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NEW APPROACH TO STREAMING SEMIGROUPS WITH
MULTIPLYING BOUNDARY CONDITIONS

MOHAMED BOULANOUAR

Abstract. This paper concerns the generation of a C0-semigroup by the

streaming operator with general multiplying boundary conditions. A first ap-

proach, presented in [2], is based on the Hille-Yosida’s Theorem. Here, we
present a second approach based on the construction of the generated semi-

group, without using the Hille-Yosida’s Theorem.

1. Introduction

Let us consider a particle population (neutrons, photons, molecules of gas,. . . )
in some domain of Rn. Each particle is distinguished by its position x ∈ X ⊂ Rn

and its directional velocity v ∈ V ⊂ Rn. If we denote by f(t, x, v) the density of
particles having, at the time t, the position x with the directional velocity v, then
particle population is governed by the following evolution equation

∂f

∂t
(t) = −v · ∇xf(t) =: TKf(t), (1.1)

where (x, y) ∈ Ω = X × V and t ≥ 0. The operator TK is called the streaming
operator describing the transport of particles and it is equipped with following
general boundary conditions

f(t)
∣∣
Γ−

= K
(
f(t)

∣∣
Γ+

)
(1.2)

where f(t)|Γ− (resp. f(t)|Γ+) is the incoming (resp. outgoing) particle flux which
is the restriction of the density f(t) on the subset Γ− (resp. Γ+) of ∂X × V . The
boundary operator K is linear and bounded on suitable function spaces. All of
known boundary conditions (vacuum, specular reflections, periodic,. . . ) are special
examples of our general context. (see the next section for more explanations).

When ‖K‖ ≤ 1, the existence of a strongly continuous semigroup has been
investigated by several authors and important results have been cleared in [1, 7, 8].

However, the case ‖K‖ ≥ 1 has been rarely studied and the first approach, based
on Hille-Yosida’s Theorem, is given in [2] according to some geometrical restrictions
on X and V that we have expressed in the definition 2.1. Namely, the difficulty
regarding the case ‖K‖ > 1 is linked to the increasing number of incoming particles.
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In this case, the time sojourn of particles in X may be arbitrary small and intuitively
the boundary operator K does not take too much into account such as particles.

The motivation, of this present work, is to give a second approach when ‖K‖ ≥ 1
without using the Hille-Yosida’s Theorem. This approach is concerned by two steps.
The first one is devoted to the construction of a C0-semigroup. In the second one,
we show that TK is the infinitesimal generator of this semigroup.

To obtain our objective, we use our technics successfully applied in [3, 4]. We
point out that this work is new and gives the explicit expression of the generated
semigroup.

2. Estatement of the problem

We consider Banach space Lp(Ω) (1 ≤ p < ∞) with its natural norm

‖ϕ‖p =
[ ∫

Ω

|ϕ(x, v)|pdxdµ
]1/p

, (2.1)

where Ω = X × V with X ⊂ Rn be a smoothly bounded open subset and dµ be a
Radon measure on Rn with support V . We also consider the partial Sobolev space

W p(Ω) = {ϕ ∈ Lp(Ω), v · ∇xϕ ∈ Lp(Ω)},

with the norm ‖ϕ‖W p(Ω) = [‖ϕ‖p
p + ‖v · ∇xϕ‖p

p]
1/p. We set n(x) the outer unit

normal at x ∈ ∂X, where ∂X is the boundary of X equipped with the measure of
surface dγ. We denote

Γ = ∂X × V, Γ0 = {(x, v) ∈ Γ, v · n(x) = 0},
Γ+ = {(x, v) ∈ Γ, v · n(x) > 0}, Γ− = {(x, v) ∈ Γ, v · n(x) < 0},

and suppose that dγdµ(Γ0) = 0. For (x, v) ∈ Ω, the time which a particle starting
at x with velocity −v needs until it reaches the boundary ∂X of X is denoted by

t(x, v) = inf{t > 0, x− tv 6∈ X}.

Similarly, if (x, v) ∈ Γ+ we set

τ(x, v) = inf{t > 0, x− tv 6∈ X}.

Now, we use the context of [2] as follows

Definition 2.1. The pair (X, V ) is regular if

τ0 := inf
(x,v)∈Γ+

τ(x, v) > 0.

We also consider the trace spaces Lp(Γ±) equipped with the norm

‖ϕ‖Lp(Γ±) =
[ ∫

Γ±

|ϕ(x, v)|pdξ
]1/p

,

where dξ = |v ·n(x)|dγdµ. The first consequence of the regularity of the pair (X, V )
is as follows.

Lemma 2.2 ([2]). If the pair (X, V ) is regular, then the trace applications

γ+ : W p(Ω) −→ Lp(Γ+), γ− : W p(Ω) −→ Lp(Γ−),

are linear and continuous.
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Finally, if we consider the boundary operator

K ∈ L (Lp(Γ+), Lp(Γ−)) , (2.2)

then the previous Lemma gives a sense to the operator

TKϕ = −v · ∇xϕ defined on the domain

D(TK) = {ϕ ∈ W p(X × V ), γ−ϕ = Kγ+ϕ}.

We set ‖K‖ := ‖K‖L(Lp(Γ+),Lp(Γ−)) for the rest of this article. If K = 0, the
operator T0 has properties that we summarize as follows.

Lemma 2.3. The operator T0, on Lp(Ω) (p ≥ 1), generates a contraction C0-semi-
group {U0(t)}t≥0 given by

U0(t)ϕ(x, v) = χ (t− t(x, v))ϕ (x− tv, v) , (2.3)

where

χ (t− t(x, v)) =

{
1 if t(x, v)− t ≥ 0,

0 otherwise.
(2.4)

We conclude this section with the following lemma that we will need later.

Lemma 2.4. Suppose that the pair (X, V ) is regular and let ϕ ∈ W p(Ω) and λ > 0.
If we set

Ψ(x, v) = ελ(x, v)γ−ϕ(x− t(x, v)v, v),
Φ = ϕ−Ψ,

(2.5)

where ελ(x, v) = e−λt(x,v), then the following statements hold

(1) Ψ ∈ W p(Ω) and Φ ∈ D(T0);
(2) the application t ≥ 0 → γ+[U0(t)ϕ] ∈ Lp(Γ+) is continuous.

Proof. (1) Let ϕ ∈ W p(Ω) and λ > 0. As we have v · ∇xΨ + λΨ = 0 with
γ−Ψ = γ−ϕ ∈ Lp(Γ−), then a simple calculation gives us

‖v · ∇xΨ‖p
p = λ‖Ψ‖p

p ≤ λ
[ 1
pλ

]1/p‖γ−ϕ‖p
Lp(Γ−) < ∞

which implies

‖Ψ‖W p(Ω) = [‖Ψ‖p
p + ‖v · ∇xΨ‖p

p]
1/p < ∞,

‖Φ‖W p(Ω) = ‖ϕ−Ψ‖W p(Ω) ≤ ‖ϕ‖W p(Ω) + ‖Ψ‖W p(Ω) < ∞,

and therefore Ψ and Φ belong to W p(Ω). Furthermore, we trivially have γ−Φ =
γ−(ϕ−Ψ) = γ−ϕ− γ−ϕ = 0 and thus Φ ∈ D(T0).

(2) Let ϕ ∈ W p(Ω) and λ > 0. For all h > 0 and all t ≥ 0 we have

‖γ+U0(t + h)ϕ− γ+U0(t)ϕ‖Lp(Γ+)

= ‖γ+U0(t + h)Ψ− γ+U0(t)Ψ + γ+U0(t + h)Φ− γ+U0(t)Φ‖Lp(Γ+)

≤ ‖γ+U0(t + h)Ψ− γ+U0(t)Ψ‖Lp(Γ+) + ‖γ+U0(t + h)Φ− γ+U0(t)Φ‖Lp(Γ+)

=: I1(h) + I2(h).
(2.6)
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As Φ ∈ D(T0), Lemmas 2.2 and 2.3, imply

lim
h→0

I2(h) = lim
h→0

‖γ+U0(t + h)Φ− γ+U0(t)Φ‖Lp(Γ+)

≤ ‖γ+‖L(D(T0),Lp(Γ+)) lim
h→0

‖U0(t + h)Φ− U0(t)Φ‖D(T0)

= 0.

Next, a simple calculation shows that

lim
h→0

I1(h)p = lim
h→0

‖γ+U0(t + h)Ψ− γ+U0(t)Ψ‖p
Lp(Γ+)

= lim
h→0

∫
Γ+

|χ(t + h− t(x, v))eλ(t+h) − χ(t− t(x, v))eλt|p|Ψ(x, v)|pdξ

= 0

This completes the proof. �

3. Construction of the semigroup

In this section, we construct the semigroup {UK(t)}t≥0 when ‖K‖ ≥ 1. In order
to show Theorem 3.5 which is the main result, we begin by

Lemma 3.1. The following Cauchy’s problem
du

dt
+ v · ∇xu = 0, (t, x, v) ∈ (0,∞)× Ω;

γ−u = f− ∈ Lp (R+, Lp(Γ−)) ;

u(0) = f0 ∈ Lp(Ω),

(3.1)

admits a unique solution u = u(t, x, v) = u(t)(x, v). Furthermore, for all t ≥ 0, we
have

‖u(t)‖p
p +

∫ t

0

‖γ+u(s)‖p
Lp(Γ+)ds =

∫ t

0

‖f−(s)‖p
Lp(Γ−)ds + ‖f0‖p

p. (3.2)

Proof. Let f− ∈ Lp (R+, Lp(Γ−)) and f0 ∈ Lp(Ω). First. Using [6, pp.1124] it
follows that Cauchy’s problem P(f−, f0) has a unique solution given by

u(t, x, v) = ξ (t− t(x, v)) f−(t− t(x, v), x− t(x, v)v, v) + U0(t)f0(x, v). (3.3)

where ξ is given in Lemma 3.3. Next. Multiplying first equation of Cauchy’s
problem (P)(f−, f0) by sgn u|u|p−1 and using

sgn u|u|p−1v · ∇xu =
1
p
v · ∇x|u|p,

with an integrating over Ω, we obtain

1
p

d‖u(t)‖p
p

dt
=

1
p

∫
Γ−

|γ−u(t, x, v)|pdξ − 1
p

∫
Γ+

|γ+u(t, x, v)|pdξ

=
1
p

∫
Γ−

|f−(t, x, v)|pdξ − 1
p

∫
Γ+

|γ+u(t, x, v)|pdξ

=
1
p
‖f−(t)‖p

Lp(Γ−) −
1
p
‖γ+u(t)‖p

Lp(Γ+)

which implies, by integration with respect to t, that

‖u(t)‖p
p − ‖f0‖p

p =
∫ t

0

‖f−(s)‖p
Lp(Γ−)ds−

∫ t

0

‖γ+u(s)‖p
Lp(Γ+)ds
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and achieves the proof. �

Remark 3.2. In the sequel, we use the fact that all expression on the form of (3.3)
is automatically solution of Cauchy’s problem P(f−, f0).

The second consequence of the regularity of the pair (X, V ) is as follows.

Lemma 3.3. Suppose that the pair (X, V ) is regular and let

ξ (t− t(x, v)) =

{
1 if t(x, v)− t ≤ 0,

0 otherwise.

If 0 ≤ t ≤ τ0, then we have γ+ξ (t− t(·, ·)) = 0.

Proof. By the regularity of the pair (X, V ), we have

0 ≤ t ≤ τ0 = inf
(x,v)∈Γ+

τ(x, v) ≤ τ(x, v)

a.e. (x, v) ∈ Γ+, and therefore

γ+ [ξ(t− t(·, ·))] (x, v) = ξ(t− τ(x, v)) = 0,

a.e. (x, v) ∈ Γ+. �

Lemma 3.4. Suppose that the pair (X, V ) is regular. For all 0 ≤ t ≤ τ0, the
operator AK(t) given by

AK(t)ϕ(x, v) = ξ (t− t(x, v))K [γ+U0 (t− t(x, v))ϕ] (x− t(x, v)v, v)

is a linear and bounded from Lp(Ω) into itself. Furthermore, we have
(1) AK(0) = 0;
(2) limt↘0 ‖AK(t)ϕ‖p = 0 for all ϕ ∈ Lp(Ω);
(3) γ+AK(t) = 0 for 0 ≤ t ≤ τ0;
(4) AK(t)AK(s) = 0 for all 0 ≤ t, s ≤ τ0 such that 0 ≤ t + s ≤ τ0.

Proof. Let 0 ≤ t ≤ τ0 and ϕ ∈ Lp(Ω). As u(t) = AK(t)ϕ is the solution of
Cauchy’s problem P(f− = K [γ+U0(·)ϕ] , f0 = 0) then (3.2) and the boundedness
of K implies

‖AK(t)ϕ‖p
p ≤

∫ t

0

‖K [γ+U0(s)ϕ] ‖p
Lp(Γ−)ds ≤ ‖K‖p

∫ t

0

‖γ+U0(s)ϕ‖p
Lp(Γ+).

However, u(t) = U0(t)ϕ is solution of Cauchy’s problem (3.1) with f− = 0, f0 = ϕ,
and therefore (3.2) implies∫ t

0

‖γ+U0(s)ϕ‖p
Lp(Γ+) = ‖ϕ‖p

p − ‖U0(t)ϕ‖p
p. (3.4)

From the previous two relations we obtain

‖AK(t)ϕ‖p
p ≤ ‖K‖p

[
‖ϕ‖p

p − ‖U0(t)ϕ‖p
p

]
≤ ‖K‖p‖ϕ‖p

p

which implies that AK(t)ϕ ∈ Lp(Ω) and the boundedness of the operator AK(t)
follows. Points (1) and (2) follow from the fact that {U0(t)}t≥0 is a C0-semigroup.

(3) This point obviously follows from previous Lemma.
(4) Let 0 ≤ t, s ≤ τ0 such that 0 ≤ t+s ≤ τ0 and ϕ ∈ Lp(Ω). A simple calculation

shows that the expression of AK(t)AK(s)ϕ contains the following function

α(x, v, x′, v′) := ξ
(
s− t

(
x′−

(
t− t(x, v)

)
v′, v′

))
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for a.e (x, v) ∈ Ω and a.e (x′, v′) ∈ Γ+. Using the definition of ξ in previous Lemma,
we get that

α(x, v, x′, v′) = 0 ⇐⇒ s < t
(
x′−

(
t− t(x, v)

)
v′, v′

)
⇐⇒ s < τ(x′, v′)− (t− t(x, v))

⇐⇒ s + t < τ(x′, v′) + t(x, v)

for a.e (x, v) ∈ Ω and a.e (x′, v′) ∈ Γ+. But, the regularity of the pair (X, V ) in
the sense of Definition 2.1 gives us

t + s ≤ τ0 = inf
(x′,v′)∈Γ+

τ(x′, v′) ≤ τ(x′, v′) < τ(x′, v′) + t(x, v)

for a.e. (x, v) ∈ Ω and a.e. (x′, v′) ∈ Γ+ which implies that α(·, ·, ·, ·) = 0 and
therefore AK(t)AK(s) = 0. The fourth point is proved. �

The main result of this section is given as follows.

Theorem 3.5. Suppose that the pair (X, V ) is regular. The family of operators
{UK(t)}t≥0 defined by

UK(t) = [U0(τ0) + AK(τ0)]
n [U0(r) + AK(r)] ,

if t = nτ0 + r with 0 ≤ r < τ0 and n ∈ N,
(3.5)

is a C0-semigroup on Lp(Ω). Furthermore, we have

UK(t)ϕ(x, v) = U0(t)(x, v)+

ξ (t− t(x, v))K [γ+UK (t− t(x, v))ϕ] (x− t(x, v)v, v)
(3.6)

for all t ≥ 0, a.e. (x, v) ∈ Ω and all ϕ ∈ Lp(Ω), where ξ is given in Lemma (3.3).

Proof. Note that from previous Lemma and Lemma 2.3 the operator U0(t)+AK(t)
(0 ≤ t ≤ τ0) is a linear bounded from Lp(Ω) into itself. Thus UK(t) is also linear
bounded for all t ≥ 0, UK(0) = U0(0) + AK(0) = I. Furthermore, if t ≤ τ0 then we
trivially have

lim
t↘0

‖UK(t)ϕ− ϕ‖p = lim
t↘0

‖U0(t)ϕ− ϕ‖p + lim
t↘0

‖AK(t)ϕt‖p = 0,

for all ϕ ∈ Lp(X × V ). Now, let us show that UK(t)UK(s) = UK(t + s) for all
t, s ≥ 0.

First, note that if 0 ≤ t, s ≤ τ0 such that 0 ≤ t + s ≤ τ0, a simple calculation
shows that U0(t)AK(s) + AK(t)U0(s) = AK(t + s) and therefore

UK(t)UK(s) = [U0(t) + AK(t)] [U0(s) + AK(s)]

= U0(t + s) + U0(t)AK(s) + AK(t)U0(s) + AK(t)AK(s)

= U0(t + s) + AK(t + s)

= UK(t + s),

(3.7)

where we have used the relation AK(t)AK(s) = 0 in previous lemma. Thus

UK(t)UK(s) = UK(t + s), (3.8)

for all 0 ≤ t, s ≤ τ0 such that 0 ≤ t + s ≤ τ0.
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Next, for all t, s ≥ 0, there exists nt, ns ∈ N and 0 ≤ rt, rs < τ0 such that
t = ntτ0 + rt and t = nsτ0 + rs. In this case (3.8) implies

UK(t)UK(s) = [UK(τ0)]ntUK(rt)[UK(τ0)]nsUK(rt)

= [UK(τ0/2)]2nt [UK(rt/2)]2[UK(τ0/2)]2ns [UK(rt/2)]2

= [UK(τ0/2)]2nt [UK(τ0/2)]2ns [UK(rt/2)]2[UK(rt/2)]2

= [UK(τ0)]nt [UK(τ0)]ns [UK((rt + rt)/2)]2

= [UK(τ0)]nt+ns [UK((rt + rt)/2)]2

because

0 ≤ (τ0/2), (rt/2), (rs/2), (rt + τ0)/2, (rs + τ0)/2, (rt + rs)/2 < τ0

Now, if rt + rs < τ0 then (((rt + rs)/2) + ((rt + rs)/2)) < τ0 which implies, by
(3.8), that [UK((rt + rt)/2)]2 = UK(rt + rt) and therefore UK(t)UK(s) = UK(t + s)
because t + s = (nt + ns)τ0 + (rt + rs) with 0 ≤ (rt + rs) < τ0.

If τ0 ≤ rt + rs < 2τ0 then rt + rs = τ0 + r with 0 ≤ r < τ0. As we have,

0 ≤ (rt/2), (rs/2), (rt + rs)/2, (r/2) < τ0

then (3.8) implies

UK(t)UK(s) = [UK(τ0)]nt+ns [UK((rt + rt)/2)]2

= [UK(τ0)]nt+ns [UK((τ0/2) + (r/2))]2

= [UK(τ0)]nt+ns [UK(τ0/2)]2[UK(r/2)]2

= [UK(τ0)]nt+nsUK(τ0)UK(r)

= [UK(τ0)]nt+ns+1UK(r)

= UK(t + s)

because (t+s) = (nt +ns)τ0 +(rt +rs) = (nt +ns)τ0 +(τ0 +r) = (nt +ns +1)τ0 +r
with 0 ≤ r < τ0.

Now, let us show (3.6). If we denote

AK(t)ϕ(x, v) = ξ (t− t(x, v))K [γ+UK (t− t(x, v))ϕ] (x− t(x, v)v, v) ,

then, we have to show the following formula

UK(t) = U0(t) + AK(t), t ≥ 0. (3.9)

Let ϕ ∈ W p(Ω). If 0 ≤ t < τ0, the third point of Lemma 3.4 infers that γ+UK(t)ϕ =
γ+U0(t)ϕ + γ+AK(t)ϕ = γ+U0(t)ϕ which implies

γ+UK(t− t(x, v))ϕ = γ+U0(t− t(x, v))ϕ

for a.e. (x, v) ∈ Ω such that t(x, v) ≤ t and therefore

AK(t)ϕ(x, v) = ξ(t− t(x, v))K [γ+UK(t− t(x, v))ϕ] (x− t(x, v)v, v)

= ξ(t− t(x, v))K [γ+U0(t− t(x, v))ϕ] (x− t(x, v)v, v)

= AK(t)ϕ(x, v)

for a.e. (x, v) ∈ Ω and all 0 ≤ t < τ0. Thus, we have

UK(t)ϕ = U0(t)ϕ + AK(t)ϕ = U0(t)ϕ + AK(t)ϕ

for all 0 ≤ t < τ0 and all ϕ ∈ W p(Ω). Now the density of W p(Ω) in Lp(Ω) implies
that (3.9) holds for all 0 ≤ t < τ0.
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Next. Suppose that (3.9) holds for (n − 1)τ0 ≤ t < nτ0 and all ϕ ∈ Lp(Ω). If
nτ0 ≤ t < (n + 1)τ0 then (n− 1)τ0 ≤ t− τ0 < nτ0 and therefore

UK(t)ϕ = UK(t− τ0)UK(τ0)ϕ

=
[
U0(t− τ0) + AK(t− τ0)

][
U0(τ0) + AK(τ0)

]
ϕ

= U0(t)ϕ + U0(t− τ0)AK(τ0)ϕ + AK(t− τ0)UK(τ0)ϕ.

Using the definition of ξ given Lemma 3.3, a simple calculation implies U0(t −
τ0)AK(τ0)ϕ = 0 and AK(t− τ0)UK(τ0)ϕ = AK(t)ϕ. Thus

UK(t)ϕ = U0(t)ϕ + AK(t)ϕ

which prove (3.9) for nτ0 ≤ t < (n + 1)τ0 and therefore for all t ≥ 0. �

4. Generation Theorem

To show the main result of this work, we needed the following result.

Lemma 4.1. Suppose that the pair (X, V ) is regular. If ϕ ∈ W p(Ω) and λ > 0,
then we have

lim
t↘0

∥∥AK(t)ϕ + U0(t)Ψ−Ψ
t

− λΨ
∥∥

p
= ‖Kγ+ϕ− γ−ϕ‖Lp(Γ−)

where Ψ is given by (2.5).

Proof. Let 0 < t ≤ τ0 and ϕ ∈ W p(Ω). Using (2.5), a simple calculation gives us[AK(t)ϕ + U0(t)Ψ−Ψ
t

− λΨ
]
(x, v)

=
(eλt − 1

t
− λ

)
Ψ(x, v)

+
1
t

(
AK(t)ϕ(x, v)− ξ(t− t(x, v))eλtελ(x, v)γ−ϕ (x− t(x, v)v, v)

)
=: I1(t)ϕ + I2(t)ϕ

a.e. (x, v) ∈ Ω, which implies

lim
t↘0

‖I2(t)ϕ‖p − lim
t↘0

‖I1(t)ϕ‖p ≤ lim
t↘0

∥∥AK(t)ϕ + U0(t)Ψ−Ψ
t

− λΨ
∥∥

p

and

lim
t↘0

∥∥AK(t)ϕ + U0(t)Ψ−Ψ
t

− λΨ
∥∥

p
≤ lim

t↘0
‖I2(t)ϕ‖p + lim

t↘0
‖I1(t)ϕ‖p.

As we obviously have limt→0 I1(t) = 0, then we get

lim
t↘0

‖AK(t)ϕ + U0(t)Ψ−Ψ
t

− λΨ‖p = lim
t↘0

‖I2(t)ϕ‖p. (4.1)

But u(t) = tI2(t)ϕ is the solution of Cauchy’s problem P(f− = K [γ+U0(t)ϕ] −
eλtγ−ϕ, f0 = 0), thus (3.2) implies

‖I2(t)ϕ‖p
p =

1
t

∫ t

0

‖K [γ+U0(s)ϕ]− eλsγ−ϕ‖p
Lp(Γ−)ds− 1

t

∫ t

0

‖γ+I2(t)ϕ‖p
Lp(Γ−)ds.
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From the regularity of the pair (X, V ) we get, by Lemma 3.3 and the third point
of Lemma 3.4, that γ+I2(t)ϕ = 0 and therefore the previous relation becomes

‖I2(t)ϕ‖p
p =

1
t

∫ t

0

‖K [γ+U0(s)ϕ]− eλsγ−ϕ‖p
Lp(Γ−)ds. (4.2)

Using the boundedness of K and the second point of Lemma 2.4 we obtain the
continuity of the application

0 ≤ t ≤ τ0 −→ K [γ+U0(s)ϕ]− eλsγ−ϕ ∈ Lp(Γ−)

for all ϕ ∈ W p(Ω) and therefore (4.2) becomes

lim
t↘0

‖I2(t)ϕ‖p
p = ‖K [γ+ϕ]− γ−ϕ‖p

Lp(Γ−). (4.3)

which achieves the proof by (4.1). �

Now, we are able to state the main result of this work.

Theorem 4.2. Suppose that the pair (X, V ) is regular. Then the operator TK given
by

TKϕ(x, v) = −v · ∇xϕ(x, v), on the domain

D(TK) = {ϕ ∈ W p(Ω), γ−ϕ = Kγ+ϕ}
(4.4)

is the infinitesimal generator of the C0-semigroup {UK(t)}t≥0 satisfying

UK(t)ϕ(x, v) = U0(t)(x, v) + ξ (t− t(x, v))K [γ+UK (t− t(x, v))ϕ] (x− t(x, v)v, v)
(4.5)

for all t ≥ 0 and a.e. (x, v) ∈ Ω and all ϕ ∈ Lp(Ω), where ξ is given the Lemma
3.3. Furthermore, if ‖K‖ ≥ 1, then we have

‖UK(t)‖L(Lp(Ω)) ≤ ‖K‖ exp
( t

τ0
ln ‖K‖

)
, t ≥ 0. (4.6)

Proof. Note that the existence of the C0-semigroup {UK(t)}t≥0 and (4.5) are al-
ready proved in Theorem 3.5. Let us shown that the operator TK is the generator
of our semigroup.

Let 0 < t < τ0 and ϕ ∈ W p(Ω). Using (2.5) we easily get[UK(t)ϕ− ϕ

t
+v ·∇xϕ

]
=

[U0(t)Φ− Φ
t

−T0Φ
]
+

AK(t)ϕ + U0(t)Ψ−Ψ
t

−λΨ (4.7)

which implies∥∥UK(t)ϕ + ϕ

t
+ v · ∇xϕ

∥∥
p

≤
∥∥U0(t)Φ− Φ

t
− T0Φ

∥∥
p

+
∥∥AK(t)ϕ + U0(t)Ψ−Ψ

t
− λΨ

∥∥
p

and ∥∥AK(t)ϕ + U0(t)Ψ−Ψ
t

− λΨ
∥∥

p
− ‖U0(t)Φ− Φ

t
− T0Φ‖p

≤
∥∥UK(t)ϕ− ϕ

t
+ v · ∇xϕ

∥∥
p
.

Lemmas 2.3 and 4.1 imply

lim
t↘0

∥∥UK(t)ϕ− ϕ

t
+ v · ∇xϕ

∥∥
p

= lim
t↘0

‖Kγ+ϕ− γ−ϕ‖p
Lp(Γ−) (4.8)
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which implies

ϕ ∈ D(TK) ⇐⇒ Kγ+ϕ− γ−ϕ = 0 ⇐⇒ lim
t↘0

∥∥UK(t)ϕ− ϕ

t
+ v · ∇xϕ

∥∥
p

= 0

and therefore (4.8) gives us

lim
t↘0

∥∥UK(t)ϕ− ϕ

t
+ TKϕ

∥∥
p

= 0.

Thus TK is the generator of the semigroup {UK(t)}t≥0. Now, let us show (4.6).
Let 0 ≤ t ≤ τ0 and ϕ ∈ D(TK). As, u(t) = UK(t)ϕ = U0(t)ϕ + AK(t)ϕ is the

solution of Cauchy’s problem P(f− = K [γ+U0(t)ϕ] , f0 = ϕ), then (3.2) and the
boundedness of the operator K infer that

‖UK(t)ϕ‖p
p =

∫ t

0

‖K [γ+U0(s)ϕ] ‖p
Lp(Γ−)ds + ‖ϕ‖p

p −
∫ t

0

‖γ+U0(s)ϕ‖p
Lp(Γ+)ds

≤ [‖K‖p − 1]
∫ t

0

‖γ+U0(s)ϕ‖p
Lp(Γ+)ds + ‖ϕ‖p

p

where we have used the third point of Lemma 3.4. Using (3.4) and the fact that
‖K‖ ≥ 1, the previous relation becomes

‖UK(t)ϕ‖p
p ≤ [‖K‖p − 1] ‖ϕ‖p

p + ‖ϕ‖p
p = ‖K‖p‖ϕ‖p

p

and therefore
‖UK(t)‖L(Lp(Ω)) ≤ ‖K‖, for all 0 ≤ t ≤ τ0,

because of the density of D(TK) in Lp(Ω). Now, for all t ≥ 0, there exists n ∈ N
and 0 ≤ r < τ0 such that t = nτ0 + r. Using previous relation and (3.5) we get

‖UK(t)‖L(Lp(Ω)) = ‖ [UK(τ0)]
n

UK(r)‖L(Lp(Ω))

≤ ‖UK(τ0)‖n
L(Lp(Ω))‖UK(r)‖L(Lp(Ω))

≤ ‖K‖n‖K‖

≤ ‖K‖t/τ0‖K‖.

which prove (4.6) and completes the proof. �

Remark 4.3. Recall that the case ‖K‖ < 1 is already studied in [5] without the
hypothesis : (X, V ) is regular.
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matiques Pures et Appliquées, Vol.79, N.10, pp. 1029–1055, 2000.

[5] M. Boulanouar; New approach of streaming semigroup with dissipative boundary condi-

tions.Electron. J. Diff. Eqns., Vol. 2007(2007), No. 167, pp. 1-13.
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