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CRITICAL NEUMANN PROBLEM FOR NONLINEAR ELLIPTIC
SYSTEMS IN EXTERIOR DOMAINS

SHENGBING DENG, JIANFU YANG

Abstract. In this paper, we investigate the Neumann problem for a critical
elliptic system in exterior domains. Assuming that the coefficient Q(x) is a

positive smooth function and λ, µ ≥ 0 are parameters, we examine the common

effect of the mean curvature of the boundary ∂Ω and the shape of the graph
of the coefficient Q(x) on the existence of the least energy solutions.

1. Introduction

In this paper, we are concerned with the following Neumann problem for elliptic
systems

−∆u + λu =
2α

α + β
Q(x)|u|α−2u|v|β in Ωc,

−∆v + µv =
2β

α + β
Q(x)|u|α|v|β−2v inΩc,

∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω,

u, v > 0 in Ωc,

(1.1)

where Ω ⊂ RN is a smooth bounded domain and Ωc = RN \Ω, we assume that Ωc

has no bounded components. λ, µ ≥0 are parameters, α, β > 1 and α + β = 2∗,
where 2∗ denotes the critical Sobolev exponent, that is, 2∗ = 2N

N−2 for N ≥ 3.
ν is the unit inner normal at the boundary ∂Ω. The coefficient Q(x) is Hölder
continuous on Ωc and Q(x) > 0 for all x ∈ Ωc.

In[4], critical semilinear elliptic problems for one equation with Dirichlet bound-
ary conditions was solved by variational methods. Although the (PS) does not
hold globally, it was found in [4] that the condition is valid locally. Critical point
theory then can be used locally to find critical points of associated functionals.
The critical Neumann problem was considered in [16] using the same idea as [4].
Later on, the critical Neumann has been extensively studied. Various existence
results concerning the graph of coefficients, topology of domains etc., can be found
in [1, 2, 6, 7, 9, 10, 13, 14, 16] and references therein. Particularly, the Neumann
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problem in exterior domains

−∆u + λu = Q(x)|u|2
∗−2u in Ωc,

∂u

∂ν
= 0 on ∂Ω,

u > 0 in Ωc,

(1.2)

was considered in [7]. Existence results for (1.2) were obtained by showing

S(Ωc, Q, λ) = inf
{ ∫

Ωc

(|∇u|2 + λu2) dx, u ∈ H1(Ωc),
∫

Ωc

Q(x)|u|2
∗
dx = 1

}
,

is achieved. The effect of the graph of Q and the geometry of the domain was taken
into account on the existence of solutions of (1.2).

For the system (1.1), it was considered in [3] the existence of solutions for sub-
critical nonlinearities. In the critical case, problem (1.1) in bounded domains was
investigated in [8], where the effect of the shape of Q(x) was considered in the exis-
tence of least energy solutions. Inspired of [7] and [8], in this paper, we consider the
existence of solutions of problem (1.1) in exterior domains. The problem is both
critical and setting on unbounded domains. The loss of compactness is caused by
noncompact groups of translations and dilations. In applying variational methods,
it is necessary to figure out energy levels so that the (PS) condition holds. These
energy levels are not only affected by noncompact groups of translations and di-
lations but also the shape of the coefficient Q. Solutions of problem (1.1) will be
found as a minimizer of the variational problem

Sλ,µ(Ωc, Q) = inf
u,v∈H1(Ωc)\{0}

∫
Ωc(|∇u|2 + |∇v|2 + λu2 + µv2) dx( ∫

Ωc Q(x)|u|α|v|β dx
)2/(α+β)

, (1.3)

which is a weak solution of (1.1) up to a multiple of a constant. It was proved in
[3] that every weak solution of problem (1.1) is classical. As we will see, problem
(1.3) is closely related to the problem

Sα,β = inf
u,v∈D1,2

0 (Ωc)\{0}

∫
Ωc(|∇u|2 + |∇v|2) dx( ∫
Ωc |u|α|v|β dx

)2/(α+β)
. (1.4)

We may verify as [3] that

Sα,β =
[(α

β

)β/(α+β) +
(β

α

)α/(α+β)]
S := Aα,βS,

where S is the best Sobolev constant defined by

S := inf
u∈D1,2

0 (Ω)\{0}

∫
Ω
|∇u|2 dx( ∫

Ω
|u|2∗ dx

)2/2∗
,

which is achieved if and only if Ω = RN by the function

U(x) =
[ N(N − 2)
N(N − 2) + |x|2

](N−2)/2
.

The function U satisfies
−∆U = U2∗−1, in RN

and ∫
RN

|∇U |2 dx =
∫

RN

|U |2
∗
dx = S

N
2 .
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Denote

Qm = max
∂Ω

Q(x), QM = max
Ωc

Q(x), Q∞ = lim
|x|→∞

Q(x).

Suppose Qm, QM and Q∞ are positive, we set

S∞ = min
{ Sα,β

22/NQ
N−2

N
m

,
Sα,β

Q
N−2

N

M

,
Sα,β

Q
N−2

N∞

}
.

Our main result is as follows.

Theorem 1.1. If Sλ,µ(Ωc, Q) < S∞ for λ, µ ≥ 0, then Sλ,µ(Ωc, Q) is achieved.

In section2, we show a variant of second concentration lemma, and then prove
Theorem 1.1. In the rest of the paper, we will verify the condition

Sλ,µ(Ωc, Q) < S∞. (1.5)

In the case QM ≤ 2
2

N−2 Qm, we assume that

(Q1) There exists a point y ∈ ∂Ω such that Qm = Q(y) and H(y) < 0 and for x
near y,

|Q(x)−Q(y)| = o(|x− y|) (1.6)

where H(y) denotes the mean curvature of ∂Ω at y ∈ ∂Ω with respect to
the inner normal to ∂Ω at y.

In the case QM > 2
2

N−2 Qm, we assume

(Q2) QM = Q(y) for some y ∈ Ωc and for x near y, there holds

|Q(y)−Q(x)| = o(|x− y|N−2). (1.7)

If there is x ∈ Ωc such that Q(x) ≥ Q∞, then

S∞ = min
{ Sα,β

22/NQ
N−2

N
m

,
Sα,β

Q
N−2

N

M

}
.

If Q(x) < Q∞ for all x ∈ Ωc, we suppose

(Q3) There exists some cone K ⊂ RN on which the convergence Q(x) → Q∞
holds and there exist z̄ ∈ ∂B1(0), δ > 0, C > 0 such that for R →∞,

0 < Q∞ −Q(Rȳ) ≤ C

Rp
, p >

N2

2
(1.8)

for every ȳ ∈ ∂B1(0) ∩Bδ(z̄).

Under conditions (Q1)-(Q3), S∞ is well defined.

Theorem 1.2. The condition Sλ,µ(Ωc, Q) < S∞ holds if one of the following con-
ditions holds.

(i) QM ≤ 2
2

N−2 Qm and (Q1) holds;
(ii) QM > 2

2
N−2 Qm and (Q2) holds;

(iii) Q∞ > 22/(N−2)Qm, Q(x) < Q∞ for all x ∈ Ωc and (Q3) holds.

The above theorem will be proved in sections 3, 4 and 5.
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2. Proof of Theorem 1.1

Let

Jλ,µ(u, v) =
∫

Ωc

(|∇u|2 + |∇v|2 + λu2 + µv2) dx

be a functional defined on E := H1(Ωc)×H1(Ωc). Then

Sλ,µ(Ωc, Q) = inf
{
Jλ,µ(u, v) : (u, v) ∈ E,

∫
Ωc

Q(x)|u|α|v|β dx = 1
}
. (2.1)

The following Brézis-Lieb type lemma is proved in [8].

Lemma 2.1. Let un ⇀ u and vn ⇀ v in H1(Ωc). Then

lim
n→∞

∫
Ωc

|un|α|vn|β dx = lim
n→∞

∫
Ωc

|un − u|α|vn − v|β dx +
∫

Ωc

|u|α|v|β dx. (2.2)

Denote by B1(0) the unit ball in RN . We have the following results, see [8].

Lemma 2.2. Let B̃ = B1(0) ∩ {xN > h(x′)} and h(x′) be a C1 function defined
on {x′ ∈ RN−1 : |x′| < 1} with h, ∇h vanishing at 0. For every u, v ∈ H1(B1(0))
with suppu, supp v ⊂ B̃, we have

(A) If h ≡ 0, then∫
B̃

(|∇u|2 + |∇v|2) dx ≥ 2−2/NSα,β

( ∫
B̃

|u|α|v|β
)2/2∗

.

(B) For every ε > 0 there exists a δ > 0 depending only on ε such that if
|∇h| ≤ δ, then∫

B̃

(|∇u|2 + |∇v|2) dx ≥
( Sα,β

22/N
− ε

)( ∫
B̃

|u|α|v|β
)2/2∗

.

To show the compactness of a (PS) sequence, we need a concentration - com-
pactness lemma. In [12], it gave a remarkably characterization of non-compactness
of the injection of W 1,q(Ω) into Lq∗(Ω) for 1 ≤ q < n and q∗ = qn

n−q . The proof of
the following results are essentially in spirit of [12], see also [11].

Lemma 2.3. Let un ⇀ u and vn ⇀ v in H1(Ωc). Suppose that (|∇un|2+|∇vn|2) ⇀
µ, |un|α|vn|β ⇀ ν in the sense of measure, and denote

lim
R→∞

lim sup
n→∞

∫
Ωc∩{|x|≥R}

(|∇un|2 + |∇vn|2) dx = µ∞,

lim
R→∞

lim sup
n→∞

∫
Ωc∩{|x|≥R}

|un|α|vn|β dx = ν∞.

Then there exist an at most countable index set J and sequences {xj} ⊂ Ωc ∪
∂Ω, {µj}, {νj} ⊂ (0,∞), j ∈ J ,such that

ν = |u|α|v|β +
∑
j∈J

νjδxj + ν∞δ∞, (2.3)

µ ≥ |∇u|2 + |∇v|2 +
∑
j∈J

µjδxj
+ µ∞δ∞, (2.4)
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and

Sα,βν2/2∗

∞ ≤ µ∞, (2.5)

Sα,βν
2/2∗

j ≤ µj , if xj ∈ Ωc, (2.6)
Sα,β

22/N
ν

2/2∗

j ≤ µj , if xj ∈ ∂Ωc, (2.7)

where δx denotes the Dirac-mass of mass 1 concentrated at x.

Proof. We consider first the case u = v = 0. Since µ is a finite measure, the
set F := {x ∈ Ωc|µ({x}) > 0} is at most countable. We can therefore write
F = {xj}j∈J , µj := µ(xj), j ∈ J so that

µ ≥
∑
j∈J

µjδxj + µ∞δ∞.

If xj ∈ Ωc, for any ξ ∈ C∞
0 (Ωc) ∩ L∞(Ωc), we have∫

Ωc

|ξ|2
∗
dν = lim

n→∞

∫
Ωc

|ξ|2
∗
|un|α|vn|β dx

≤ lim
n→∞

S
−2∗/2
α,β

( ∫
Ωc

|∇(ξun)|2 + |∇(ξvn)|2 dx
)2∗/2

.

(2.8)

Since un → 0, vn → 0 in L2
loc(Ω

c), we deduce∫
Ωc

|ξ|2
∗
dν ≤ S

−2∗/2
α,β

( ∫
Ωc

|ξ|2 dµ
)2∗/2

. (2.9)

By approximation, for any Borel set E ∈ Ωc we have

ν(E) ≤ S
−2∗/2
α,β µ(E)2

∗/2 (2.10)

as well as particularly, (2.5) and (2.6) hold. Because (2.10) implies ν � µ, we have
for E ∈ Ωc being Borel set that

ν(E) =
∫

E

Dµνdµ, (2.11)

where

Dµν(x) = lim
r→0

ν(Br(x))
µ(Br(x))

, (2.12)

this limit exists for µ-a.e. x ∈ RN . From (2.10), we have

Dµν = 0, µ− a.e. x ∈ Ωc \ F. (2.13)

Define νj = Dµν(xj)µj , we see from (2.10)-(2.13) that (2.3) holds for the case
u = v = 0.

If xj ∈ ∂Ωc, by Lemma 2.2,∫
Ωc∩Bε(xj)∩{xN >h(x′)}

(|∇u|2 + |∇v|2) dx

≥
( Sα,β

22/N
− ε

)( ∫
Ωc∩Bε(xj)∩{xN >h(x′)}

|u|α|v|β
)2/2∗

implying similarly that
Sα,β

22/N
ν

2/2∗

j ≤ µj .
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Next, in the general case, let ûn = un−u and v̂n = vn−v. We may apply above
results to ûn and v̂n. Moreover, in terms of Lemma 2.1,

|∇ûn|2 + |∇v̂n|2 ⇀ µ + |∇u|2 + |∇v|2,

|∇ûn|α|∇v̂n|β ⇀ ν + |∇u|α|∇v|β

in the sense of measures. The proof is complete. �

Proof of Theorem 1.1. Let {un, vn} be a minimizing sequence for Sλ,µ(Ωc, Q); that
is,∫

Ωc

(|∇un|2 + |∇vn|2 + λu2
n + µv2

n) dx → Sλ,µ(Ωc, Q),
∫

Ωc

Q(x)|un|α|vn|β dx = 1.

We may assume that un ⇀ u, vn ⇀ v in H1(Ωc). By Lemma 2.3,

|∇un|2 + |∇vn|2 ⇀ µ ≥ |∇u|2 + |∇v|2 +
∑
j∈J

µjδxj + µ∞δ∞,

Q(x)|un|α|vn|β ⇀ ν = Q(x)|u|α|v|β +
∑
j∈J

νjQ(xj)δxj
+ ν∞Q∞δ∞

and

1 =
∫

Ωc

Q(x)|u|α|v|β dx +
∑
j∈J

νjQ(xj) + ν∞Q∞. (2.14)

Therefore, using (2.5)-(2.7) we obtain

Sλ,µ(Ωc, Q)

≥
∫

Ωc

(|∇u|2 + |∇v|2 + λu2 + µv2) dx +
∑
j∈J

µj + µ∞

≥ Sλ,µ(Ωc, Q)
( ∫

Ωc

Q(x)|u|α|v|β dx
)2/(α+β)

+
∑

xj∈Ωc

Sα,βν
2/(α+β)
j

+
∑

xj∈∂Ω

Sα,β

22/N
ν

2/(α+β)
j + Sα,βν2/(α+β)

∞

= Sλ,µ(Ωc, Q)
( ∫

Ωc

Q(x)|u|α|v|β dx
)(N−2)/N

+
∑

xj∈Ωc

Sα,β

Q(xj)(N−2)/N
(νjQ(xj))

(N−2)/N

+
∑

xj∈∂Ω

Sα,β

22/NQ(xj)(N−2)/N
(νjQ(xj))(N−2)/N +

Sα,β

Q
(N−2)/2
∞

(ν∞Q∞)(N−2)/N

≥ Sλ,µ(Ωc, Q)
( ∫

Ωc

Q(x)|u|α|v|β dx
)(N−2)/N

+
∑

xj∈Ωc

Sα,β

Q
(N−2/N)
M

(νjQ(xj))(N−2)/N

+
∑

xj∈∂Ω

Sα,β

22/NQ
(N−2)/N
m

(νjQ(xj))(N−2)/N +
Sα,β

Q
(N−2)/2
∞

(ν∞Q∞)(N−2)/N .

(2.15)
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Since Sλ,µ(Ωc, Q) < S∞, we deduce that νj = 0 for all j ∈ J ∪ {∞}. Indeed,
otherwise, we infer from (2.14) and (2.15) that

Sλ,µ(Ωc, Q)

> Sλ,µ(Ωc, Q)
( ∫

Ωc

Q(x)|u|α|v|β dx + νjQ(xj) + νjQ(xj) + ν∞Q∞

)(N−2)/N

= Sλ,µ(Ωc, Q),

which is a contradiction. Hence,
∫
Ωc Q(x)|u|α|v|β dx = 1, and then∫

Ω

(|∇u|2 + |∇v|2 + λu2 + µv2) dx ≤ Sλ,µ(Ωc, Q).

The assertion follows. �

To verify condition (1.5), we need some preliminaries. Set

S(Ωc, λ) = inf
u∈H1(Ωc)\{0}

∫
Ωc(|∇u|2 + λu2) dx

(
∫
Ωc |u|2∗ dx)2/2∗

,

The following result was proved in [14].

Lemma 2.4. Assume Ω is a smooth bounded domain in RN such that Ωc has no
bounded components. Then we have

(i) S(Ωc, λ) is nondecreasing in λ;
(ii) 0 < S(Ωc, λ) ≤ (1/2)2/NS for all λ ≥ 0;
(iii) If the mean curvature of ∂Ω is negative at some point, then for all λ ≥ 0,

S(Ωc, λ) < (1/2)2/NS;
(iv) If λ ≥ 0 and S(Ωc, λ) < (1/2)2/NS, then S(Ωc, λ) is achieved.

Let

Uε,y(x) = ε−
N−2

2 U
(x− y

ε

)
,

for y ∈ RN , ε > 0, and denote Uε = Uε,0.

Corollary 2.5. Assume Ω is a smooth bounded domain in RN such that Ωc has
no bounded components. Then there hold

(i) Sλ,µ(Ωc, 1) is nondecreasing in λ, µ;
(ii) 0 < Sλ,µ(Ωc, 1) ≤ (1/2)2/NSα,β for all λ, µ ≥ 0;
(iii) If the mean curvature of ∂Ω is negative at some point, then for all λ, µ ≥ 0,

Sλ,µ(Ωc, 1) < (1/2)2/NSα,β.

Proof. (i) is obvious. Now we show (ii) and (iii) only. Since S0,0(Ωc, 1) = Sα,β > 0,
Sλ,µ(Ωc, 1) > 0 follows from (i). Now we show that Sλ,µ(Ωc, 1) ≤ (1/2)2/NSα,β for
all λ, µ ≥ 0. Let y be a point on ∂Ω. Let Φ be the diffeomorphism from a small ball
Bδ(0) centered at the origin to a neighborhood ω of y so that Φ : B+

δ (0) → ω̄ ∩Ωc

and Φ : Bδ(0) ∩ {yN = 0} → ω̄ ∩ ∂Ωc. We denote Ψ := Φ−1. Take a radial cut-off
function η such that η(r) ≡ 1 for r ≤ δ

2 , η(r) = 0 for r ≥ δ and 0 ≤ η ≤ 1. Define

Ũε(x) =

{
(ηUε)(Ψ(x)) if x ∈ ω̄ ∩ Ωc;
0 if x ∈ Ωc\ω̄.
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It has shown in [14] that∫
Ωc [|∇Ũε(x)|2 + λŨε(x)2] dx

{
∫
Ωc |Ũε(x)|2∗ dx}2/2∗

=
S

22/N
+ ANH(y)β1(ε) + O(β2(ε)), (2.16)

where AN > 0 is a constant and H(y) denotes the mean curvature of ∂Ω at y, when
viewed from inside, and

β1(τ) =

{
τ log (

1τ) if N = 3;
τ if N ≥ 4,

β2(τ) =


τ if N = 3;
τ2 log( 1

τ ) if N = 4;
τ2 if N ≥ 5.

(2.17)

Choosing s and t such that
2α

α + β
s−(α−2)t−β = 1 and

2β

α + β
s−αt−(β−2) = 1; (2.18)

that is, s2

t2 = β
α , we have

s2 + t2

(sαtβ)2/2∗
= Aα,β . (2.19)

By (2.16),

Sλ,µ(Ωc, 1) ≤ Jλ,µ(sŨε(x), tŨε(x))( ∫
Ωc |sŨε(x)|α|tŨε(x)|β dx

)2/2∗

≤ s2 + t2

(sαtβ)2/2∗

∫
Ωc [|∇Ũε(x)|2 + max{λ, µ}Ũε(x)2] dx( ∫

Ωc Ũε(x)2∗
)2/2∗

≤ Aα,β

∫
Ωc [|∇Ũε(x)|2 + (λ + µ)Ũε(x)2] dx( ∫

Ωc Ũε(x)2∗
)2/2∗

=
Sα,β

22/N
+ BNH(y)β1(ε) + O(β2(ε)),

(2.20)

where BN > 0 is a constant. Let ε → 0 in (2.20), we obtain (ii). Equation (2.20)
also implies (iii) since we may assume H(y) < 0. �

Lemma 2.6. For every λ, µ ≥ 0 we have
Sλ,µ(Ωc, 1)

Q
N−2

N

M

≤ Sλ,µ(Ωc, Q) ≤ S∞.

If Q(x) < Q∞ for every x ∈ Ωc, QM on the left side should be replaced by Q∞.

Proof. The first inequality is obvious. To show the second inequality, first, since
Q∞ = lim|x|→∞ Q(x), for any ε > 0 there exists R > 0 such that Ω ⊂ BR(0), and
Q(x) ≥ Q∞ − ε for x ∈ RN \BR(0). Hence,

Sλ,µ(Ωc, Q) ≤
∫
Ωc(|∇u|2 + |∇v|2 + λu2 + µv2) dx

(Q∞ − ε)
N−2

N

( ∫
RN\BR(0)

|u|α|v|β dx
)2/2∗

for all u,v ∈ H1(Ωc). Taking infimum over u, v ∈ H1
0 (RN \ BR(0)) and noting

that Sα,β is independent of Ωc, since ε > 0 is arbitrary, we obtain from the above
inequality that

Sλ,µ(Ωc, Q) ≤ Sα,β

Q
N−2

N∞

.
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Next, if Q(y) = QM for some y ∈ Ωc, using (sUε,y, tUε,y) as test function in the
expression of Sλ,µ(Ωc, Q), where s and t satisfy (2.16), we obtain

Sλ,µ(Ωc, Q) ≤ Sα,β

Q
N−2

N

M

.

Finally, if y ∈ ∂Ω is such that Qm = Q(y), we deduce as (2.20) that

Sλ,µ(Ωc, Q) ≤ Sα,β

22/NQ
N−2

N
m

.

The proof is complete. �

3. Case QM ≤ 22/(N−2)Qm

We will prove Theorem 1.2.

Proposition 3.1. Assume QM ≤ 22/(N−2)Qm and (Q1). Then there holds

Sλ,µ(Ωc, Q) <
Sα,β

22/NQ
(N−2)/N
m

. (3.1)

Proof. If N ≥ 5, let s, t > 0 be chosen as (2.18). Then

Jλ,µ(sUε,y, tUε,y)( ∫
Ωc Q(x)|sUε,y|α|tUε,y|β dx

)2/2∗
≤ Aα,β

∫
Ωc [|∇Uε,y|2 + (λ + µ)U2

ε,y] dx( ∫
Ωc Q(x)U2∗

ε,y

)2/2∗
. (3.2)

By the assumption (Q1),∫
Ωc

Q(x)U2∗

ε,y dx = Qm

∫
Ωc

U2∗

ε,y dx + o(ε). (3.3)

Corollary 2.5, (3.2) and (3.3) yield

Sλ,µ(Ωc, Q) ≤ Jλ,µ(sUε,y, tUε,y)( ∫
Ωc Q(x)|sUε,y|α|tUε,y|β dx

)2/2∗

<
SAα,β

22/NQ
(N−2)/N
m

=
Sα,β

22/NQ
(N−2)/N
m

.

If N = 3, 4, we replace Uε,y by Uε,yφR, where φR ∈ C1(RN ), φR(x) = 1 for
x ∈ BR(0), φR(x) = 0 for x ∈ RN\BR+1(0), and 0 ≤ φR(x) ≤ 1 on RN . Then,
(3.1) can be proved in the same way. �

4. Case QM > 22/(N−2)Qm

In this section, we show (ii) of Theorem 1.2.

Proposition 4.1. Suppose QM > 22/(N−2)Qm and (Q2), then there exists Λ > 0
such that

Sλ,µ(Ωc, Q) <
Sα,β

Q
N−2

N

M

,

for all 0 ≤ λ, µ < Λ.
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Proof. First we consider the case N ≥ 5. For any δ > 0, using (1.7) we have∫
Ωc

Q(x)|sUε,y|α|tUε,y|β dx =
∫

Ωc

sαtβQMU2∗

ε,y dx +
∫

Ωc

sαtβ(Q(x)−QM )U2∗

ε,y dx

Since ∫
Ωc

sαtβQMU2∗

ε,y dx = QM

∫
RN

sαtβU2∗

ε,y dx−QM

∫
Ω

sαtβU2∗

ε,y dx

and ∫
Ωc

sαtβ(Q(x)−QM )U2∗

ε,y dx

=
∫

Ωc∩Bδ(y)

sαtβ(Q(x)−QM )U2∗

ε,y dx +
∫

Ωc\Bδ(y)

sαtβ(Q(x)−QM )U2∗

ε,y dx

=
∫

Ωc∩Bδ(y)

sαtβo(|x− y|N−2)U2∗

ε,y dx + o(εN ),

we have ∫
Ωc

Q(x)|sUε,y|α|tUε,y|β dx = sαtβQMK2 + o(εN−2), (4.1)

where K2 =
∫

RN U2∗ dx. Since y ∈ Ωc, there exists a constant C1 > 0 such that∫
Ωc

|∇Uε,y|2 dx =
∫

RN

|∇Uε,y|2 dx−
∫

Ω

|∇Uε,y|2 dx ≤ K1 − C1ε
N−2,

where K1 =
∫

RN |∇U |2 dx, and K1
(K2)2/2∗ = S. Hence,∫

Ωc [|∇(sUε,y)|2 + |∇(tUε,y)|2 + λ(sUε,y)2 + µ(tUε,y)2] dx( ∫
Ωc sαtβQ(x)U2∗

ε,y

)2/2∗

≤ s2 + t2

(sαtβ)2/2∗

∫
Ωc [|∇Uε,y|2 + max{λ, µ}U2

ε,y] dx

(
∫
Ωc Q(x)U2∗

ε,y)2/2∗

≤ s2 + t2

(sαtβ)2/2∗

K1 − C1ε
N−2 + K3 max{λ, µ}ε2

(QMK2 + o(εN−2))2/2∗

= Aα,β

(
K1 − C1ε

N−2 + K3 max{λ, µ}ε2
){

(QMK2)−(N−2)/N

− N − 2
N

(QMK2)−(2N+2)/No(εN−2)
}

<
Aα,βS

Q
(N−2)/N
M

=
Sα,β

Q
(N−2)/N
M

for ε > 0, λ and µ ≥ 0 sufficiently small, where K3 is a constant independent of ε.
If N = 3, 4, we replace Uε,y by Uε,yφR, where φR is a C1 function such that φR = 1
if x ∈ BR(y), φR = 0 if x ∈ RN ⊂ BR+1(y) with R > 0 large, and we may proceed
in the same way. �

5. Case S∞ = Sα,β

Q
(N−2)/N
∞

In this section, we show (iii) of Theorem 1.2.
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Proposition 5.1. Suppose (1.8) holds, then there exists Λ > 0 such that for 0 ≤ λ,
µ < Λ there holds

Sλ,µ(Ωc, Q) <
Sα,β

Q
(N−2)/N
∞

.

Proof. Let R > 0 be such that Ω ⊂ BR/2(0) and Kδ denote the cone Kδ = {τ ȳ; ȳ ∈
∂B1(0) ∩Bδ(z̄), τ > 0}, then for s and t satisfying (2.18) we have

∫
Ωc

Q(x)|sUε,Rz̄|α|tUε,Rz̄|β dx

= sαtβ
{∫

BR/2(0)\Ω
Q(x)U2∗

ε,Rz̄ dx +
∫

RN\BR/2(0)

(Q(x)−Q∞)U2∗

ε,Rz̄ dx

+
∫

RN\BR/2(0)

Q∞U2∗

ε,Rz̄ dx
}

≥ sαtβ
{∫

RN\(BR/2(0)∪Kδ)

(Q(x)−Q∞)U2∗

ε,Rz̄ dx

+
∫

Kδ\BR/2(0)

(Q(x)−Q∞)U2∗

ε,Rz̄ dx +
∫

RN

Q∞U2∗

ε,Rz̄ dx

−
∫

BR/2(0)

Q∞U2∗

ε,Rz̄ dx
}

= sαtβ(I1 + I2 + Q∞K2 + I3).

(5.1)

Since |x − Rz̄| > δR if x ∈ B2R(0) \ (BR/2(0)) ∪ Kδ), and |x − Rz̄| ≥ |x|/2 if
x ∈ RN \B2R(0),

I1 ≥ −Q∞

∫
RN\(BR/2(0)∪Kδ)

εNC2∗

N

(N(N − 2)ε2 + |x−Rz̄|2)N
dx

≥ −Q∞εNC2∗

N

∫ 2R

R/2

rN−1

(δR)2N
dr −Q∞εNC2∗

N

∫ ∞

2R

rN−1

( r
2 )2N

dr

= −C
εN

RN
.

(5.2)

Next, by assumption (1.8),

I2 =
∫

Kδ\BR/2(0)

(Q(x)−Q∞)U2∗

ε,Rz̄ dx ≥ −C2p

Rp

∫
RN

U2∗

ε,Rz̄ dx = −CK2

Rp
. (5.3)

Finally, by the fact that |x−Rz̄| ≥ R
2 for x ∈ BR/2(0),

I3 =
∫

BR/2(0)

Q∞U2∗

ε,Rz̄ dx ≥ −Q∞C2∗

N 22N

R2N

∫ R
2

0

rN−1 dr = −CK2

RN
(5.4)

Consequently,∫
Ωc

Q(x)|sUε,Rz̄|α|tUε,Rz̄|β dx ≥ sαtβ
(
K2Q∞ − C

εN

Rp
− CK2

Rp

)
. (5.5)
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On the other hand,∫
Ωc

|∇Uε,Rz̄|2 dx =
∫

RN

|∇Uε,Rz̄|2 dx−
∫

Ω

|∇Uε,Rz̄|2 dx

≤ K1 − C2
N (N − 2)εN−2

∫
Ω

|x−Rz̄|2

(ε2N(N − 2) + |x−Rz̄|2)N
dx

≤ K1 −
CεN−2

R2N−2
.

(5.6)
Therefore,

Jλ,µ(sUε,Rz̄, tUε,Rz̄)
(
∫
Ωc Q(x)|sUε,Rz̄|α|tUε,Rz̄|β dx)2/2∗

≤ Aα,β

K1 − C εN−2

R2N−2 + max{λ, µ}Cε2

(K2Q∞ − C εN

RN − CK2
Rp )(N−2)/N

.

(5.7)
Hence, there exist constants A > 0, B > 0, C > 0 and D > 0 such that

Jλ,µ(sUε,Rz̄, tUε,Rz̄)
(
∫
Ωc Q(x)|sUε,Rz̄|α|tUε,Rz̄|β dx)2/2∗

≤ SAα,β

Q
(N−2)/N
∞

− AεN−2

R2N−2
+ max{λ, µ}Bε2 +

CεN

RN

D

Rp
.

If λ = µ = 0, we choose ε = ε(R) such that

AεN−2

2R2N−2
=

CεN

RN
, i.e.,

1
ε2

=
2CRN−2

A
.

Then, we choose R > 0 so that

AεN−2

2R2N−2
=

A

2R2N−2

( A

2CRN−2

)(N−2)/2

>
D

Rp
;

that is,
AN/2

2N/2RN2/2
>

D

Rp
,

which is possible if p > N2

2 . Hence for this choice of R we have

Jλ,µ(sUε,Rz̄, tUε,Rz̄)
(
∫
Ωc Q(x)|sUε,Rz̄|α|tUε,Rz̄|β dx)2/2∗

<
Sα,β

Q
(N−2)/N
∞

.

If λ, µ > 0. we can similarly choose R such that the above inequality holds. The
proof is complete. �
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