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NEW APPROACH TO STREAMING SEMIGROUPS WITH
MULTIPLYING BOUNDARY CONDITIONS

MOHAMED BOULANOUAR

ABSTRACT. This paper concerns the generation of a Cp-semigroup by the
streaming operator with general multiplying boundary conditions. A first ap-
proach, presented in [2], is based on the Hille-Yosida’s Theorem. Here, we
present a second approach based on the construction of the generated semi-
group, without using the Hille-Yosida’s Theorem.

1. INTRODUCTION

Let us consider a particle population (neutrons, photons, molecules of gas,...)
in some domain of R™. Each particle is distinguished by its position z € X C R”
and its directional velocity v € V' C R™. If we denote by f(t,z,v) the density of
particles having, at the time ¢, the position x with the directional velocity v, then
particle population is governed by the following evolution equation

of
E(t) =—v-V.f(t) = Tk f(t), (1.1)
where (z,y) € Q@ = X x V and ¢ > 0. The operator Tk is called the streaming
operator describing the transport of particles and it is equipped with following
general boundary conditions

f(t)’r‘_ :K(f(t)‘p+) (12)

where f(t)|r_ (resp. f(t)|r, ) is the incoming (resp. outgoing) particle flux which
is the restriction of the density f(t) on the subset I'_ (resp. I';) of 9X x V. The
boundary operator K is linear and bounded on suitable function spaces. All of
known boundary conditions (vacuum, specular reflections, periodic,. ..) are special
examples of our general context. (see the next section for more explanations).
When ||K|| < 1, the existence of a strongly continuous semigroup has been
investigated by several authors and important results have been cleared in [, [7] [§].
However, the case || K| > 1 has been rarely studied and the first approach, based
on Hille-Yosida’s Theorem, is given in [2] according to some geometrical restrictions
on X and V that we have expressed in the definition Namely, the difficulty
regarding the case || K| > 1 is linked to the increasing number of incoming particles.
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In this case, the time sojourn of particles in X may be arbitrary small and intuitively
the boundary operator K does not take too much into account such as particles.

The motivation, of this present work, is to give a second approach when || K|| > 1
without using the Hille-Yosida’s Theorem. This approach is concerned by two steps.
The first one is devoted to the construction of a Cy-semigroup. In the second one,
we show that Tk is the infinitesimal generator of this semigroup.

To obtain our objective, we use our technics successfully applied in [3] 4]. We
point out that this work is new and gives the explicit expression of the generated
semigroup.

2. ESTATEMENT OF THE PROBLEM

We consider Banach space LP(£2) (1 < p < oo) with its natural norm

Il = [ | teta e

where 2 = X x V with X C R™ be a smoothly bounded open subset and du be a
Radon measure on R™ with support V. We also consider the partial Sobolev space

WP(Q) = {p € LP(Q), v- Vap € LP(Q)},

T/p (2.1)

)

with the norm [[¢llwr) = [[[l|L + |lv - Vael[E]/P. We set n(z) the outer unit
normal at x € 9X, where 0X is the boundary of X equipped with the measure of
surface dy. We denote

r=0XxV, T'o={(z,v) €T, v-n(z) =0},
Iy ={(z,v) €T, v-n(z) >0}, I'_={(z,v) €T, v-n(z) <0},

and suppose that dydu(T'g) = 0. For (z,v) € Q, the time which a particle starting
at & with velocity —v needs until it reaches the boundary 0X of X is denoted by

t(z,v) =inf{t >0, x —tv & X}.
Similarly, if (x,v) € Ty we set

7(z,v) =inf{t >0, z —tv & X}.
Now, we use the context of [2] as follows
Definition 2.1. The pair (X, V) is regular if

T0:= inf 7(x,v)>0.
0 (z,v)ely ( )

We also consider the trace spaces LP(I'1) equipped with the norm

1/p
lleresy = [ [ lote.orag] ™.

+

where d¢ = |v-n(x)|dydu. The first consequence of the regularity of the pair (X, V)
is as follows.

Lemma 2.2 ([2]). If the pair (X, V) is regular, then the trace applications
Yy W) — IX(TL), Al WP(Q) — DT,

are linear and continuous.
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Finally, if we consider the boundary operator
K € £(LP(T4), (), (2.2)
then the previous Lemma gives a sense to the operator

Tk = —v-Vyp defined on the domain
D(Tk) ={p e WP(X x V), —p = Ky}

We set ||K| := [|[K||zrr,),Lrr_)) for the rest of this article. If K = 0, the
operator Tj has properties that we summarize as follows.

Lemma 2.3. The operator Ty, on LP() (p > 1), generates a contraction Co-semi-
group {Uo(t)}e>0 given by

Uo(t)p(z,v) = x (t — t(z,v)) ¢ (z — tv,v), (2.3)
where
1 ift(z,v) —t >0,

. (2.4)
0 otherwise.

x(t—t(x,v»—{

We conclude this section with the following lemma that we will need later.

Lemma 2.4. Suppose that the pair (X,V) is regular and let ¢ € WP(Q) and A > 0.

If we set
\Il(x,v) = 6)\(1'77))'7730(‘% - t(.’E, 'U)?),’U),
" (2.5)

—At(

where ex(x,v) = e M=) then the following statements hold

(1) ¥ e WP(Q) and ® € D(Tp);
(2) the application t > 0 — v [Up(t)p] € LP(T'1) is continuous.

Proof. (1) Let ¢ € WP(Q) and A > 0. As we have v - V¥ + AU = 0 with
v-WU =~_p € LP(I"_), then a simple calculation gives us

1.1y
o~ Vol = ANIE <AL ol < o0
which implies
1@ llwe () = [IWIE + [lv- Vo [2]VP < oo,
[®[lws) = [l = Cllwe) < lellwe@) + [[¥][wr@) < oo,
and therefore ¥ and ® belong to WP (). Furthermore, we trivially have v_® =
Y—(p=T)=~v_p —v_¢ =0 and thus ® € D(Tp).
(2) Let o € WP(Q2) and A > 0. For all h > 0 and all t > 0 we have

|7+ Uo(t + h)p — v+ Uo ()l Lo (r )

= |7+ Uo(t + h)¥ — v, Ug () ¥ + 74 U (t + h)® — 74 Up (1)@ Lo (1)

<4+ Uo(t +h)W — v Uo () ¥ Lo(ry ) + [[7+Uo(t + h)® — v U ()@ || Lo (1))

=t I1(h) + Ix(h). 26)
2.6
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As ® € D(Tp), Lemmas and imply
lim (k) = lim {7+ Uo(t + h)® =2 Uo (1)@l Lr(ry)
< v+ leoeme), o)) I [|Uo(t + h)® — Uo () @[l p(ry)
=0.
Next, a simple calculation shows that
lim I (h)? = lim ||y, Uo(t + h)¥ — Y+ U)o r,)

= lim [ [x(t+h -tz )M — x(t = t(w,0)eN P | (@, ) [Pde

=0
This completes the proof. (I
3. CONSTRUCTION OF THE SEMIGROUP

In this section, we construct the semigroup {Uxk (¢) }+>0 when ||K|| > 1. In order
to show Theorem which is the main result, we begin by

Lemma 3.1. The following Cauchy’s problem

d
Lo Veu=0, (tz,v)€ (0,00) %

dt
you=f€LP(Ry, LP(T)); (3.1)
u(0) = fo € LP(Q),

admits a unique solution u = u(t, x,v) = u(t)(x,v). Furthermore, for allt > 0, we
have

t
)2+ /nwunmmw=énﬂ@ﬂmqwﬂmm. (3:2)

Proof. Let f_ € LP(Ry,LP(T'_)) and fo € LP(R?). First. Using [6] pp.1124] it
follows that Cauchy’s problem P(f_, fy) has a unique solution given by
u(t,x,v) = (t —t(x,v)) f-(t — t(z,0),2 — t(z,v)v,v) + Uo(t) fo(z,v).  (3.3)
where ¢ is given in Lemma [3.3] Next. Multiplying first equation of Cauchy’s
problem (P)(f_, fo) by sgnu|u|P~! and using
1
sgnululP~tv - Vou = —v- Vi ul?,
p
with an integrating over (), we obtain
Ldlfu(®)]h 1 / 1
-t == vy_u(t,z,v ”dfff/ u(t, z,v)|PdE
Y L= (OIS O]
1

=pA|f@wwW%—;A+%uw%MW£

1 1
= IOy = Slu®lL e,

which implies, by integration with respect to ¢, that

t t
I =10l = [ W=y = [ Tl
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and achieves the proof. a

Remark 3.2. In the sequel, we use the fact that all expression on the form of (3.3)
is automatically solution of Cauchy’s problem P(f_, fj).

The second consequence of the regularity of the pair (X, V) is as follows.
Lemma 3.3. Suppose that the pair (X, V) is reqular and let

1 dft(z,v) —t <0,
0 otherwise.

é(t—t(ww)):{

If 0 < t < 79, then we have v+ & (t —t(-,-)) = 0.
Proof. By the regularity of the pair (X, V), we have

0<t<1o= inf 7(z,v)<7(z,v)
(z,w)el 4

a.e. (xz,v) € T'y, and therefore
Y+ [§(t = ()] (z,v) =€(t — 7(x,v)) = 0,
a.e. (x,v) €Ty. O
Lemma 3.4. Suppose that the pair (X,V) is reqular. For all 0 < t < 19, the
operator Ak (t) given by
AK(t)@(x’ U) =< (t - t(l‘, U)) K [V-FUO (t - t(xa U)) ‘p] (’JJ - t(IL‘, U)U’ U)
is a linear and bounded from LP(Q) into itself. Furthermore, we have

(1) Ag(0) =0;
(2) limgo [ A (H)¢llp = 0 for all p € LP(Q);
(3) *y+AK( )=0 for 0 <t <y

(4) Ax(t)Ak(s) =0 for all 0 <t,s < 19 such that 0 <t+ s < 79.
Proof. Let 0 < t < 19 and ¢ € LP(). As u(t) = Ag(t)e is the solution of
Cauchy’s problem P(f_ = K [y, Uo(-)¢], fo = 0) then and the boundedness
of K implies

t
lAxk @Ol / IK B Vol)el e s < KT [ 1:Ui(e)ellor,

However, u(t) = Uy(t)p is solution of Cauchy’s problem (3.1) with f_ =0, fo = ¢,
and therefore (3.2)) implies

t
| Vo)l = el = 1000l (3.9
From the previous two relations we obtain

A @®)elly < 1K [lelly — 1T ®)ellp] < K17l

which implies that Ax(t)¢ € LP(Q) and the boundedness of the operator Ag(t)
follows. Points (1) and (2) follow from the fact that {Uy(t)}+>0 is a Cp-semigroup.
(3) This point obviously follows from previous Lemma.
(4) Let 0 < ¢, s < 7g such that 0 < t+s < 79 and ¢ € LP(Q2). A simple calculation
shows that the expression of Ax (t)Ax(s)p contains the following function

alw, 0,20 = € (s = t(2'— (t = tlw,0))0',0') )
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for a.e (z,v) € Q and a.e (2/,v’) € T';. Using the definition of £ in previous Lemma,
we get that

alz,v, 7' ,0)=0+= s < t(xlf(t — t(z,v))v’,v')
= s< 1@, v) = (t—t(z,v))
= s+t<T(@ V) +t(x,v)

for a.e (z,v) € Q and a.e (2/,v') € ;. But, the regularity of the pair (X,V) in
the sense of Definition [2.1] gives us

t+s<Tto= inf 72", V) <72 ,v) <T@, v)+t(z,v)
(z’,v")eT 4
for a.e. (xz,v) € Q and a.e. (2/,v') € T'y which implies that «(-,-,-,-) = 0 and
therefore A (t)Ax(s) = 0. The fourth point is proved. O

The main result of this section is given as follows.

Theorem 3.5. Suppose that the pair (X,V) is reqular. The family of operators
{Uk () }iz0 defined by

Uk (t) = [Uo(70) + Ax (70)]" [Un(r) + Ax(r)],

3.5
ift=n1og+71 with 0 <r <75 andn € N, (3:5)
is a Cy-semigroup on LP(QY). Furthermore, we have
Uk(t)p(x,v) = Uy(t)(x,v)+
el ) = Uo(t) 2.0 5o

g (t - t(xa U)) K [’y-i-UK (t - t(‘ra U)) ()0] (J} - t(.’IJ, U)Ua U)
for allt >0, a.e. (x,v) € Q and all p € LP(Q), where & is given in Lemma (3.3).
Proof. Note that from previous Lemma and Lemma [2.3|the operator Uy (t) + Ak (t)
(0 <t < 79) is a linear bounded from LP(2) into itself. Thus Uk(t) is also linear

bounded for all t > 0, Uk (0) = Up(0) + Ax (0) = I. Furthermore, if ¢ < 7 then we
trivially have

}{% Uk (t)e — ¢llp = }{% [Uo(t)e — llp + }{% | Ak (t)¢t]l, =0,

for all ¢ € LP(X x V). Now, let us show that Uk (t)Uk(s) = Uk(t + s) for all
t,s > 0.
First, note that if 0 < ¢,s < 79 such that 0 < ¢t + s < 79, a simple calculation
shows that Up(t) Ak (s) + Ak (t)Un(s) = Ak (t + s) and therefore
Uk ()Uk (s) = [Uo(t) + Ak ()] [Uo(s) + Ak (s)]

=Up(t+s) + Uo(t)Ax(s) + Ax(t)Uo(s) + Ar (t) Ak (s)
=Up(t+s)+Ar(t +s)
=Ug (t + S),

(3.7)

where we have used the relation Ag(t)Ak(s) =0 in previous lemma. Thus
Uk (t)Uk(s) = Uk (t + s), (3.8)

for all 0 < t¢,s < 79 such that 0 <t + s < 79.
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Next, for all ¢,s > 0, there exists n;,ns € N and 0 < ri, 7y < 79 such that
t =n7o+ 1 and t = ng7o + 5. In this case (3.8) implies

Uk ()Uk () = [Uk (10)]" Uk (r) U (70)]"* Uk (r¢)

Uk (10/2)]*" [Uk (re/2)*[Uk (10/2)]"* Uk (r2/2)]?
(10/2))*" Uk (10/2)1*" [Uk (4 /2)* Uk (r2/2)]

(10)]™ [Use (70)]"™ [Ure ((re + 74) /2)]?

(

=
=
= )]

= [Uk (o)™ Uk ((re +14) /2))?

§§$

because
0 S (7-0/2)7 (Tt/Q)a (7“5/2), (Tt + TO)/27 (TS + TO)/Qa (Tt + TS)/Q < To
Now, if 7 + rs < 79 then (((r¢ + 75)/2) + ((r+ + r5)/2)) < 7o which implies, by
(3.8), that [Ug ((r¢ +1¢)/2)]? = Uk (ry +1¢) and therefore Ug (t)Ug (s) = Uk (t + )
because ¢t + s = (ng + ng)70 + (1t + 1) with 0 < (ry +75) < 79.
If o <7y +rs <279 then ry + ry = 79 + 7 with 0 < r < 79. As we have,

0 < (r¢/2),(rs/2), (re +15)/2,(r/2) < 19
then implies
Uk (t)Uk (5) = [Uk (o))" " [Uk ((re +14) /2)]°
= [Uk (10)]™ " [Uk ((10/2) + (r/2)))?
= [Uk (10)]" " [Uk (10/2)]*[Uk (r/2)]?
= )]
[ )]

(70)]" " U (10) Urc (7)
ni+nsg +1U ( )

S

(70
=Uk(t+s)

because (t+ ) = (ny+ns)10+ (re+715) = (ne+ns)70+ (t0+7) = (Re+ns+ Do+ 7
with 0 <r < 79.
Now, let us show (3.6)). If we denote

A ()ple,v) = € (¢ — Hw,0)) K [y Uk (¢ — o, 0)) ] (@ — Lz, v)v,0),
then, we have to show the following formula
Uk (t) = Ug(t) + Ag(t), t>0. (3.9)
Let ¢ € WP(Q). If 0 < ¢ < 7o, the third point of Lemma[3.4]infers that v, U ()¢ =
Y+ Uo(t)p + v+ Ak (t)p = 7+ Up(t) which implies
V+Uk (t = t(x,v))p = 74 Uo(t — t(z,v))¢
for a.e. (z,v) € Q such that t(x,v) <t and therefore
Ag(t)p(x,v) =&t = t(w,v)) K [y Uk (t = t(z,v))¢] (z = t(z,v)v,v)
= &(t = t(x, 0)) K [y Uo(t — t(x, v))¢] (z — t(x, v)v, v)
= Ar (t)p(z,v)
for a.e. (z,v) € Q and all 0 < ¢ < 7. Thus, we have
Uk (t)p = Uo(t)p + Ak (t)p = Up(t)p + Ak (t)p

for all 0 < ¢ < 79 and all ¢ € WP(§2). Now the density of WP(Q) in LP(2) implies
that (3.9) holds for all 0 <t < 79.
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Next. Suppose that holds for (n — 1)1 <t < n1p and all ¢ € LP(Q). If
nto <t < (n+ 1)1 then (n — 1)179 <t — 79 < n71y and therefore
Uk (t)p = Uk (t — 10)Uk (10)
= [Uo(t = 70) + Ak (t — 70)] [Uo(10) + Ax (10)] 0
= Uo(t)p + Uo(t — 10) Ak (70)p + As (t — 10) Uk (10)¢p-

Using the definition gf ¢ given Lemma a simple calculation implies Up(t —
70) Ak (10) = 0 and Ax (t — 70)Uk (10) = Ak (t)p. Thus

Uk (t)p = Uo(t)p + Ax (t)p
which prove (3.9) for np <t < (n+ 1)79 and therefore for all ¢ > 0. O

4. GENERATION THEOREM
To show the main result of this work, we needed the following result.

Lemma 4.1. Suppose that the pair (X, V) is reqular. If ¢ € WP(Q) and A > 0,
then we have

lim H Ag(t)p + Up(t)T —
t\.0 t

where U is given by (2.5)).

Proof. Let 0 <t <1 and ¢ € WP(Q). Using (2.5)), a simple calculation gives us
[AK(t)Lp + Uo(t)\If - _

t
oM _
= ( Lo )\)\I/(a:,v)
+ %(AK(t)cp(as, v) — &(t — t(z,v))eMex(z, v)v_p (x — t(x, v)v, v))
= Li(t)p + I (t)¢

v
=AY = (1K — vl

V] (2, v)

a.e. (x,v) € Q, which implies

e+ Us(t)¥ — ¥
t

) ) . 1 Ak(
lim |2 (8)ll, = Jim [ 1 (8 < im | — |,

and

. 1A @) +Up(t)T — T . .
t | t =, < i a0l + om0
As we obviously have lim;_,q I;(¢) = 0, then we get

- Ax () + Up(H)¥ — ¥ — 1
ti | t — A, = Jim 1720l (4.1)
But u(t) = tIy(t)e is the solution of Cauchy’s problem P(f_ = K [v4+Uy(t)p] —

eMy_¢, fo = 0), thus (3.2) implies

1 t . 1 t
IL@els = ; / 1 [y Dols)6) — X9l o yds — 7 / I L (@ I2 . ds.
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From the regularity of the pair (X, V) we get, by Lemma [3.3] and the third point
of Lemma that v I2(t)¢ = 0 and therefore the previous relation becomes

¢
IOl = 5 [ 1K B Ualedel = -l s (4.2)
Using the boundedness of K and the second point of Lemma [2.4] we obtain the
continuity of the application
0<t<m— K[yUs(s)p] —e™y_pe LP(T)
for all ¢ € WP(Q2) and therefore becomes

i P _ _ P
lim [|2(t) el = 1K o] = 1=l )- (4.3)
which achieves the proof by (4.1)). O

Now, we are able to state the main result of this work.

Theorem 4.2. Suppose that the pair (X, V) is reqular. Then the operator Tk given
by

Tro(z,v) = —v-Vyp(z,v), on the domain

D(Tk) ={p € WP(Q), 7-¢ = K71}
is the infinitesimal generator of the Cy-semigroup {Uk (t)}1>0 satisfying
Uk (t)p(x,v) = Uo(t)(z,v) + & (t — t(z,v)) K [v1 Uk (t — t(xz,v)) o] (z — t(z,v)v,v)

(4.5)

forallt > 0 and a.e. (xz,v) € Q and all p € LP(Q), where £ is given the Lemma
[3-3 Furthermore, if |K|| > 1, then we have

(4.4)

t
Uk Olleqwoan < 1Kl ep( - mK]). ¢ 0 (4.6)

Proof. Note that the existence of the Cy-semigroup {Uk (¢)}+>0 and are al-
ready proved in Theorem Let us shown that the operator Tk is the generator
of our semigroup.

Let 0 <t < 79 and ¢ € WP(Q). Using we easily get

Uk(t)p — Up(t)® — @ Axt)p+Up(t)¥ — U
which implies
Uk(t)p +
Us(t)® — @ Ag(t)p + Up(t) ¥ — T
o O e E G T UL )
and
Agt)p +Upg(t)¥ — ¥ Up(t)d —
H K( )90 tO( ) _ )‘\PHP _ || 0( )t _TO(I)H;D
Uk(t)p —
<| W22y vy,
Lemmas [2.3] and [.1] imply
. Us()p—¢ L
}{% Hf tou- Vx‘PHp = %{% Ky — VJPHiP(F,) (4.8)



10 M. BOULANOUAR EJDE-2008/155

which implies

. Ukt —
v € D(Tk) <:>Kfy+<p—’y,g0:0<:>}<%”% +v-Vw@Hp =0
and therefore (4.8)) gives us
U)o —¢
fo |7+ Tieel, =0

Thus Tk is the generator of the semigroup {Ux (¢)}1>0. Now, let us show (4.6)).

Let 0 <t <71 and ¢ € D(Tk). As, u(t) = U (t)p = Up(t)p + Ak (t)p is the
solution of Cauchy’s problem P(f_ = K [y+Us(t)¢], fo = ¢), then and the
boundedness of the operator K infer that

t t
U ()ellE = / 1K [ Uo(s)l 12,0 yds + ]2 - / I+ Un ()12 e, ds

t
< UK =1) [ I Ua(o)eln, s + el

where we have used the third point of Lemma Using (3.4) and the fact that
IEK|| > 1, the previous relation becomes

Uk @ells < KNP =1 llellh + llelly = 1K 1Pl
and therefore
Uk ()l cizroy < 1K, forall 0 <t < 7,

because of the density of D(Tk) in LP(Q). Now, for all ¢ > 0, there exists n € N
and 0 < r < 79 such that ¢t = n7g + . Using previous relation and (3.5)) we get

Uk ()l 2czr )y = Uk (70)]" Uk ()| 2L (02))
< Uk (r)lIZ(Leop UK ()l (22 (2)
< K"K

< ||K[|/™ | K]
which prove (4.6)) and completes the proof. [

Remark 4.3. Recall that the case || K| < 1 is already studied in [5] without the
hypothesis : (X, V) is regular.
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