$$

$$pf(t,x,p) \le 0$$
 for $(t,x,p) \in (0,T] \times [F_1 - \tau, L_1 + \tau] \times (D_Q^- \cup D_Q^+),$

where the sets $D_p^-, D_p^+, D_Q^-, D_Q^+$ are as in (R1). (S2) f(t, x, p) and $f_p(t, x, p)$ are continuous for (t, x, p) in $(0, T] \times [F_1 - \tau, L_1 +$ $\tau \times [h - \tau, H + \tau]$, and for some $\varepsilon > 0$,

$$f_p(t, x, p) \le 1 - \varepsilon \quad \text{for } (t, x, p) \in (0, T] \times [F_1 - \tau, L_1 + \tau] \times [h - \tau, H + \tau], \quad (4.2)$$

where the constants T, F_1, L_1, h, H, τ are as in (S1).

6

EJDE-2008/151

(S3) $f_t(t, x, p)$ and $f_x(t, x, p)$ are continuous for $(t, x, p) \in (0, T] \times [F_1, L_1] \times [h, H]$, where T, F_1, L_1, h, H, τ are as in (S1).

Note, in [12] the condition (4.2) has the form

 $f_p(t, x, p) \le -K_p < 0$ for $(t, x, p) \in (0, T] \times [F_1 - \tau, L_1 + \tau] \times [h - \tau, H + \tau]$

where K_p is a positive constant. Besides, in contrast to [12], here we do not need the assumption

$$\left|\frac{f_t(t,x,p) + pf_x(t,x,p)}{1 - f_p(t,x,p)}\right| \le M, \quad (t,x,p) \in (0,T] \times [F_1, L_1] \times [h,H],$$

for some constant M.

Now we are ready to prove the main result of this paper. It guarantees solutions to the problem (1.1) in the case (4.1).

Theorem 4.1. Let (S1), (S2), (S3) hold. Then the singular initial-value problem (1.1) has at least one solution in $C[0,T] \cap C^1(0,T]$.

Proof. For $n \in N_T = \{n \in \mathbb{N} : n^{-1} < T\}$ consider the family of IVP's

$$x' = f(t, x, x'), \quad x(n^{-1}) = A.$$
 (4.3)

It satisfies (R1) and (R2) with $a = n^{-1}$ for each $n \in N_T$. By Theorem 3.3, (4.3) has a solution $x_n(t) \in C^1[n^{-1}, T]$ for each $n \in N_T$; i.e., the sequence $\{x_n\}, n \in N_T$, of $C^1[n^{-1}, T]$ -solutions to (4.3) exists.

Now, we take a sequence $\{\theta_n\}$, $n \in \mathbb{N}$, such that $\theta_n \in (0, T)$, $\theta_{n+1} < \theta_n$ for $n \in \mathbb{N}$ and $\lim_{n \to \infty} \theta_n = 0$.

It is clear, $\{x_n\} \subset C^1[\theta_1, T]$ for $n \in N_1 = \{n \in N_T : n^{-1} < \theta_1\}$. In addition, by Lemma 3.1, we have the bounds

$$F_1 \le x_n(t) \le L_1, \quad h \le x'_n(t) \le H \quad \text{for } t \in [\theta_1, T],$$

independent of n. On the other hand, f(t, x, p) is continuously differentiable for $(t, x, p) \in [\theta_1, T] \times [F_1, L_1] \times [h, H]$ and

$$1 - f_p(t, x, p) \ge \varepsilon > 0 \quad \text{for } (t, x, p) \in [\theta_1, T] \times [F_1, L_1] \times [h, H]$$

The hypotheses of Lemma 3.4 are satisfied. Consequently, $x''_n(t)$ exists for each $n \in N_1$ and is continuous on $[\theta_1, T]$ and

$$x_n''(t) = \frac{f_t(t, x_n(t), x_n'(t)) + x_n'(t)f_x(t, x_n(t), x_n'(t))}{1 - f_p(t, x_n(t), x_n'(t))} \quad \text{for } t \in [\theta_1, T], \ n \in N_1.$$

The a priori bounds for $x_n(t)$ and $x'_n(t)$ on $[\theta_1, T]$ alow us to conclude that there is a constant C_1 , independent of n, such that

$$|x_n''(t)| \le C_1, \quad \in [\theta_1, T], \ n \in N_1.$$

Applying the Arzela-Ascoli theorem we extract a subsequence $\{x_{n_1}\}, n_1 \in N_1$, such that the sequences $\{x_{n_1}^{(i)}\}, i = 0, 1$, are uniformly convergent on $[\theta_1, T]$ and if

$$\lim_{n_1 \to \infty} x_{n_1}(t) = x_{\theta_1}(t), \text{ then } x_{\theta_1}(t) \in C^1[\theta_1, T] \text{ and } \lim_{n_1 \to \infty} x'_{n_1}(t) = x'_{\theta_1}(t).$$

It is clear that $x_{\theta_1}(t)$ is a solution to the differential equation x' = f(t, x, x') on $t \in [\theta_1, T]$. Besides, integrating from n_1^{-1} to $t, t \in (n_1^{-1}, T]$, the inequalities $h \leq x'_{n_1}(t) \leq H$ we get

$$ht - hn_1^{-1} + A \le x_{n_1}(t) \le Ht - Hn_1^{-1} + A$$
 for $t \in [n_1^{-1}, T], n_1 \in N_1$,

which yields

$$ht + A \leq x_{\theta_1}(t) \leq Ht + A$$
 for $t \in [\theta_1, T]$.

Now we consider the sequence $\{x_{n_1}\}$ for $n_1 \in N_2 = \{n \in N_T : n^{-1} < \theta_2\}$. In a similar way we extract a subsequence $\{x_{n_2}\}, n_2 \in N_2$, converges uniformly on $[\theta_2, T]$ to a function $x_{\theta_2}(t)$ which is a $C^1[\theta_2, T]$ -solution to the differential equation x' = f(t, x, x') on $[\theta_2, T]$,

$$ht + A \le x_{\theta_2}(t) \le Ht + A \text{ for } t \in [\theta_2, T]$$

and $x_{\theta_2}(t) = x_{\theta_1}(t)$ for $t \in [\theta_1, T]$.

Continuing this process, for $\theta_i \to 0$, we establish a function $x(t) \in C^1(0, T]$ which is a solution to the differential equation x' = f(t, x, x') on (0, T],

$$ht + A \le x(t) \le Ht + A \quad \text{for } t \in (0, T]$$

$$(4.4)$$

and $x(t) \equiv x_{\theta_i}(t)$ for $t \in [\theta_i, T]$, $i \in \mathbb{N}$. Also (4.4) gives x(0) = A and $x(t) \in C[0, T]$. Consequently, x(t) is a $C[0, T] \cap C^1(0, T]$ -solution to the singular IVP (1.1).

Example. Consider the initial-value problem

$$(0.5 - x - \sqrt[3]{x'})e^{1/t} - 2x' = 0, \quad x(0) = 1.$$

Write this equation as

$$x' = (0.5 - x - \sqrt[3]{x'})e^{1/t} - x'$$

and fix T > 0. Then

$$f(t, x, p) = (0.5 - x - \sqrt[3]{p})e^{1/t} - p < 0 \quad \text{for } (0, T] \times [2, 4] \times (0, \infty),$$

$$f(t, x, p) = (0.5 - x - \sqrt[3]{p})e^{1/t} - p > 0 \quad \text{for } (0, T] \times [-3, -1] \times (-\infty, 0).$$

In addition, we have

$$f(t, x, p) = (0.5 - x - \sqrt[3]{p})e^{1/t} - p > 0 \quad \text{for } (0, T] \times [-1.5, 2.5] \times (-\infty, -10),$$

$$f(t, x, p) = (0.5 - x - \sqrt[3]{p})e^{1/t} - p < 0 \quad \text{for } (0, T] \times [-1.5, 2.5] \times (10, \infty).$$

Consequently, (S1) holds for Q = 10, $F_2 = -3$, $F_1 = -1$, $L_1 = 2$, $L_2 = 4$ and $\tau = 0.5$. Moreover, $h = -Q - L_1 = -12$ and $H = Q - F_1 = 11$. Condition (S2) also holds because

$$f(t, x, p)$$
 and $f_p(t, x, p) = -\frac{e^{1/t}}{3\sqrt[3]{p^2}} - 1$

are continuous for $(t, x, p) \in (0, T] \times [-1.5, 2.5] \times [-12.5, 11.5]$ and

$$f_p(t, x, p) \le -1$$
 for $(t, x, p) \in (0, T] \times [-1.5, 2.5] \times [-12.5, 11.5].$

Finally, $f_t(t, x, p) = -t^{-2}(0.5 - x - \sqrt[3]{p})e^{1/t}$ and $f_x(t, x, p) = -e^{1/t}$ are continuous for $(t, x, p) \in (0, T] \times [-1, 2] \times [-12, 11]$ which means (S3) holds.

According to Theorem 4.1, the problem under consideration has at least one solution in $C[0,T] \cap C^1(0,T]$.

Acknowledgements. The author is grateful to the anonymous referee for his/her useful suggestions. This research was partially supported by grant VU-MI-02/2005 from the Bulgarian NSC.

References

- R. P. Agarwal and P. Kelevedjiev; Existence of solutions to a singular initial value problem, Acta Mathematica Sinica, English Series, 23 (2007) 1797-1806.
- [2] J. Andres and L. Jütter; Periodic solutions of discontinuous differential systems, Nonlinear Analysis Forum 6, (2001) 391-407.
- [3] L. E. Bobisud and D. O'Regan; Existence of solutions to some singular initial value problems, J. Math. Anal. Appl. 133, (1988) 215-230.
- [4] A. Bressan and W. Shen; On discontinuous differential equations, Differential Inclusions and Optimal Control 2, (1988) 73-87.
- [5] A. Cabada and R.L. Pouso; On first order discontinuous scalar differential equations, Nonlinear Studies 6, (1999) 161-170.
- [6] S. Carl, S. Heikkilä and M. Kumpulainen; On solvability of first order discontinuous scalar differential equations, Nonlinear Times and Digest 2, (1995) 11-24.
- [7] S. Carl and S. Heikkilä; Nonlinear Differential Equations in Ordered Spaces, Chapman and Hall, Boca Raton, (2000).
- [8] A. F. Filippov; Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, (1988).
- [9] M. Frigon and D. O'Regan; Existence results for some initial and boundary value problems without growth restriction, Proc. Amer. Math. Soc. 123, (1995) 207-216.
- [10] A. Granas, R.B. Guenther, J.W. Lee; Nonlinear boundary value problems for ordinary differential equations, Dissnes. Math. 244 (1985) 1-128.
- [11] S. Heikkilä and V. Lakshmikantham; A unified theory for first order discontinuous scalar differential equations, Nonl. Anal. 26 (1996) 785-797.
- [12] P. Kelevedjiev and D. O'Regan; On the solvability of a singular initial value problem x' = f(t, x, x') using barrier strips, Nonl. Anal. 64, (2006) 726-738.
- [13] P. Kelevedjiev; Existence of solutions for two-point boundary value problems, Nonl. Anal. 22, (1994) 217-224.
- [14] M. Šenkyřik and R. B. Guenther; Boundary value problems with discontinuites in the spatial variable, J. Math. Anal. Appl. 193, (1995) 296-305.

Petio S. Kelevedjiev

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF SLIVEN, SLIVEN, BULGARIA E-mail address: keleved@lycos.com