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EXISTENCE OF SOLUTIONS TO FIRST-ORDER SINGULAR
AND NONSINGULAR INITIAL VALUE PROBLEMS

PETIO S. KELEVEDJIEV

Abstract. Under barrier strip type arguments we investigate the existence of

global solutions to the initial value problem x′ = f(t, x, x′), x(0) = A, where
the scalar function f(t, x, p) may be singular at t = 0.

1. Introduction

Results presented in Kelevedjiev O’Regan [12] show the solvability of the singular
initial-value problem (IVP)

x′ = f(t, x, x′), x(0) = A, (1.1)

where the function f may be unbounded when t → 0−. In this paper we give
existence results for problem (1.1) under less restrictive assumptions which alow
f to be unbounded when t → 0; i.e., here f may be unbounded for t tending
to 0 from both sides. In fact, we consider the nonsingular problem (1.1) with
f : Dt×Dx×Dp → R continuous on a suitable subset of Dt×Dx×Dp containing
(0, A) and the singular problem (1.1) with f(t, x, p) discontinuous for (t, x, p) ∈ S
and defined at least for (t, x, p) ∈ (Dt ×Dx ×Dp) \ S, where Dt, Dx, Dp ⊆ R may
be bounded, and S = {0} × X× P for some sets X ⊆ Dx and P ⊆ Dp.

Singular and nonsingular IVPs for the equation x′ = f(t, x) have been discussed
extensively in the literature; see, for example, [2, 3, 4, 5, 6, 7, 8, 9, 11, 14]. Singular
IVPs of the form (1.1) have been received very little attention; we mention only
[1, 12].

This paper is divided into three main sections. For the sake of completeness,
in Section 2 we state the Topological transversality theorem [10]. In Section 3 we
discus the nonsingular problem (1.1). Obtain a new existence result applying the
approach [10]. Moreover, we again use the barrier strips technique initiated in [13].
In Section 4 we use the obtained existence result for the nonsingular problem (1.1)
to study the solvability of the singular problem (1.1).
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2. Topological preliminaries

Let X be a metric space, and Y be a convex subset of a Banach space E.
We say that the homotopy {Hλ : X → Y }, 0 ≤ λ ≤ 1, is compact if the map
H(x, λ) : X × [0, 1] → Y given by H(x, λ) ≡ Hλ(x) for (x, λ) ∈ X × [0, 1] is
compact.

Let U ⊂ Y be open in Y , ∂U be the boundary of U in Y , and U = ∂U ∪U . The
compact map F : U → Y is called admissible if it is fixed point free on ∂U . We
denote the set of all such maps by L∂U (U, Y ).

Definition 2.1 ([10, Chapter I, Def. 2.1]). The map F in L∂U (U, Y ) is inessential
if there is a fixed point free compact map G : U → Y such that G|∂U = F |∂U .
The map F in L∂U (U, Y ) which is not inessential is called essential.

Theorem 2.2 ([10, Chapter I, Theorem 2.2]). Let p ∈ U be arbitrary and F ∈
L∂U (U, Y ) be the constant map F (x) = p for x ∈ U . Then F is essential.

Proof. Let G : U → Y be a compact map such that G|∂U = F |∂U . Define the map
H : Y → Y by

H(x) =

{
p for x ∈ Y \U,

G(x) for x ∈ U.

Clearly H : Y → Y is a compact map. By Shauder fixed point theorem, H has a
fixed point x0 ∈ Y ; i. e., H(x0) = x0. By definition of H we have x0 ∈ U . Thus,
G(x0) = x0 since H equals G on U . So every compact map from U into Y which
agrees with F on ∂U has a fixed point. That is, F is essential. �

Definition 2.3 ([10, Chapter I, Def. 2.3]). The maps F,G ∈ L∂U (U, Y ) are called
homotopic (F ∼ G) if there is a compact homotopy Hλ : U → Y , such that Hλ is
admissible for each λ ∈ [0, 1] and G = H0, F = H1.

Lemma 2.4 ([10, Chapter I, Theorem 2.4]). The map F ∈ L∂U (U, Y ) is inessential
if and only if it is homotopic to a fixed point free map.

Proof. Let F be inessential and G : U → Y be a compact fixed point free map such
that G|∂U = F |∂U . Then the homotopy Hλ : U → Y , defined by

Hλ(x) = λF (x) + (1− λ)G(x), λ ∈ [0, 1],

is compact, admissible and such that G = H0, F = H1.
Now let H0 : U → Y be a compact fixed point free map, and Hλ : U → Y

be an admissible homotopy joining H0 and F . To show that Hλ, λ ∈ [0, 1], is an
inessential map consider the map H : U × [0, 1] → Y such that H(x, λ) ≡ Hλ(x)
for each x ∈ U and λ ∈ [0, 1] and define the set B ⊂ U by

B = {x ∈ U : Hλ(x) ≡ H(x, λ) = x for some λ ∈ [0, 1]}.
If B is empty, then H1 = F has no fixed point which means that F is inessential.
So we may assume that B is non-empty. In addition B is closed and such that
B ∩ ∂U = ∅ since Hλ, λ ∈ [0, 1], is an admissible map. Now consider the Urysohn
function θ : U → [0, 1] with

θ(x) = 1 for x ∈ ∂U and θ(x) = 0 for x ∈ B

and define the homotopy H∗
λ : U → Y, λ ∈ [0, 1], by

H∗
λ = H(x, θ(x)λ) for (x, λ) ∈ U × [0, 1].
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It easy to see that H∗
λ : U → Y is inessential. In particular H1 = F is inessential,

too. The proof is complete. �

Lemma 2.4 leads to the Topological transversality theorem:

Theorem 2.5 ([10, Chapter I, Theorem 2.6]). Let Y be a convex subset of a Banach
space E, and U ⊂ Y be open. Suppose that

(i) F,G : U → Y are compact maps.
(ii) G ∈ L∂U (U, Y ) is essential.
(iii) Hλ(x), λ ∈ [0, 1], is a compact homotopy joining F and G; i.e., H0(x) =

G(x), H1(x) = F (x).
(iv) Hλ(x), λ ∈ [0, 1], is fixed point free on ∂U .

Then Hλ, λ ∈ [0, 1], has a least one fixed point x0 ∈ U , and in particular there is a
x0 ∈ U such that x0 = F (x0).

3. Nonsingular problem

Consider the problem

x′ = f(t, x, x′), x(a) = A, (3.1)

where f : Dt × Dx × Dp → R, and the sets Dt, Dx, Dp ⊆ R may be bounded.
Assume that:

(R1) There are constants T > a, Q > 0, Li, Fi, i = 1, 2, and a sufficiently
small τ > 0 such that [a, T ] ⊆ Dt, L2 − τ ≥ L1 ≥ max{0, A}, F2 + τ ≤
F1 ≤ min{0, A}, [F2, L2] ⊆ Dx, [h − τ,H + τ ] ⊆ Dp for h = −Q− L1 and
H = Q− F1,

f(t, x, p) ≤ 0 for (t, x, p) ∈ [a, T ]× [L1, L2]×D+
p where D+

p = Dp ∩ (0,∞),

f(t, x, p) ≥ 0 for (t, x, p) ∈ [a, T ]× [F2, F1]×D−
p where D−

p = Dp ∩ (−∞, 0),

pf(t, x, p) ≤ 0 for (t, x, p) ∈ [a, T ]× [F1 − τ, L1 + τ ]× (D−
Q ∪D+

Q),
(3.2)

where D−
Q = {p ∈ Dp : p < −Q} and D+

Q = {p ∈ Dp : p > Q}.

Remark. The sets D−
p , D+

p , D−
Q and D+

Q are not empty because h − τ < h =
−Q− L1 < −Q < 0, H + τ > H = Q− F1 > Q > 0 and [h− τ,H + τ ] ⊆ Dp.

(R2) f(t, x, p) and fp(t, x, p) are continuous for (t, x, p) ∈ Ωτ = [a, T ] × [F1 −
τ, L1 + τ ]× [h− τ,H + τ ] and for some ε > 0

fp(t, x, p) ≤ 1− ε for (t, x, p) ∈ Ωτ ,

where T, F1, L1, h,H and τ are as in (R1).

Now for λ ∈ [0, 1] construct the family of IVPs

x′ + (1− λ)x = λf(t, x, x′ + (1− λ)x), x(a) = A. (3.3)

Note that (3.3) with λ = 1 is problem (1.1), and that when λ = 0, this problem
has a unique solution x(t) = Aea−t, t ∈ R.

For the proof of the main result of this section we need the following auxiliary
result.
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Lemma 3.1 ([12, Lemma 3.1]). Let (R1) hold and x(t) ∈ C1[a, T ] be a solution to
(3.3) with λ ∈ [0, 1]. Then

F1 ≤ x(t) ≤ L1 and −Q− L1 ≤ x′(t) ≤ Q− F1 for t ∈ [a, T ].

We will omit the proof of the above lemma. Note only that (3.2) yields

−Q ≤ x′(t) + (1− λ)x(t) ≤ Q for λ ∈ [0, 1] and t ∈ [a, T ], (3.4)

which together with the obtained bounds for x(t) gives the bounds for x′(t).

Lemma 3.2. Let (R1) and (R2) hold. Then there exists a function Φ(λ, t, x)
continuous for (λ, t, x) ∈ [0, 1]× [a, T ]× [F1 − τ, L1 + τ ] and such that:

(i) The family

x′ + (1− λ)x = Φ(λ, t, x), x(a) = A,

and family (3.3) are equivalent.
(ii) Φ(0, t, x) = 0 for (t, x) ∈ [a, T ]× [F1 − τ, L1 + τ ].

Proof. (i) Consider the function

G(λ, t, x, p) = λf(t, x, p)− p for (λ, t, x, p) ∈ [0, 1]× Ωτ .

Since h− τ < −Q and H + τ > Q, (3.2) implies

f(t, x, h− τ) ≥ 0, f(t, x,H + τ) ≤ 0 for (t, x) ∈ [a, T ]× [F1 − τ, L1 + τ ],

which together with the definition of the function G yields

G(λ, t, x, h−τ) G(λ, t, x,H+τ) < 0, (λ, t, x) ∈ [0, 1]×[a, T ]×[F1−τ, L1+τ ]. (3.5)

In addition, G(λ, t, x, p) and

Gp(λ, t, x, p) = λfp(t, x, p)− 1 (3.6)

are continuous for (λ, t, x, p) ∈ [0, 1]× Ωτ because f(t, x, p) and fp(t, x, p) are con-
tinuous for (t, x, p) ∈ Ωτ . Besides, from fp(t, x, p) ≤ 1− ε for (t, x, p) ∈ Ωτ we have

Gp(λ, t, x, p) ≤ λ(1− ε)− 1 ≤ max{−ε,−1} for (λ, t, x, p) ∈ [0, 1]× Ωτ . (3.7)

Using (3.5), (3.6) and (3.7) we conclude that the equation

G(λ, t, x, p) = 0, (λ, t, x, p) ∈ [0, 1]× Ωτ

defines a unique function Φ(λ, t, x) continuous for (λ, t, x) ∈ [0, 1] × [a, T ] × [F1 −
τ, L1 + τ ] and such that

G(λ, t, x,Φ(λ, t, x)) = 0 for (λ, t, x) ∈ [0, 1]× [a, T ]× [F1 − τ, L1 + τ ];

i.e., p = Φ(λ, t, x) for (λ, t, x) ∈ [0, 1]× [a, T ]× [F1 − τ, L1 + τ ].
Now write the differential equation (3.3) as

λf(t, x, x′ + (1− λ)x)− (x′ + (1− λ)x) = 0

and use that for λ ∈ [0, 1] and t ∈ [a, T ],

x(t) ∈ [F1, L1] ⊂ [F1 − τ, L1 + τ ],

by lemma 3.1, and

x′(t) + (1− λ)x(t) ∈ [−Q, Q] ⊂ [h− τ,H + τ ],

according to (3.4), to conclude that the first part of the assertion is true.
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(ii) It follows immediately from G(0, t, x, 0) = 0 for (t, x) ∈ ×[a, T ]× [F1 − τ, L1 +
τ ]. �

We will only sketch the proof of the following result since it is similar to the
proof of [12, Theorem 2.3].

Theorem 3.3. Let (R1) and (R2) hold. Then the nonsingular IVP (1.1) has at
least one solution in C1[a, T ].

Proof. Consider the family of IVPs

x′ + (1− λ)x = Φ(λ, t, x), x(a) = A, (3.8)

where Φ is the function from Lemma 3.2, define the maps

j : C1
I [a, T ] → C[a, T ] by jx = x,

Vλ : C1
I [a, T ] → C[a, T ] by Vλx = x′ + (1− λ)x, λ ∈ [0, 1],

Φλ : C[a, T ] → C[a, T ] by (Φλx)(t) = Φ(λ, t, x(t)), t ∈ [a, T ], λ ∈ [0, 1],

where C1
I [a, T ] = {x(t) ∈ C1[a, T ] : x(a) = A}, and introduce the set

U =
{
x ∈ C1

I [a, T ] : F1 − τ < x < L1 + τ, h− τ < x′ < H + τ
}
.

Next, define the compact homotopy

H : U × [0, 1] → C1
I [a, T ] by H(x, λ) ≡ Hλ(x) ≡ V −1

λ Φλj(x).

By Lemma 3.1, the C1[a, T ]-solutions to the family (3.3) do not belong to ∂U . This
means, according to (i) of Lemma 3.2, that the family (3.8) has no solutions in ∂U .
Consequently, the homotopy is admissible because its fixed points are solutions to
(3.8). Besides, from (ii) of Lemma 3.2 it follows (Φ0x)(t) = 0 for each x ∈ U . Then
for each x ∈ U we have

H0(x) = V −1
0 Φ0j(x) = V −1

0 (0) = Aea−t

where Aea−t is the unique solution to the problem

x′ + x = 0, x(a) = A.

According to Theorem 2.2 the constant map H0 = Aea−t is essential. Then, by
Theorem 2.5, H1 has a fixed point in U . This means that problem (3.8) with λ = 1
has at least one solution x(t) ∈ C1[a, T ]. Finally, use Lemma 3.2 to see that x(t) is
also a solution to problem (3.3) with λ = 1 which coincides with problem (1.1). �

The following result is known, but we state it for completeness. We will need it
in Section 4.

Lemma 3.4. Suppose that there are constants mi,Mi, i = 0, 1, such that:
(i) f(t, x, p) is continuously differentiable for (t, x, p) ∈ [a, T ] × [m0,M0] ×

[m1,M1].
(ii) 1− fp(t, x, p) 6= 0 for (t, x, p) ∈ [a, T ]× [m0,M0]× [m1,M1].
(iii) x(t) ∈ C1[a, T ] is a solution to the IVP (1.1) satisfying the bounds

m0 ≤ x(t) ≤ M0, m1 ≤ x′(t) ≤ M1 for t ∈ [a, T ].

Then x′′(t) exists and is continuous on [a, T ] and

x′′(t) =
ft(t, x(t), x′(t)) + x′(t)fx(t, x(t), x′(t))

1− fp(t, x(t), x′(t))

for t ∈ [a, T ].
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Proof. In view of (i) and (iii) for t, t + h ∈ [a, T ] we can work out the identity

f(t, x, x′)− f(t, x, x′) + f(th, x, x′)− f(th, x, x′) + f(th, xh, x′)

− f(th, xh, x′) + f(th, xh, x′h)− f(th, xh, x′h) + x′ − x′ + x′h − x′h = 0,

where th = t + h, xh = x(t + h) and x′h = x′(t + h). Using that x(t) is a solution
to (1.1) we obtain

f(th, x, x′)− f(t, x, x′) + f(th, xh, x′)− f(th, x, x′)

+ f(th, xh, x′h)− f(th, xh, x′) + x′ − x′h = 0

and apply the mean value theorem to get(
1− fp(th, xh, x′ + θp(x′h − x′))

)
(x′h − x′)

= ft(t + θth, x, x′)h + fx(th, x + θx(xh − x), x′)(xh − x),

for some θt, θx, θp ∈ (0, 1). Dividing by
(
1−fp(th, xh, x′+θp(x′h−x′))

)
h, (ii) allows

us to obtain

lim
h→0

x′(t + h)− x′(t)
h

= lim
h→0

(
ft(t + θth, x(t), x′(t))

+ fx

(
t + h, x(t) + θx(x(t + h)− x(t)), x′(t)

)x(t + h)− x(t)
h

)
÷

(
1− fp(t + h, x(t + h), x′ + θp(x′(t + h)− x′(t)))

)
,

from where the lemma follows. �

4. Singular problem

Consider problem (1.1) for

f(t, x, p) is discontinuous for (t, x, p) ∈ S and is defined at
least for (t, x, p) ∈ (Dt×Dx×Dp) \S, where Dt, Dx, Dp ⊆
R, S = {0} × X× P, X ⊆ Dx and P ⊆ Dp.

(4.1)

which allows f to be unbounded at t = 0.
In this section we assume the following:
(S1) There exist constants T, Q > 0, Li, Fi, i = 1, 2, and a sufficiently small

τ > 0 such that (0, T ] ⊆ Dt, L2 − τ ≥ L1 ≥ max{0, A}, F2 + τ ≤ F1 ≤
min{0, A}, [F2, L2] ⊆ Dx, [h − τ,H + τ ] ⊆ Dp for h = −Q − L1 and
H = Q− F1,

f(t, x, p) ≤ 0 for (t, x, p) ∈ (0, T ]× [L1, L2]×D+
p ,

f(t, x, p) ≥ 0 for (t, x, p) ∈ (0, T ]× [F2, F1]×D−
p ,

pf(t, x, p) ≤ 0 for (t, x, p) ∈ (0, T ]× [F1 − τ, L1 + τ ]× (D−
Q ∪D+

Q),

where the sets D−
p , D+

p , D−
Q, D+

Q are as in (R1).
(S2) f(t, x, p) and fp(t, x, p) are continuous for (t, x, p) in (0, T ]× [F1 − τ, L1 +

τ ]× [h− τ,H + τ ], and for some ε > 0,

fp(t, x, p) ≤ 1− ε for (t, x, p) ∈ (0, T ]× [F1 − τ, L1 + τ ]× [h− τ,H + τ ], (4.2)

where the constants T, F1, L1, h,H, τ are as in (S1).
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(S3) ft(t, x, p) and fx(t, x, p) are continuous for (t, x, p) ∈ (0, T ]×[F1, L1]×[h, H],
where T, F1, L1, h,H, τ are as in (S1).

Note, in [12] the condition (4.2) has the form

fp(t, x, p) ≤ −Kp < 0 for (t, x, p) ∈ (0, T ]× [F1 − τ, L1 + τ ]× [h− τ,H + τ ]

where Kp is a positive constant. Besides, in contrast to [12], here we do not need
the assumption∣∣∣ft(t, x, p) + pfx(t, x, p)

1− fp(t, x, p)

∣∣∣ ≤ M, (t, x, p) ∈ (0, T ]× [F1, L1]× [h, H],

for some constant M .
Now we are ready to prove the main result of this paper. It guarantees solutions

to the problem (1.1) in the case (4.1).

Theorem 4.1. Let (S1), (S2), (S3) hold. Then the singular initial-value problem
(1.1) has at least one solution in C[0, T ] ∩ C1(0, T ].

Proof. For n ∈ NT = {n ∈ N : n−1 < T} consider the family of IVP’s

x′ = f(t, x, x′), x(n−1) = A. (4.3)

It satisfies (R1) and (R2) with a = n−1 for each n ∈ NT . By Theorem 3.3, (4.3)
has a solution xn(t) ∈ C1[n−1, T ] for each n ∈ NT ; i.e., the sequence {xn}, n ∈ NT ,
of C1[n−1, T ]-solutions to (4.3) exists.

Now, we take a sequence {θn}, n ∈ N, such that θn ∈ (0, T ), θn+1 < θn for n ∈ N
and limn→∞ θn = 0.

It is clear, {xn} ⊂ C1[θ1, T ] for n ∈ N1 = {n ∈ NT : n−1 < θ1}. In addition, by
Lemma 3.1, we have the bounds

F1 ≤ xn(t) ≤ L1, h ≤ x′n(t) ≤ H for t ∈ [θ1, T ],

independent of n. On the other hand, f(t, x, p) is continuously differentiable for
(t, x, p) ∈ [θ1, T ]× [F1, L1]× [h, H] and

1− fp(t, x, p) ≥ ε > 0 for (t, x, p) ∈ [θ1, T ]× [F1, L1]× [h, H].

The hypotheses of Lemma 3.4 are satisfied. Consequently, x′′n(t) exists for each
n ∈ N1 and is continuous on [θ1, T ] and

x′′n(t) =
ft(t, xn(t), x′n(t)) + x′n(t)fx(t, xn(t), x′n(t))

1− fp(t, xn(t), x′n(t))
for t ∈ [θ1, T ], n ∈ N1.

The a priori bounds for xn(t) and x′n(t) on [θ1, T ] alow us to conclude that there is
a constant C1, independent of n, such that

|x′′n(t)| ≤ C1, ∈ [θ1, T ], n ∈ N1.

Applying the Arzela-Ascoli theorem we extract a subsequence {xn1}, n1 ∈ N1, such
that the sequences {x(i)

n1}, i = 0, 1, are uniformly convergent on [θ1, T ] and if

lim
n1→∞

xn1(t) = xθ1(t), then xθ1(t) ∈ C1[θ1, T ] and lim
n1→∞

x′n1
(t) = x′θ1

(t).

It is clear that xθ1(t) is a solution to the differential equation x′ = f(t, x, x′) on
t ∈ [θ1, T ]. Besides, integrating from n−1

1 to t, t ∈ (n−1
1 , T ], the inequalities h ≤

x′n1
(t) ≤ H we get

ht− hn−1
1 + A ≤ xn1(t) ≤ Ht−Hn−1

1 + A for t ∈ [n−1
1 , T ], n1 ∈ N1,
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which yields
ht + A ≤ xθ1(t) ≤ Ht + A for t ∈ [θ1, T ].

Now we consider the sequence {xn1} for n1 ∈ N2 = {n ∈ NT : n−1 < θ2}. In
a similar way we extract a subsequence {xn2}, n2 ∈ N2, converges uniformly on
[θ2, T ] to a function xθ2(t) which is a C1[θ2, T ]-solution to the differential equation
x′ = f(t, x, x′) on [θ2, T ],

ht + A ≤ xθ2(t) ≤ Ht + A for t ∈ [θ2, T ]

and xθ2(t) = xθ1(t) for t ∈ [θ1, T ].
Continuing this process, for θi → 0, we establish a function x(t) ∈ C1(0, T ] which

is a solution to the differential equation x′ = f(t, x, x′) on (0, T ],

ht + A ≤ x(t) ≤ Ht + A for t ∈ (0, T ] (4.4)

and x(t) ≡ xθi(t) for t ∈ [θi, T ], i ∈ N. Also (4.4) gives x(0) = A and x(t) ∈ C[0, T ].
Consequently, x(t) is a C[0, T ] ∩ C1(0, T ]-solution to the singular IVP (1.1). �

Example. Consider the initial-value problem

(0.5− x− 3
√

x′)e1/t − 2x′ = 0, x(0) = 1.

Write this equation as

x′ = (0.5− x− 3
√

x′)e1/t − x′

and fix T > 0. Then

f(t, x, p) = (0.5− x− 3
√

p)e1/t − p < 0 for (0, T ]× [2, 4]× (0,∞),

f(t, x, p) = (0.5− x− 3
√

p)e1/t − p > 0 for (0, T ]× [−3,−1]× (−∞, 0).

In addition, we have

f(t, x, p) = (0.5− x− 3
√

p)e1/t − p > 0 for (0, T ]× [−1.5, 2.5]× (−∞,−10),

f(t, x, p) = (0.5− x− 3
√

p)e1/t − p < 0 for (0, T ]× [−1.5, 2.5]× (10,∞).

Consequently, (S1) holds for Q = 10, F2 = −3, F1 = −1, L1 = 2, L2 = 4 and
τ = 0.5. Moreover, h = −Q − L1 = −12 and H = Q − F1 = 11. Condition (S2)
also holds because

f(t, x, p) and fp(t, x, p) = − e1/t

3 3
√

p2
− 1

are continuous for (t, x, p) ∈ (0, T ]× [−1.5, 2.5]× [−12.5, 11.5] and

fp(t, x, p) ≤ −1 for (t, x, p) ∈ (0, T ]× [−1.5, 2.5]× [−12.5, 11.5].

Finally, ft(t, x, p) = −t−2(0.5− x− 3
√

p)e1/t and fx(t, x, p) = −e1/t are continuous
for (t, x, p) ∈ (0, T ]× [−1, 2]× [−12, 11] which means (S3) holds.

According to Theorem 4.1, the problem under consideration has at least one
solution in C[0, T ] ∩ C1(0, T ].
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