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BIFURCATION AND MULTIPLICITY RESULTS FOR A
NONHOMOGENEOUS SEMILINEAR ELLIPTIC PROBLEM

KUAN-JU CHEN

Abstract. In this article we consider the problem

−∆u(x) + u(x) = λ(a(x)up + h(x)) in RN ,

u ∈ H1(RN ), u > 0 in RN ,

where λ is a positive parameter. We assume there exist µ > 2 and C > 0

such that a(x) − 1 ≥ −Ce−µ|x| for all x ∈ RN . We prove that there exists a

positive λ∗ such that there are at least two positive solutions for λ ∈ (0, λ∗)
and a unique positive solution for λ = λ∗. Also we show that (λ∗, u(λ∗)) is a

bifurcation point in C2,α(RN ) ∩H2(RN ).

1. Introduction

We consider the existence and properties of multiple positive solutions for the
nonhomogeneous semilinear elliptic problem

−∆u(x) + u(x) = λ(a(x)up + h(x)) in RN ,

u ∈ H1(RN ), u > 0 in RN ,
(1.1)

where λ > 0, 1 < p < N+2
N−2 (N ≥ 3), 1 < p < ∞ (N = 1, 2), h(x) ∈ H−1(RN ),

0 6≡ h(x) ≥ 0 in RN , h(x) → 0 as |x| → ∞, and a(x) satisfies the following
conditions:

(A1) a(x) ∈ C(RN ); a(x) ∈ (0, 1] for all x ∈ RN ; a(x) → 1 as |x| → ∞; a(x) 6≡ 1;
(A2) there exist µ > 2 and C > 0 such that

a(x)− 1 ≥ −Ce−µ|x| for all x ∈ RN .

Here the constant µ corresponds to a convergent rate (from below), and the condi-
tion µ > 2 play an important role in our existence result.

The main result is as follows.

Theorem 1.1. Assume (A1)–(A2) hold.
(1) There exists λ∗, 0 < λ∗ < ∞, such that (1.1) has at least two distinct

positive solutions u(λ), U(λ) for any λ ∈ (0, λ∗), u(λ), U(λ) ∈ C2,α(RN )∩
H1(RN ) for any λ ∈ (0, λ∗), and a unique positive solution u(λ∗) for λ =
λ∗; moreover, u(λ) is the minimal positive solution of (1.1), u(λ) is strictly
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increasing in λ for λ ∈ (0, λ∗), and λ → u(λ) ∈ C2,α(RN ) ∩ H2(RN ) is
continuous.

(2) Denote by Q = {(λ, u) : usolves (1.1)}, the set of positive solutions of (1.1),
for any (λ, u) ∈ Q, u(x) and |∇u(x)| have uniform limit zero as |x| → ∞.

(3) (λ∗, u(λ∗)) ∈ C2,α(RN ) ∩H2(RN ) is a bifurcation point for problem (1.1).
Consequently Q is unbounded in (0, λ∗)×C2,α(RN )∩H1(RN ) but is bounded
in [ε, λ∗]× C1,α(RN ) ∩H1(RN ) for any ε > 0.

We write u±(x) = max{±u(x), 0}, ‖u‖2 =
∫

RN (|∇u|2 + u2)dx, and we define for
given a(x) and h(x),

I(u) =
1
2
‖u‖2 − λ

p+ 1

∫
RN

a(x)up+1
+ dx− λ

∫
RN

h(x)u dx.

Many authors have studied the existence of positive solutions of the semilinear
elliptic boundary value problem

−∆u+ u = g(x, u), x ∈ Ω ⊂ RN ,

u|∂Ω = 0,
(1.2)

a problem that occurs in varies branches of geometry and mathematical physics.
There are many results about the existence of the positive solutions of (1.2) when
g(x, u) is a “homogeneous” function (i.e. g(x, 0) ≡ 0), see [5], [6], [11], [17]. For
the “nonhomogeneous” function (i.e. g(x, 0) 6≡ 0), some existence of two solutions
have been obtained in [12] when g(x, u) is less than critical growth in the sense
that limu→∞

g(x,u)
uq = 0 with q = N+2

N−2 and Ω is bounded. A substantial difference
between the problems on bounded domain and on unbounded domain is the lack of
compactness for Sobolev embedding when we deal with the latter. Thus there seems
to be little progress on the existence theory for the “nonhomogeneous” function of
(1.2) when Ω is unbounded. Zhu [19], Zhu-Zhou [20], Cao-Zhou [8], Chen [9],
and Jeanjean [15] showed the existence of multiple positive solutions in unbounded
domains under the assumption:

a(x) ≥ 1 for all x ∈ RN (1.3)

or

g(x, u) ≥ g∞(u)
(

= lim
|x|→∞

g(x, u)
)

for all x ∈ RN and u ≥ 0. (1.4)

Now we will show the existence of solutions without assuming (1.3), (1.4).
In Section 2, we assert that there exists λ∗, ∞ > λ∗ > 0, such that (1.1) has a

minimal positive solution for all λ ∈ (0, λ∗) by the implicit function theorem and
the barrier method. In Section 3, by the variational method and the concentration-
compactness principle, we establish the existence of second positive solution, the
following energy estimate (1.5) plays an important role. We find R0 ≥ 1 such that

sup
t≥0

J(tω(x−Re)) < I∞(ω) for all R ≥ R0, (1.5)

where J is the energy functional of (3.1), e is a fixed unit vector in RN , ω(x) is a
ground state solution of the limit problem (3.2) and I∞ is the energy functional
of (3.2). To obtain the energy estimate, assumption (A2) plays an important role.
In Section 4, we discuss problem (1.1) has at least two distinct positive solutions
for any λ ∈ (0, λ∗), a unique positive solution for λ = λ∗, u(λ∗) is a bifurcation
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point in C2,α(RN ) ∩H2(RN ), and further analyzes of the set of positive solutions
are made.

2. Existence of minimal positive solution

In this section, the implicit function theorem and the barrier method enable us
to deduce the existence of a minimal positive solution u(λ) of (1.1) for all λ in some
finite interval (0, λ∗).

Lemma 2.1. For each h ∈ Cα(RN ) ∩ L2(RN ), the linear problem

−∆u+ u = h, u ∈ H1(RN ) (2.1)

has a solution u ∈ C2,α(RN ) ∩H2(RN ).

Proof. Consider the functional Φ(u) = 1
2‖u‖

2 −
∫

RN hudx, u ∈ H1(RN ). From the
Hölder’s and Young’s inequality we have, for any ε > 0 that

Φ(u) ≥ 1
2
‖u‖2 − ‖h‖L2‖u‖L2

≥ (
1
2
− ε)‖u‖2 − Cε‖h‖2L2

≥ −Cε‖h‖2L2

(2.2)

if we choose ε small.
Let {un} ⊂ H1(RN ) be a minimizing sequence of the variational problem d =

inf{Φ(u) : u ∈ H1(RN )}. From (2.2),(1
2
− ε

)
‖un‖2 ≤ Φ(un) + Cε‖h‖2L2 = d+ Cε‖h‖2L2 + o(1) as n→∞,

we can also deduce that {un} is bounded in H1(RN ) if we choose ε small. Thus we
may assume that

un → u weakly in H1(RN ) as n→∞,

un → u a.e. in RN as n→∞.

By Fatou’s lemma,
‖u‖2 ≤ lim inf

n→∞
‖un‖2.

The weak convergence implies
∫

RN hundx→
∫

RN hudx as n→∞, therefore Φ(u) ≤
limn→∞ Φ(un) = d and hence Φ(u) = d.

By the assumption h ∈ Cα(RN ) ∩ L2(RN ), from [18, Proposition 4.3] that u ∈
H2(RN ); the standard elliptic regular theorem yield u ∈ C2,α(RN ). �

Theorem 2.2. Assume (A1)–(A2) hold. Then there exists λ∗ > 0 such that for any
λ ∈ (0, λ∗), (1.1) has a minimal positive solution u(λ) ; u(λ) is strictly increasing
in λ for λ ∈ (0, λ∗); λ→ u(λ) ∈ C2,α(RN ) ∩H2(RN ) is continuous.

Proof. Define F : R× C2,α(RN ) ∩H2(RN ) → Cα(RN ) ∩ L2(RN ) by

F (λ, u) = −∆u+ u− λ(a(x)up + h(x)),

by Lemma 2.1, Fu(0, 0)u = −∆u+u is an isomorphism of C2,α(RN )∩H2(RN ) onto
Cα(RN ) ∩ L2(RN ). Applying the implicit function theorem to F , we can find that
the solutions of F (λ, u) = 0 near (0, 0) are given by a continuous curve (λ, u(λ))
with u(0) = 0.
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Denote λ∗ = sup{λ > 0:there exists u(λ) such that u(λ) is a unique contin-
uous function of λ into C2,α(RN ) ∩ H2(RN ), F (λ, u(λ)) = 0 and Fu(λ, u(λ)) is
nonsingular}, then 0 < λ∗ ≤ +∞; by the maximum principle, u(λ) > 0 for all
λ ∈ (0, λ∗).

Let λ, λ′ ∈ (0, λ∗), λ < λ′, u(λ), u(λ′) are corresponding positive solutions, then
u(λ′) is a supersolution of (1.1). From h(x) ≥ 0 we deduce that 0 is obviously a
subsolution of (1.1); the standard barrier method and the maximun principle enable
us to find a solution v(λ) such that 0 < v(λ) < u(λ′). Moreover, we may select
v(λ) as a minimal positive solution of (1.1). In the same way one finds a minimal
positive solution v(λ) of (1.1) for each λ ∈ (0, λ∗), v(λ) is strictly increasing in λ
for λ ∈ (0, λ∗). The uniqueness of u(λ) yields u(λ) = v(λ) for λ ∈ (0, λ∗). �

We establish the decay estimate for positive solutions of (1.1) which we will use
later on.

Theorem 2.3. Assume (A1) holds. If u ∈ H1(RN ) is a positive solution of (1.1),
then

(1) u ∈ Lq(RN ) for q ∈ [2,∞);
(2) u(x) and |∇u(x)| have uniform limit zero as |x| → ∞.

Proof. (1) follows by the classical regularity theory based on a result of Brezis-Kato
[7]. We will write it in detail for the reader’s convenience. For s ≥ 0, l ≥ 1, let
ϕ = ϕs,l = umin{|u|2s, l2} ∈ H1(RN ). Testing (1.1) with ϕ, then∫

RN

|∇u|2 min{|u|2s, l2}dx+ 2s
∫
{|u|s≤l}

|∇u|2|u|2sdx

≤ C

∫
RN

|u|2dx+ C

∫
RN

|u|2+2sdx+ C

∫
RN

|u|p+1dx

+ C

∫
RN

|u|2s+p+1dx+ C

∫
RN

|h‖u|min{|u|2s, l2}dx.

(2.3)

Suppose u ∈ L2s+p+1(RN ), then by (2.3) and applying the H ölder’s inequality and
the Sobolev embedding, we have∫

RN

|∇(umin{|u|s, l})|2dx

≤
∫

RN

|∇u|2 min{|u|2s, l2}dx+ (s2 + 2s)
∫
{|u|s≤l}

|∇u|2|u|2sdx

≤ C + C

∫
RN

|h‖u|dx+ C

∫
RN

|h‖u|2 min{|u|2s, l2}dx

≤ C + CK

∫
RN

|u|2s+2dx+ C

∫
{|h|≥K}

|h‖umin{|u|s, l}|2dx

≤ C(1 +K) + C
( ∫

{|h|≥K}
|h|N

2 dx
)2/N( ∫

RN

|umin{|u|s, l}|
2N

N−2 dx
)N−2

N

≤ C(1 +K) + Cε(K)
∫

RN

|∇(umin{|u|s, l})|2dx,

where

ε(K) =
( ∫

{|h|≥K}
|h|N

2 dx
)2/N

→ 0 as K →∞.
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Fix K such that ε(K) = 1/2C and observe that for this choice of K (and s as
above) we now may conclude that∫

{|u|s≤l}
|∇(|u|s+1)|2dx ≤ C

∫
RN

|∇(umin{|u|s, l})|2dx ≤ C(1 +K)

for any l ≥ 1. Hence we may let l→∞ to derive that

|u|s+1 ∈ H1(RN ) ↪→ L2∗(RN ).

It is easy to see that u ∈ L
(s+1)2N

N−2 (RN ).
Now iterate, letting s0 = 0, 2si + p + 1 = (si−1 + 1) 2N

N−2 for i ≥ 1, then
u ∈ L2si−1+p+1(RN ) implies u ∈ L2si+p+1(RN ). It is easily to see si → ∞ as
i→∞. Therefore u ∈ Lq(RN ) for 2 ≤ q <∞.

(2) Obviously u satisfies the linear problem

−∆u+ u = F (x) = λ(a(x)up + h(x)), x ∈ RN , u ∈ H1(RN ).

Choose q > max{Np
2 ,

2N
N−2}, by the Hölder’s inequality in B2(x) we get

‖u‖L2(B2(x)) ≤ C‖u‖Lq(B2(x)),

then

‖F‖
L

q
p (B2(x))

≤ C
(
‖u‖Lq(B2(x)) + ‖h‖Lq(B2(x))

)
.

It is deduced by elliptic regular theory that u ∈ C2,α(RN ). By [14, Theorem
8.24], we have

‖u‖Cα(B1(x)) ≤ C
(
‖u‖Lq(B2(x)) + ‖h‖Lq(B2(x))

)
, (2.4)

then u(x) → 0 as |x| → ∞ since u ∈ Lq(RN ).
By [14, Theorem 8.32],

‖u‖C1,α(B1(x)) ≤ C
(
‖u‖Cα(B2(x)) + ‖h‖L∞(B2(x))

)
. (2.5)

Then (2.4), (2.5) give |∇u(x)| → 0 as |x| → ∞. �

We will verify that λ∗ is finite by considering linear eigenvalue problems related
to decaying positive solutions of (1.1).

Theorem 2.4. Assume (A1)-(A2) hold. Then

(1) the minimization problem

µλ = µλ(u(λ))

= inf
{ ∫

RN

(|∇v|2 + v2)dx : v ∈ H1(RN ),
∫

RN

pa(x)u(λ)p−1v2dx = 1
}
,

where u(λ) is the minimal positive solution of (1.1), can be achieved by
some vλ > 0;

(2) µλ > λ, µλ is strictly decreasing in λ for λ ∈ (0, λ∗);
(3) λ∗ is finite.
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Proof. It is easy to see that 0 < µλ < ∞. Let {vn} ⊂ H1(RN ) be a minimizing
sequence of µλ, then {vn} is bounded in H1(RN ). Without loss of generality (at
least by choosing a subsequence) we can assume that, for some vλ ∈ H1(RN ),

vn ⇀ vλ weakly in H1(RN ),

vn → vλ a.e. in RN ,

vn → vλ strongly in Ls
loc(RN ) for 2 ≤ s <

2N
N − 2

.

By Theorem 2.3 and (A1), we have pa(x)u(λ)p−1 → 0 as |x| → ∞, hence for
any ε > 0, there exists R > 0 such that for x ∈ RN , |x| ≥ R, |pa(x)u(λ)p−1| < ε.
Consequently, there exists a constant C > 0 such that |pa(x)u(λ)p−1| ≤ C for x ∈
RN . Then∫

RN

pa(x)u(λ)p−1|vn − vλ|2dx

=
∫

BR

pa(x)u(λ)p−1|vn − vλ|2dx+
∫

RN\BR

pa(x)u(λ)p−1|vn − vλ|2dx

≤ C

∫
BR

|vn − vλ|2dx+ ε

∫
RN\BR

|vn − vλ|2dx.

Since vn → vλ strongly in Ls
loc(RN ) for 2 ≤ s < 2N/N − 2, {vn} is a bounded

sequence in H1(RN ), taking n→∞, then ε→ 0, we obtain
∫

RN pa(x)u(λ)p−1v2
λ =

1. Therefore vλ achieves µλ. Clearly |vλ| also achieves µλ. Hence we may assume
vλ ≥ 0 in RN and vλ satisfies −∆v + v = µλpa(x)u(λ)p−1v. Once again, by the
maximum principle we deduce that vλ > 0 in RN .

To prove (2). Setting 0 < λ < λ′ and λ, λ′ ∈ (0, λ∗), by Theorem 2.2, u(λ′) >
u(λ) as λ′ > λ. Noting that λ′ > λ, h(x) ≥ 0, a(x)u(λ)p > 0, we get

−∆(u(λ′)− u(λ)) + (u(λ′)− u(λ))

= λ′a(x)u(λ′)p − λa(x)u(λ)p + (λ′ − λ)h(x)

= (λ′ − λ)a(x)u(λ)p + λ′(a(x)u(λ′)p − a(x)u(λ)p) + (λ′ − λ)h(x)

> λpa(x)u(λ)p−1(u(λ′)− u(λ)).

(2.6)

Multiplying (2.6) by vλ and integrating it over RN , we get

µλ

∫
RN

pa(x)u(λ)p−1(u(λ′)− u(λ))vλdx > λ

∫
RN

pa(x)u(λ)p−1(u(λ′)− u(λ))vλdx,

which implies that µλ > λ, λ ∈ (0, λ∗).
Furthermore, let λ, λ′ ∈ (0, λ∗), λ < λ′; by Theorem 2.2,∫

RN

pa(x)u(λ′)p−1v2
λdx >

∫
RN

pa(x)u(λ)p−1v2
λdx = 1,

so that there exists 0 < t < 1 such that
∫

RN pa(x)u(λ′)p−1t2v2
λdx = 1, therefore

µλ′ ≤ t2‖vλ‖2 < ‖vλ‖2 = µλ; that is µλ is strictly decreasing in λ for λ ∈ (0, λ∗).
Finally, we show that λ∗ is finite. Fix any λ0 ∈ (0, λ∗), then by (2), λ < µλ <

µλ0 <∞ for all λ ∈ (λ0, λ∗) and this implies λ∗ < +∞. �

Remark 2.5. Let

µλ(u) = inf
{ ∫

RN

(|∇v|2 + v2)dx : v ∈ H1(RN ),
∫

RN

pa(x)up−1v2dx = 1
}
,
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where u is any positive solution of (1.1), then from the proof of Theorem 2.4(1),
µλ(u) also can be achieved.

3. Existence of second positive solution

When λ ∈ (0, λ∗), we have shown that (1.1) has the minimal positive solution
u(λ) by Theorem 2.2. In this section, we want to prove that (1.1) has another
positive solution in the form of U(λ) = u(λ) + vλ, where vλ is a positive solution
of the following auxiliary problem:

−∆v + v = λa(x)((u(λ) + v)p − u(λ)p) in RN ,

v ∈ H1(RN ), v > 0 in RN .
(3.1)

For this equation, we define the energy functional J : H1(RN ) → R as follows:

J(v) =
1
2
‖v‖2 − λ

p+ 1

∫
RN

a(x)
[
(u(λ) + v+)p+1 − u(λ)p+1 − (p+ 1)u(λ)pv+

]
dx.

We know that critical points of J(v) correspond to positive solutions of 3.1. The
existence of nontrivial critical points will be deduced by the mountain pass lemma
of Ambrosetti and Rabinowitz [3].

In this section, firstly several technical results will be established. Let us recall
that a sequence {vn} ⊂ H1(RN ) is called a (PS)c-sequence if J(vn) → c and
J ′(vn) → 0 as n→∞. If any (PS)c-sequence possesses a convergent subsequence,
we say (PS)c-condition is satisfied.

Let us now introduce the problem at infinity associated with (1.1) is

−∆u+ u = λup in RN ,

u ∈ H1(RN ), u > 0 in RN .
(3.2)

We state here some known results for (3.2). First of all, we recall that Lions [17]
has studied the following minimization problem closely related to (3.2):

S∞ = inf
{
I∞(u) : u ∈ H1(RN ), u 6= 0, I∞′(u) = 0

}
> 0, (3.3)

where I∞(u) = 1
2‖u‖

2− λ
p+1

∫
RN up+1

+ dx. For future reference note also that a
minimum exists and is realized by a ground state ω > 0 in RN such that S∞ =
I∞(ω) = sups≥0 I

∞(sω). Gidas-Ni-Nirenberg [13] showed that there exist a1, a2 >

0 such that for all x ∈ RN ,

a1(|x|+ 1)
−(N−1)

2 e−|x| ≤ ω(x) ≤ a2(|x|+ 1)
−(N−1)

2 e−|x|. (3.4)

Secondly we study the break down of the Palais-Smale condition for J . The
ground state solution ω of (3.2) play an important role to describe an asymptotic
behavior of (PS)-sequence for J .

Proposition 3.1. Assume (A1), (A2) hold. Let {vn} ⊂ H1(RN ) be a (PS)-
sequence for J . Then there exist a subsequence (still denoted {vn}) for which the
following holds: there exist an integer m ≥ 0, sequence of points {yi

n} ⊂ RN for
1 ≤ i ≤ m, a solution vλ of (3.1) and solutions vi, for 1 ≤ i ≤ m, of (3.2) such
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that as n→∞,

vn ⇀ vλ weakly in H1(RN ),

vn − vλ −
m∑

i=1

vi(x− yi
n) → 0 strongly in H1(RN ),

J(vn) → J(vλ) +
m∑

i=1

I∞(vi),

|yi
n| → ∞, |yi

n − yj
n| → ∞, for 1 ≤ i 6= j ≤ m,

where we agree that in the case m = 0 the above holds without vi, yi
n.

Proof. This is a standard result that we give here without proof (see [4], [5], [17]
for analogous statements). �

Thirdly, we show that J(u) possesses the mountain pass structure.

Lemma 3.2. Assume (A1), (A2) hold. Then there exist small β > 0 and α > 0
such that J(v) ≥ α > 0 for all v ∈ Sβ = {u ∈ H1(RN ) : ‖u‖ = β}.

Proof. For each v ∈ H1(RN ), using Taylor’s formula, the definition of µλ, a(x) ∈
(0, 1], and the Sobolev embedding, we obtain

J(v) =
1
2
‖v‖2 − 1

2
λp

∫
RN

a(x)u(λ)p−1v2
+dx

− λ

∫
RN

∫ v+

0

a(x)
[
(u(λ) + s)p − u(λ)p − pu(λ)p−1s

]
dsdx

≥ 1
2

[
‖v‖2 − λp

∫
RN

a(x)u(λ)p−1v2
+dx

]
− λ

∫
RN

a(x)
[ ε
2
v2
+ +

Cε

p+ 1
vp+1
+

]
dx

≥
(1
2
− λ

2µλ
− 1

2
λε

)
‖v‖2 − λC‖v‖p+1

for all ε > 0. Since µλ > λ by Theorem 2.4, we may choose ε small enough such
that 1

2 −
λ

2µλ
− 1

2λε > 0. If we fix ε = (µλ − λ)/(2λµλ), then

J(v) ≥ 1
4µλ

(µλ − λ)‖v‖2 − λC‖v‖p+1.

Hence, there exist small β > 0, α > 0 such that J(v) ≥ α > 0 for all v ∈ Sβ = {u ∈
H1(RN ) : ‖u‖ = β}. �

Let e be a fixed unit vector in RN . The following estimates are important to
find a path which lies below the first level of the break down of (PS)c-condition.
Here we use an interaction phenomenon between 0 and ω(x−R0e).

Proposition 3.3. Assume (A1)-(A2) hold. Then
(1) there exists t0 > 0 such that J(tω(x− Re)) < 0 for all t ≥ t0 uniformly in

R ≥ 1;
(2) there exists R0 > 1 such that supt≥0 J(tω(x−Re)) < S∞ for all R ≥ R0.

To proof the above proposition, we need the following result.

Lemma 3.4. There exist some constants C1, C2 and C3 > 0 independent of R ≥ 1
such that
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(I)
∫
|x|≤1

ω(x−Re)2dx ≥ C1R
−(N−1)e−2R for R ≥ 1,

(II)
∫

RN e−µ|x|ω(x−Re)2dx ≤ C2R
−(N−1)e−2R for R ≥ 1,

(III)
∫

RN e−µ|x|ω(x−Re)p+1dx ≤ C3e
−µR for R ≥ 1.

In what follows, we denote various positive constants independent of R ≥ 1 by
C1, C2 and C3.

Proof. (I) From (3.4), for R ≥ 1, we have∫
|x|≤1

ω(x−Re)2dx ≥
∫
|x|≤1

a2
1(|x−Re|+ 1)−(N−1)e−2|x−Re|dx

≥ a2
1(R+ 2)−(N−1)e−2R−2

∫
|x|≤1

dx

≥ C1R
−(N−1)e−2R.

(II) From (3.4) again,∫
RN

e−µ|x|ω(x−Re)2dx ≤ a2
2

∫
RN

e−µ|x|(|x−Re|+ 1)−(N−1)e−2|x−Re|dx

= a2
2

∫
RN

e−(µ−2)|x|(|x−Re|+ 1)−(N−1)e−2(|x−Re|+|x|)dx

≤ a2
2R

−(N−1)e−2R

∫
RN

e−(µ−2)|x|(
R

|x−Re|+ 1
)N−1dx.

We estimate the last integral. First, we observe that

e−(µ−2)|x|(
R

|x−Re|+ 1
)N−1 → e−(µ−2)|x| as R→∞ for all x ∈ RN .

For |x| ≤ R
2 ,

e−(µ−2)|x|(
R

|x−Re|+ 1
)N−1 ≤ e−(µ−2)|x|(

R
R
2 + 1

)N−1 ≤ 2N−1e−(µ−2)|x|.

For |x| ≥ R
2 ,

e−(µ−2)|x|(
R

|x−Re|+ 1
)N−1 ≤ e−(µ−2)|x|RN−1 ≤ 2N−1e−(µ−2)|x||x|N−1.

Thus,

e−(µ−2)|x|(
R

|x−Re|+ 1
)N−1 ≤ 2N−1e−(µ−2)|x| max{1, |x|N−1} ∈ L1(RN ).

Therefore, we can apply the Lebesgue dominated convergence theorem and we
obtain∫

RN

e−µ|x|ω(x−Re)2dx ≤ a2
2R

−(N−1)e−2R
( ∫

RN

e−(µ−2)|x|dx+ o(1)
)

as R→∞. Thus we have∫
RN

e−µ|x|ω(x−Re)2dx ≤ C2R
−(N−1)e−2R for R ≥ 1.
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(III) Since |x+Re| ≥ R− |x|, we have∫
RN

e−µ|x|ω(x−Re)p+1dx

≤ ap+1
2

∫
RN

e−µ|x|(|x−Re|+ 1)−(p+1)(N−1)/2e−(p+1)|x−Re|dx

≤ ap+1
2

∫
RN

e−µ|x|e−(p+1)|x−Re|dx

= ap+1
2

∫
RN

e−µ|x+Re|e−(p+1)|x|dx

≤ ap+1
2 e−µR

∫
RN

e−((p+1)−µ)|x|dx.

Because of the assumption µ ∈ (2, p+ 1), we have∫
RN

e−µ|x|ω(x−Re)p+1dx ≤ C3e
−µR for R ≥ 1.

The proof is complete. �

Proof of Proposition 3.3. Let ωα(x) = ω(x − αe), α ∈ [0,+∞), where ω is the
ground state solution of the limit problem (3.2). We also remark that for all s > 0,
t > 0,

(s+ t)p+1 − sp+1 − tp+1 − (p+ 1)spt ≥ 0; (3.5)
and for any s0 > 0 and r0 > 0 there exists C4(s0, r0) > 0 such that for all s ∈ [s0, r0],
t ∈ [0, r0],

(s+ t)p+1 − sp+1 − tp+1 − (p+ 1)spt ≥ C4(s0, r0)t2. (3.6)
(1) From (3.5), (A2), and Lemma 3.4 (III), we have

J(tωR) ≤ 1
2
t2‖ωR‖2 −

λ

p+ 1

∫
RN

a(x)(tωR)p+1dx

≤ 1
2
t2‖ωR‖2 −

λ

p+ 1
tp+1

∫
RN

(1− Ce−µ|x|)ωp+1
R dx

≤ 1
2
t2‖ωR‖2 −

λ

p+ 1
tp+1

(
‖ωR‖p+1

Lp+1 − CC3e
−µR

)
.

Choosing t0 > 0 large enough, we have (1).
(2) Since J is continuous in H1(RN ), there exists t > 0 such that for t < t,

J(tωR) < S∞ for all R ≥ 0, and from (1), J(tωR) → −∞ as t→∞ uniformly in
R ≥ 1, then there exists t > 0 such that supt≥0 J(tωR) = sup0≤t≤t J(tωR). Then
we only need to verify the inequality supt≤t≤t J(tωR) < S∞ for all R large enough.
Straightforward computations give us

J(tωR)

= I∞(twR)

− λ

p+ 1

∫
RN

a(x)
[
(u(λ) + tωR)p+1 − u(λ)p+1 − (tωR)p+1 − (p+ 1)u(λ)ptωR

]
dx

+
λ

p+ 1

∫
RN

((tωR)p+1 − a(x)(tωR)p+1)dx

≤ S∞ − λ

p+ 1
Λ1 +

λ

p+ 1
Λ2,
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where

Λ1 =
∫

RN

a(x)
[
(u(λ) + tωR)p+1 − u(λ)p+1 − (tωR)p+1 − (p+ 1)u(λ)ptωR

]
dx

and

Λ2 =
∫

RN

((tωR)p+1 − a(x)(tωR)p+1)dx.

We need to show that there exists a constant R0 ≥ 1 such that

−Λ1 + Λ2 < 0 for all t ∈ [t, t]. (3.7)

Now we estimate Λ1 and Λ2.

Λ1 ≥
∫
|x|≤1

a(x)
[
(u(λ) + tωR)p+1 − u(λ)p+1 − (tωR)p+1 − (p+ 1)u(λ)ptωR

]
dx.

Setting s0 = min|x|≤1 u(λ)(x), r0 = max{maxx∈RN u(λ)(x), tmaxx∈RN ω(x)} > 0,
a = inf |x|≤1 a(x), by (3.6), we obtain

Λ1 ≥ a

∫
|x|≤1

C4(s0, r0)(tωR)2dx ≥ aC4(s0, r0)t2
∫
|x|≤1

ω2
Rdx for all t ∈ [t, t].

From Lemma 3.4 (I), we have for A = aC1C4(s0, r0)t2,

Λ1 ≥ AR−(N−1)e−2R. (3.8)

Next from (A2), we have for any R ≥ 1,

Λ2 =
∫

RN

((tωR)p+1 − a(x)(tωR)p+1)dx

≤
∫

RN

Ce−µ|x|(tωR)p+1dx

≤ t
p+1

∫
RN

Ce−µ|x|ωp+1
R dx.

From (II) and (III) of Lemma 3.4, we have for B = t
p+1

CC3,

Λ2 ≤ Be−µR. (3.9)

and we choose R0 ≥ 1 so that

Be−µR0 < AR
−(N−1)
0 e−2R0 . (3.10)

Thus from (3.8)-(3.10), we obtain (3.7). �

Theorem 3.5. Assume (A1)-(A2) hold. Then for λ ∈ (0, λ∗), there is a second
positive solution U(λ) of (1.1).

Proof. We only need to prove that problem (3.1) has a positive solution. Set γ =
infg∈Γ maxt∈[0,1] J(g(t)), where Γ = {g ∈ C([0, 1],H1(RN )) : g(0) = 0, g(1) =
t0ωR0}. By Lemma 3.2 and Proposition 3.3, we deduce that 0 < α ≤ γ < S∞. The
Mountain Pass Lemma insures the existence of a (PS)-sequence {vn} for J at level
γ. By Proposition 3.1, we deduce that

γ = lim
n→∞

J(vn) = J(vλ) +
m∑

i=1

I∞(vi),

for some vλ, vi satisfying J ′(vλ) = 0 and I∞′(vi) = 0 for 1 ≤ i ≤ m.
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By the strong maximum principle, we need to prove only that vλ 6≡ 0. We have
γ = J(vλ) ≥ α > 0 if m = 0, and S∞ > γ ≥ J(vλ) + S∞ if m ≥ 1. This implies
vλ 6≡ 0. �

4. The case λ = λ∗: properties and bifurcation of positive solutions

First, we show that the existence of positive solutions of (1.1) for λ = λ∗.

Proposition 4.1. The set of minimal positive solutions {u(λ) : λ ∈ (0, λ∗)} of
(1.1) is uniformly bounded in λ in L∞(RN ) ∩H1(RN ).

Proof. From Theorem 2.4,∫
RN

(|∇u(λ)|2 + u(λ)2)dx ≥ µλ(u(λ))
∫

RN

pa(x)u(λ)p+1dx.

Also we have∫
RN

(|∇u(λ)|2 + u(λ)2)dx = λ

∫
RN

(
a(x)u(λ)p+1 + h(x)u(λ)

)
dx.

By the Hölder’s and Young’s inequalities we deduce(
1− λ

pµλ(u(λ))
− ε

2
λ
)
‖u(λ)‖2 ≤ λ

2ε
‖h‖H−1

for all ε > 0. Taking ε small enough so that(
1− λ

pµλ(u(λ))
− ε

2
λ
)
> 0

and hence we have ‖u(λ)‖ ≤ C which shows that u(λ) is uniformly bounded in
H1(RN ).

By Theorem 2.2 the solution u(λ) is strictly increasing with respect to λ, we
may suppose that u(λ) → u(λ∗) weakly in H1(RN ) as λ→ λ∗, and hence u(λ∗) is
a solution of (1.1) with λ = λ∗.

¿From Theorem 2.3 we can deduce that ‖u(λ∗)‖L∞ ≤ C. Then by Theorem
2.2, the solution u(λ) is strictly increasing with respect to λ and Theorem 4.6, the
uniqueness of u(λ∗) (the proof will be given later), we conclude that ‖u(λ)‖L∞ ≤
‖u(λ∗)‖L∞ ≤ C. �

Secondly, we show that problem (1.1) has exactly two distinct positive solutions
u(λ), U(λ) for λ ∈ (0, λ∗).

Denote by Q = {(λ, u) : u solves (1.1)λ}, the set of positive solutions of (1.1).
For each (λ, u) ∈ Q, let’s recall that µλ(u) denote the number defined by

µλ(u) = inf
{ ∫

RN

(|∇v|2 + v2)dx : v ∈ H1(RN ),
∫

RN

pa(x)up−1v2dx = 1
}
,

which is the smallest eigenvalue of the following problem:

−∆v + v = µλ(u)pa(x)up−1v in RN ,

v ∈ H1(RN ), v > 0 in RN .
(4.1)

Proposition 4.2. Let (λ, u) ∈ Q, 0 < λ < λ∗. Then
(i) µλ(u) > λ if and only if u = u(λ);
(ii) µλ(U(λ)) < λ, where U(λ) is the second positive solution of 1.1.
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Proof. (i) Let ψ ≥ 0, ψ ∈ H1(RN ). Then from the convexity of up, we obtain∫
RN

∇(u− u(λ)) · ∇ψdx+
∫

RN

(u− u(λ))ψdx

= λ

∫
RN

a(x)(up − u(λ)p)ψdx

= λ

∫
RN

a(x)
∫ u

u(λ)

ptp−1ψdt dx

≤ λ

∫
RN

pa(x)up−1(u− u(λ))ψdx.

(4.2)

Set ψ = (u− u(λ))+. If ψ 6≡ 0, then by (4.2) and the definition of µλ(u),∫
RN

(|∇ψ|2 + |ψ|2)dx ≤ λ

∫
RN

pa(x)up−1ψ2dx

< µλ(u)
∫

RN

pa(x)up−1ψ2dx

≤
∫

RN

(|∇ψ|2 + |ψ|2)dx,

which is impossible. Hence ψ ≡ 0, i.e. u = u(λ) in RN . On the other hand, by
Theorem 2.4, µλ(u(λ)) > λ. This completes the proof of (i).

(ii) By (i), we get that µλ(U(λ)) ≤ λ for λ ∈ (0, λ∗). We claim that µλ(U(λ)) = λ
can not occur. We proceed by contradiction. Set w = U(λ)− u(λ); we have

−∆w + w = λa(x)(U(λ)p − (U(λ)− w)p), w > 0 in RN . (4.3)

By µλ(U(λ)) = λ, we have that the problem

−∆φ+ φ = λpa(x)U(λ)p−1φ, φ ∈ H1(RN ) (4.4)

possesses a positive solution φ1.
Multiplying (4.3) by φ1 and (4.4) by w, integrating and subtracting we deduce

that

0 =
∫

RN

λa(x)[U(λ)p − (U(λ)− w)p − pU(λ)p−1w]φ1dx

= −1
2

∫
RN

λa(x)p(p− 1)ξp−2
λ w2φ1dx,

where ξλ ∈ (u(λ), U(λ)). Thus w ≡ 0, that is U(λ) = u(λ) for λ ∈ (0, λ∗). This is
a contradiction. Hence, we have that µλ(U(λ)) < λ for λ ∈ (0, λ∗). �

Remark 4.3. Since µλ(U(λ)) < λ, one may employ a similar argument to the one
used for u(λ) to show that U(λ) is strictly decreasing in λ, λ ∈ (0, λ∗).

Remark 4.4. To the authors’ knowledge, it is still unknown about the existence
of solutions for the case of λ > λ∗.

When λ = λ∗, we have the existence of positive solution u(λ∗) of (1.1)λ∗ in
Proposition 4.1. Now we show that u(λ∗) is the unique positive solution of (1.1)λ∗ .

Lemma 4.5. For any g(x) ∈ H−1(RN ), the problem

−∆w + w = λpa(x)u(λ)p−1w + g(x), w ∈ H1(RN ) (4.5)

has a solution w, where u(λ) is the minimal solution of (1.1) for λ ∈ (0, λ∗).
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Proof. Consider the functional

Φ(w) =
1
2

∫
RN

(
|∇w|2 + w2

)
dx− 1

2

∫
RN

λpa(x)u(λ)p−1w2dx−
∫

RN

g(x)wdx.

From the definition of µλ, µλ > λ, the Hölder’s and Young’s inequality we have

Φ(w) =
1
2
‖w‖2 − 1

2

∫
RN

λpa(x)u(λ)p−1w2dx−
∫

RN

g(x)wdx

≥ 1
2
‖w‖2 − λ

2µλ
‖w‖2 −

∫
RN

g(x)wdx

≥
(1
2
− λ

2µλ

)
‖w‖2 − ε

2
‖w‖2 − Cε

2
‖g‖2H−1

=
(1
2
− λ

2µλ
− ε

2
)
‖w‖2 − Cε

2
‖g‖2H−1

≥ −C‖g‖2H−1

(4.6)

if we choose ε small.
Let {wn} ⊂ H1(RN ) be the minimizing sequence of the variational problem

d = inf{Φ(w) : w ∈ H1(RN )}. From (4.6),(1
2
− λ

2µλ
− ε

2
)
‖wn‖2 ≤ Φ(wn) +

Cε

2
‖g‖2H−1 = d+

Cε

2
‖g‖2H−1 + o(1)

as n→∞. Since µλ > λ, we deduce that {wn} is bounded in H1(RN ) if we choose
ε small. So we may suppose that

wn ⇀ w weakly in H1(RN ),

wn → w almost everywhere in RN ,

wn → w strongly in Ls
loc(RN ) for 2 ≤ s <

2N
N − 2

.

We now prove that∫
RN

λpa(x)u(λ)p−1 (wn − w)2 dx→ 0 as n→∞. (4.7)

By Theorem 2.3 and (A1), we have pa(x)u(λ)p−1 → 0 as |x| → ∞, for any ε > 0
there existsR > 0 such that for x ∈ RN , |x| ≥ R, |pa(x)u(λ)p−1| < ε. Consequently,
there exists a constant C > 0 such that |pa(x)u(λ)p−1| ≤ C for x ∈ RN . Then∫

RN

pa(x)u(λ)p−1 (wn − w)2 dx

=
∫

BR

pa(x)u(λ)p−1 (wn − w)2 dx+
∫

RN\BR

pa(x)u(λ)p−1 (wn − w)2 dx

≤ C

∫
BR

(wn − w)2 dx+ ε

∫
RN\BR

(wn − w)2 dx.

Since wn → w strongly in Ls
loc(RN ) for 2 ≤ s < 2N/N − 2, {wn} is a bounded

sequence in H1(RN ), taking n → ∞, then R → ∞, and finally ε → 0, we deduce
our claim.
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From (4.7) we deduce that
∫

RN pa(x)u(λ)p−1w2
ndx→

∫
RN pa(x)u(λ)p−1w2dx and∫

RN g(x)wndx→
∫

RN g(x)wdx as n→∞. Thus by Fatou’s lemma,

Φ(w) =
1
2
‖w‖2 − 1

2

∫
RN

λpa(x)u(λ)p−1w2dx−
∫

RN

g(x)wdx

≤ 1
2

lim inf
n→∞

‖wn‖2 −
1
2

lim
n→∞

∫
RN

λpa(x)u(λ)p−1w2
ndx− lim

n→∞

∫
RN

g(x)wndx

= lim inf
n→∞

Φ(wn)

= d = inf
w∈H1(RN )

Φ(w)

and hence Φ(w) = d, which implies that w is a solution of (4.5). �

Theorem 4.6. Let u(λ∗) be a solution of (1.1) with λ = λ∗. Then µλ∗(u(λ∗)) =
λ∗. Moreover, u(λ∗) is the unique positive solution of (1.1) with λ = λ∗.

Proof. Define F : R×H1(RN ) → H−1(RN ) by

F (λ, u) = ∆u− u+ λ(a(x)up + h(x)).

Since µλ(u(λ)) > λ for λ ∈ (0, λ∗), it follows that µλ∗(u(λ∗)) ≥ λ∗. If µλ∗(u(λ∗)) >
λ∗, the equation Fu(λ∗, u(λ∗))φ = 0 has no nontrivial solution. From Lemma 4.5,
Fu maps R ×H1(RN ) onto H−1(RN ). Applying the implicit function theorem to
F we can find a neighborhood (λ∗ − δ, λ∗ + δ) of λ∗ such that (1.1) possesses a
solution u(λ) if λ ∈ (λ∗ − δ, λ∗ + δ). This is contradictory to the definition of λ∗.

Next, we are going to prove that u(λ∗) is unique. In fact, suppose (1.1) with
λ = λ∗ has another solution U(λ∗). Set w = U(λ∗)− u(λ∗); we have

−∆w + w = λ∗a(x)((w + u(λ∗))p − u(λ∗)p), w > 0 in RN . (4.8)

By µλ∗(u(λ∗)) = λ∗, we have that the problem

−∆φ+ φ = λ∗pa(x)u(λ∗)p−1φ, φ ∈ H1(RN ) (4.9)

possesses a positive solution φ1.
Multiplying (4.8) by φ1 and (4.9) by w, integrating and subtracting we deduce

that

0 =
∫

RN

λ∗a(x)[(w + u(λ∗))p − u(λ∗)p − pu(λ∗)p−1w]φ1dx

=
1
2

∫
RN

λ∗p(p− 1)ξp−2
λ∗ w2φ1dx,

where ξλ∗ ∈ (u(λ∗), u(λ∗) + w). Thus w ≡ 0. �

Theorem 4.7. (λ∗, u(λ∗)) is a bifurcation point in C2,α(RN ) ∩H2(RN ).

We prove that (λ∗, u(λ∗)) is a bifurcation point in C2,α(RN )∩H2(RN ) by using
an idea in [16]. To this end, we need the following bifurcation theorem.

Bifurcation Theorem [10, Theorem 3.2]. Let X and Y be Banach spaces. Let
(λ̄, x̄) ∈ R×X and let G be a twice continuously differentiable mapping of an open
neighborhood of (λ̄, x̄) into Y . Let N(Gx(λ̄, x̄)) = span{x0} be one dimensional
and codimR(Gx(λ̄, x̄)) = 1. Let Gλ(λ̄, x̄) /∈ R(Gx(λ̄, x̄)). If Z is the complement
of span{x0} in X, then the solutions of G(λ, x) = G(λ̄, x̄) near (λ̄, x̄) form a curve
(λ(s), x(s)) = (λ̄+ τ(s), x̄+ sx0 + z(s)), where s→ (τ(s), z(s)) ∈ R× Z is a twice
continuously differentiable function near s = 0 and τ(0) = τ ′(0) = z(0) = z′(0) = 0.
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We define G : R× C2,α(RN ) ∩H2(RN ) → Cα(RN ) ∩ L2(RN ) by

G(λ, u) = ∆u− u+ λ(a(x)up + h(x)),

where C2,α(RN ) ∩ H2(RN ) and Cα(RN ) ∩ L2(RN ) are endowed with the natu-
ral norms. Then they become Banach spaces. We show that the Bifurcation
Theorem [10] applies at (λ∗, u(λ∗)). Indeed, from Remark 2.5 and Theorem 4.6,
problem (4.1) has a solution φ1 > 0 in RN . φ1 > 0 ∈ C2,α(RN ) ∩ H2(RN ) if
h ∈ Cα(RN ) ∩ L2(RN ). Thus Gu(λ∗, u(λ∗))φ = 0, φ ∈ C2,α(RN ) ∩H2(RN ), has a
solution φ1 > 0. This implies that dimN(Gu(λ∗, u(λ∗))) = dim span{φ1} = 1 and
codimR(Gu(λ∗, u(λ∗))) = 1 by the Fredholm alternative.

It remains to check that Gλ(λ∗, u(λ∗)) /∈ R(Gu(λ∗, u(λ∗))). By contradictory, it
would imply the existence of v(x) 6≡ 0 such that

∆v − v + λ∗pa(x)u(λ∗)p−1v = −(a(x)u(λ∗)p + h(x)), v ∈ C2,α(RN ) ∩H2(RN ).

From Gu(λ∗, u(λ∗))φ1 = 0 we conclude that
∫

RN (a(x)u(λ∗)p + h(x))φ1dx = 0.
This is impossible because h(x) ≥ 0, h(x) 6≡ 0 and φ1(x) > 0 in RN . Applying the
Bifurcation Theorem [10] we conclude that (λ∗, u(λ∗)) is the bifurcation point near
which, the solutions of (1.1)λ∗ form a curve (λ∗ + τ(s), u(λ∗) + sφ1 + z(s)) with s
near s = 0 and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

We claim that τ ′′(0) < 0 which implies that the bifurcation curve turns strictly
to the left in (λ, u) plane. Since λ = λ∗ + τ(s), u = u(λ∗) + sφ1 + z(s) in

−∆u+ u− λ(a(x)up + h(x)) = 0, u > 0, u ∈ C2,α(RN ) ∩H2(RN ). (4.10)

Differentiate (4.10) in s twice we have

−∆uss + uss − λss(a(x)up + h(x))− λs(pa(x)up−1us)− λs(pa(x)up−1us)

− λ(p(p− 1)a(x)up−2u2
s + pa(x)up−1uss) = 0.

Set here s = 0 and use that τ ′(0) = 0, us = φ1(x) and u = u(λ∗) as s = 0 we obtain

−∆uss + uss − τ ′′(0)(a(x)u(λ∗)p + h(x))

− λ∗(p(p− 1)a(x)u(λ∗)p−2φ1(x)2 + pa(x)u(λ∗)p−1uss) = 0.
(4.11)

Multiplying Gu(λ∗, u(λ∗))φ1 = 0 by uss, and (4.11) by φ1, integrating and sub-
tracting the results we obtain

λ∗p(p− 1)
∫

RN

a(x)u(λ∗)p−2φ1(x)3dx+ τ ′′(0)
∫

RN

(a(x)u(λ∗)p + h(x))φ1(x)dx = 0

which immediately gives τ ′′(0) < 0. Thus

u(λ) → u(λ∗) in C2,α(RN ) ∩H2(RN ) as λ→ λ∗,

U(λ) → u(λ∗) in C2,α(RN ) ∩H2(RN ) as λ→ λ∗.

Proposition 4.8. The solution set Q is unbounded in C2,α(RN ) ∩H1(RN ).

Proof. By Proposition 4.1, the set of minimal positive solutions {u(λ)} of (1.1) is
uniformly bounded in H1(RN ). We show that {U(λ) : λ ∈ (0, λ∗)} is unbounded
in H1(RN ). First, we show that for any δ > 0, {U(λ) : λ ∈ [δ, λ∗)} is bounded in
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H1(RN ). Since U(λ) is decreasing in λ, therefore, we have

‖U(λ)‖2 = λ

∫
RN

(
a(x)U(λ)p+1 + h(x)U(λ)

)
dx

≤ λ∗
∫

RN

(
U(δ)p+1 + h(x)U(δ)

)
dx

≤ C1

for some constant C1 > 0.
By Adams [2], Gilbarg-Trudinger [14, Theorem 8.32, 9.16], and the Sobolev

embedding theorem, for all 0 < α < 1,

‖U(λ)‖C1,α ≤ C‖U(λ)‖W 2,qα

≤ C (‖U(λ)‖Lqα + ‖λ (a(x)U(λ)p + h(x)) ‖Lqα)

≤ C (‖U(δ)‖Lqα + ‖U(δ)p + h‖Lqα)
≤ C2

for some constant C2 > 0.
Then we need only to show that {U(λ) : λ ∈ (0, δ)} is unbounded in H1(RN ).

Since U(λ) = u(λ) + vλ, we claim that {vλ : λ > 0} is unbounded in H1(RN ). If
not, then

‖vλ‖ ≤M (4.12)

for all λ ∈ (0, δ]. Choose λn ↓ 0 and let vλn
be the corresponding solutions of

(3.1)λn
. Then vλn

satisfies∫
RN

(
|∇vλn |

2 + v2
λn

)
dx = λn

∫
RN

a(x) (U(λn)p − u(λn)p) vλndx

≤ Cλn‖U(λn)‖p‖vλn‖
≤ Cλn

for some constant C, independent of vλn
, where we have used (4.12) and the bound-

edness of {u(λn)} in H1(RN ). Hence, we have limn→∞‖vλn
‖2 = 0. It implies that

lim
n→∞

‖vλn
‖L2 = 0. (4.13)

On the other hand, we notice that U(λ) = u(λ) + vλ is decreasing and u(λ) is
increasing in λ. Therefore, vλn ≥ vδ for all n. Then we obtain

‖vλn
‖L2 ≥ ‖vδ‖L2 > 0 for all n, (4.14)

which contradicts (4.13).
Next we claim that {U(λ) : λ ∈ (0, δ)} is unbounded in C2,α(RN ). Otherwise,

we suppose ‖U(λn)‖C2,α ≤ M , for all λn ∈ (0, δ), λn ↓ 0. The compact Sobolev
embedding theorem and a diagonal process allow us to extract a subsequence of
{U(λn)}, still denoted by {U(λn)}, such that U(λn) → U in C2(RN ). Then U
would satisfy −∆U + U = 0 in RN , which implies U = 0.
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However, by Remark 4.4 that mn := meas{x ∈ RN : U(λn) > U(δ)} > 0. If
mn → 0, then by the Lebesgue’s dominated convergence theorem it results that

‖U(λn)‖2 = λn

∫
RN

(a(x)U(λn)p + h(x))U(λn)dx

= λn

∫
U(λn)≤U(δ)

+λn

∫
U(λn)>U(δ)

(a(x)U(λn)p + h(x))U(λn)dx

≤ λn

( ∫
U≤U(δ)

(a(x)Up + h(x))Udx+ Cmn

)
→ 0 as n→∞.

Thus ‖vλn
‖2 → 0, which contradicts (4.14). Therefore, we may assume that there

exists α > 0 independent of λn such that meas{x ∈ RN : U(λn) > U(δ)} ≥ α > 0
for all λn, which would imply meas{x ∈ RN : U > U(δ)} ≥ α > 0. But U ≡ 0, a
contradiction. This completes the proof. �

The proof of Theorem 1.1 follows from Theorems 2.2, 2.3, 2.4(3), 3.5, Proposition
4.1, Theorems 4.6, 4.7, and Proposition 4.8.
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