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POSITIVE PERIODIC SOLUTIONS FOR AN IMPULSIVE
RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH

DELAYS

YAN LIU, QUANYI WANG

Abstract. In this paper, we study a periodic ratio-dependent predator-prey

system of two species with impulse and multiple time delays. By means of
analysis techniques and the continuation theorem of coincidence degree theory,

we obtain sufficient conditions for the existence of positive periodic solutions

of the system. Our results extend previous results obtained in [9].

1. Introduction

The existence of positive periodic solutions of predator-prey models has been
extensively studied by many mathematicians and biologists in recent years. Some
authors have already obtained many good conclusions, see [2, 6, 10, 11].

However in many cases, especially when predators have to search, share or com-
pete for food, a more suitable general predator-prey model should be based on the
ratio-dependent theory. This roughly states that the per capita predator growth
rate should be a function of the ratio of prey to predator abundance, see [3, 5].

In addition, there are numerous examples of evolutionary systems which at cer-
tain instants in time are subjected to rapid changes (for example, those due to
seasonal effects of weather, food supply, hunting or harvesting seasons, etc). Those
short-time perturbations are often assumed to be in the form of impulses in the
modelling process. Consequently, impulsive differential equations provide a natural
description of such systems. Because equations of this kind are found in many fields
such as chemotherapy, population dynamics, optimal control, ecology, biotechnol-
ogy and physics, they have attracted the interest of many researchers, see [1, 8, 9]
and the references cited therein.
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For the above reasons, Liu and Li [9] considered the following ratio-dependent
predator-prey system with only one time delay and impulsive effects

x′ = x(t)(b1(t)− a1(t)x(t)−
c(t)y(t)

m1(t)y(t) + x(t)
), t 6= tk,

y′ = y(t)(−b2(t) +
a2(t)x(t− τ)

m2(t)y(t− τ) + x(t− τ)
), t 6= tk,

x(t+k )− x(t−k ) = ckx(tk),

y(t+k )− y(t−k ) = dky(tk), t = tk,

(x(0+), y(0+)) = (x0, y0),

(x(t), y(t)) = (ϕ1(t), ϕ2(t)) > 0, −τ ≤ t < 0,

(e1.1)

where x(t), y(t) represent the densities of prey and predator at time t, respectively;
τ is a positive constant time delay, b1(t), a1(t), m1(t), b2(t), c(t), a2(t), m2(t) > 0
are continuous T-periodic functions, Z+ = {1, 2, . . . }. The initial functions are
ϕ(t) = (ϕ1(t), ϕ2(t)), where 0 < t1 < t2 < · · · < tk < . . . and limk→∞ tk = +∞.
Assume that ck, dk (k ∈ Z+) are constants and there exists an integer q > 0 such
that ck+q = ck, dk+q = dk, tk+q = tk + T , 0 < tk+1 − tk < T . Liu and Li [9]
obtained the following result.
thmA([9]) Assume that the following conditions hold:

b1T + ln(
q∏

k=1

(1 + ck)) > (
c

m1
)T,

b2T − ln(
q∏

k=1

(1 + dk)) > 0, a2 > b2, T > τ,

a2
l(T − τ)− b2T + ln(

q∏
k=1

(1 + dk)) > 0,

cl −m1
u[b1 +

1
T

ln(
q∏

k=1

(1 + ck))] > 0 .

Then system (e1.1) has at least one positive T-periodic solution.
However, this theorem is not valid because the condition

cl −m1
u[b1 +

1
T

ln(
q∏

k=1

(1 + ck))] > 0

contradicts the condition

b1T + ln(
q∏

k=1

(1 + ck)) > (
c

m1
)T

because
cl

m1
u
≤ (

c

m1
).

Thus, the existence of a solution to (e1.1) has not been proved. Moreover, there are
also some mistakes in the course of the proof of thmA, such as the computations

of KP (I −Q)N
(
u(t)
v(t)

)
(see [9, p. 719]) and QNX (see [9, p. 722]).
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In the actual environment, scientific researches suggest that time delays often
occur in the course of the interaction of species in many ecological systems. So, in
the present paper, we study the following two-species ratio-dependent predator-prey
system with multiple time delays and impulsive effects

x′(t) = x(t)
[
b1(t)− a1(t)x(t− τ1(t))−

c(t)y(t− σ1(t))
m1(t)y(t− σ1(t)) + x(t− τ2(t))

]
, t 6= tk,

y′(t) = y(t)
[
− b2(t) +

a2(t)x(t− τ3(t))
m2(t)y(t− σ2(t)) + x(t− τ3(t))

]
, t 6= tk,

x(t+k )− x(t−k ) = c1kx(tk),

y(t+k )− y(t−k ) = c2ky(tk), t = tk, k = 1, 2, . . . ,

(x(0+), y(0+)) = (x0, y0),

(x(t), y(t)) = (ϕ1(t), ϕ2(t)) > 0, −τ ≤ t ≤ 0,
(e1.2)

where x(t), y(t) represent the densities of prey and predator at time t, respec-
tively; a1(t), a2(t), b1(t), b2(t), c(t),m1(t) and m2(t) are all positive continuous ω-
periodic functions; σ1(t), σ2(t), τ1(t), τ2(t) and τ3(t) are all nonnegative continuous
ω-periodic functions, τ = max0≤t≤ω{σ1(t), σ2(t), τ1(t), τ2(t), τ3(t)}. For the study
of (e1.2), we always assume that

(H1) {cik} is a real sequence and 1 + cik > 0, i = 1, 2, k = 1, 2, . . . ;
(H2) There exists an integer q > 0 such that ci(k+q) = cik, i = 1, 2, k = 1, 2, . . . ;
(H3) 0 < t1 < t2 < · · · < tq < ω are fixed impulsive points in a period and

tk+q = tk + ω, k = 1, 2, . . . .
In what follows, we shall use the following notation

fM = max
t∈[0,ω]

f(t), f l = min
t∈[0,ω]

f(t), f =
1
ω

∫ ω

0

f(t)dt,

where f(t) is a continuous ω-periodic function.

2. Preliminaries

In this section, we first introduce the continuation theorem of coincidence degree
theory [7], which will be used in this paper.

LetX,Z be real Banach spaces; let L : DomL ⊂ X → Z be a linear mapping and
N : X → Z a continuous mapping. The mapping L is called a Fredholm mapping
of index zero if dim kerL = codim ImL < +∞ and ImL is closed in Z. If L is a
Fredholm mapping of index zero and there exist continuous projectors P : X → X
and Q : Z → Z such that ImP = kerL, kerQ = ImL, X = kerL ⊕ kerP and
Z = ImL⊕ ImQ, then the restriction LP of L to DomL ∩ kerP is one-to-one and
onto ImL, so that its (algebraic) inverse KP : ImL → DomL ∩ kerP is defined.
Let Ω be an open bounded subset of X, the mapping N is called L-compact on Ω if
QN : Ω → Z and KP (I −Q)N : Ω → X are compact. Since ImQ is isomorphic to
kerL, there exists an isomorphism J : ImQ→ kerL. The following results appears
in [7].
lem2.1([7]) Let Ω ⊂ X be an open bounded set. Let L be a Fredholm mapping
of index zero and N : X → Z a continuous operator which is L-compact on Ω.
Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx 6= λNx;
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(b) for each x ∈ ∂Ω ∩ kerL,QNx 6= 0;
(c) deg{JQN,Ω ∩ kerL, 0} 6= 0.

Then the operator equation Lx = Nx has at least one solution in Ω ∩DomL.
To prove the main conclusion by means of the continuation theorem, we need to

introduce some function spaces.
Let J1 ⊂ R, and PC(J1,R) be the set of functions ψ : J1 → R such that ψ(t) is

continuous for t ∈ J1, t 6= tk, and is continuous from the left for t ∈ J1, and ψ(t+k )
exists for k = 1, 2, . . . . Also define

PC1(J1,R) = {ψ : J1 → R, ψ′ ∈ PC(J1,R)}.

Now we define

X =
{
u(t) = (u1(t), u2(t))T : ui(t) ∈ PC([0, ω],R) for t ∈ [0, ω],

ui(t+ ω) = ui(t) for t ∈ R, i = 1, 2
}

and Z = X × R2q, where

R2q = R2 × R2 × . . .× R2︸ ︷︷ ︸
q

.

Denote

‖u‖ = max
{

sup
t∈[0,ω]

|u1(t)|, sup
t∈[0,ω]

|u2(t)|
}

for u ∈ X

‖z‖ = ‖u‖+
q∑

k=1

‖rk‖ for z = (u, r1, r2, . . . , rq) ∈ Z,

where

rk =
(
r1k

r2k

)
∈ R2, ‖rk‖ = max{|r1k|, |r2k|}, k = 1, 2, . . . , q .

Then (X, ‖·‖) and (Z, ‖·‖) are both Banach spaces.
def2.1([1]) The set F ⊂ PC([0, ω],R) is said to be quasi-equicontinuous in [0, ω] if
for any ε > 0 there exists δ > 0 such that if x ∈ F , k ∈ Z+, t1, t2 ∈ (tk−1, tk)∩[0, ω],
|t1 − t2| < δ, then |x(t1)− x(t2)| < ε.
lem2.2([1]) The set F ⊂ PC([0, ω],R) is relatively compact if and only if

(1) F is bounded; that is, ‖ψ‖ = sup{|ψ| : t ∈ [0, ω]} ≤M for each ψ ∈ F and
some M > 0;

(2) F is quasi-equicontinuous in [0, ω].

3. Existence of positive ω-periodic solutions

In this section, we demonstrate the existence of a positive ω-periodic solution of
(e1.2).
thm3.1 Assume that (H1)–(H3) hold, and further assume the following conditions:

(1) b1ω +
∑q

k=1 ln(1 + c1k) > ( c
m1

)ω
(2) al

2ω +
∑q

k=1 ln(1 + c2k) > b2ω

(3) b2ω >
∑q

k=1 ln(1 + c2k)

Then (e1.2) has at least one positive ω-periodic solution.
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Proof. Let x(t) = eu1(t), y(t) = eu2(t), then system (e1.2) can be rewritten as

u′1(t) = b1(t)− a1(t)eu1(t−τ1(t)) − c(t)eu2(t−σ1(t))

m1(t)eu2(t−σ1(t))
+ eu1(t−τ2(t)), t 6= tk,

u′2(t) = −b2(t) +
a2(t)eu1(t−τ3(t))

m2(t)eu2(t−σ2(t)) + eu1(t−τ3(t))
, t 6= tk,

∆u1(tk) = u1(t+k )− u1(tk) = ln(1 + c1k),

∆u2(tk) = u2(t+k )− u2(tk) = ln(1 + c2k), k = 1, 2, . . . .

(e3.1)

For the sake of simplicity, we denote

f1(t, u(t)) = b1(t)− a1(t)eu1(t−τ1(t)) − c(t)eu2(t−σ1(t))

m1(t)eu2(t−σ1(t)) + eu1(t−τ2(t))
,

f2(t, u(t)) = −b2(t) +
a2(t)eu1(t−τ3(t))

m2(t)eu2(t−σ2(t)) + eu1(t−τ3(t))
,

∆u(tk) = u(t+k )− u(tk) =
(

∆u1(tk)
∆u2(tk)

)
, k = 1, 2, . . . , q,

u(t) = (u1(t), u2(t))T , C1k = ln(1 + c1k), C2k = ln(1 + c2k).

It is obvious that if system (e3.1) has an ω-periodic solution u∗(t) = (u∗1(t), u
∗
2(t))

T ,
then (x∗(t), y∗(t))T = (eu∗1(t), eu∗2(t))T is a positive ω-periodic solution of system
(e1.2). So, to complete the proof, it suffices to show that the system (e3.1) has one
ω-periodic solution.

To apply lem2.1 for establishing the existence of ω-periodic solutions of system
(e3.1), now let

DomL = {u(t) = (u1(t), u2(t))T ∈ X : (u1(t), u2(t))T ∈ PC1([0, ω],R)},

and take L : DomL⊂ X → Z as follows:

u→ (u′,4u(t1), . . . ,4u(tq)),

and define N : X → Z by

Nu =

((
f1(t, u(t))
f2(t, u(t))

)
,

(
C11

C21

)
, . . . ,

(
C1q

C2q

))

for u = (u1, u2)T ∈ X. Evidently, we have

kerL = {u : u ∈ X,u = c ∈ R2},

ImL =
{
z = (u, r1, r2, . . . , rq) ∈ Z :

1
ω

( ∫ ω

0

u(t)dt+
q∑

k=1

rk
)

= 0
}
.

So, ImL is closed in Z, and dim kerL = 2 = codim ImL. Hence, L is a Fredholm
mapping of index zero.
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Set two projectors P : X → X and Q : Z → Z as follows:

Pu =
1
ω

∫ ω

0

u(t)dt, (∀u = (u1, u2)T ∈ X),

Qz = Q(u, r1, . . . , rq) =
( 1
ω

( ∫ ω

0

u(t)dt+
q∑

k=1

rk
)
, 0, 0, . . . , 0

)
,

(∀z = (u, r1, r2, . . . , rq) ∈ Z) .

It is easy to see that P and Q are continuous projectors, such that

ImP = kerL, kerQ = ImL,

X = kerL⊕ kerP, Z = ImL⊕ ImQ.

Furthermore, through an easy computation, we find that the inverse KP of LP (the
restriction of L to DomL ∩ kerP ) has the form KP : ImL→ DomL ∩ kerP ,

KP (z(t)) =
∫ t

0

u(s)ds+
∑

0<tk<t

rk −
1
ω

[ ∫ ω

0

∫ t

0

u(s)dsdt+
q∑

k=1

rk(ω − tk)
]

for z = (u, r1, r2, . . . , rq) ∈ Z. Accordingly, QN : X → Z and KP (I −Q)N : X →
X read

QNu =
((

1
ω

( ∫ ω

0
f1(s, u(s)

)
ds+

∑q
k=1 C1k)

1
ω

( ∫ ω

0
f2(s, u(s))ds+

∑q
k=1 C2k

)) , 0, 0, . . . , 0) ,
and

KP (I −Q)Nu =

(∫ t

0
f1(s, u(s))ds+

∑
0<tk<t C1k∫ t

0
f2(s, u(s))ds+

∑
0<tk<t C2k

)

− 1
ω

(∫ ω

0

∫ t

0
f1(s, u(s))dsdt+

∑q
k=1 C1k(ω − tk)∫ ω

0

∫ t

0
f2(s, u(s))dsdt+

∑q
k=1 C2k(ω − tk)

)

− (
t

ω
− 1

2
)
(∫ ω

0
f1(s, u(s))ds+

∑q
k=1 C1k∫ ω

0
f2(s, u(s))ds+

∑q
k=1 C2k

)
.

Using the Lebesgue convergence theorem, it is easy to see that QN andKP (I−Q)N
are continuous. Moreover, from the expressions of QNu and KP (I − Q)Nu, it is
easy to see that QN(Ω) and KP (I − Q)N(Ω) are bounded for any open bounded
set Ω ⊂ X. Furthermore, we have that

d

dt
(QNu) = (0, 0, . . . , 0), t 6= tk, k = 1, 2, . . .

and

d

dt
(KP (I −Q)Nu) =

(
f1(t, u(t))− 1

ω (
∫ ω

0
f1(s, u(s))ds+

∑q
k=1 C1k)

f2(t, u(t))− 1
ω (
∫ ω

0
f2(s, u(s))ds+

∑q
k=1 C2k)

)
for t 6= tk, k = 1, 2, . . . , and u ∈ X. It follows from these expressions that the sets
{ d

dt (QNu) : u ∈ Ω} and { d
dt (KP (I−Q)Nu) : u ∈ Ω} are bounded. So we have that

QN(Ω) and KP (I − Q)N(Ω) are equi-continuous in [0, ω]. It follows from lem2.2
that QN(Ω) and KP (I −Q)N(Ω) are compact. Therefore N is L-compact on Ω.
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Corresponding to the operator equation Lu = λNu with λ ∈ (0, 1), we have

u′1(t) = λ
[
b1(t)− a1(t)eu1(t−τ1(t)) − c(t)eu2(t−σ1(t))

m1(t)eu2(t−σ1(t)) + eu1(t−τ2(t))

]
, t 6= tk,

u′2(t) = λ
[
− b2(t) +

a2(t)eu1(t−τ3(t))

m2(t)eu2(t−σ2(t)) + eu1(t−τ3(t))

]
, t 6= tk,

∆u1(tk) = λln(1 + c1k),

∆u2(tk) = λln(1 + c2k), k = 1, 2, . . . .
(e3.2)

Suppose that u(t) = (u1(t), u2(t))T ∈ X is an ω-periodic solution of (e3.2) for a
certain λ ∈ (0, 1). Integrating (e3.2) over the interval [0, ω], we obtain∫ ω

0

[
b1(t)−a1(t)eu1(t−τ1(t))− c(t)eu2(t−σ1(t))

m1(t)eu2(t−σ1(t)) + eu1(t−τ2(t))

]
dt = −

q∑
k=1

ln(1+c1k),

∫ ω

0

[
− b2(t) +

a2(t)eu1(t−τ3(t))

m2(t)eu2(t−σ2(t)) + eu1(t−τ3(t))

]
dt = −

q∑
k=1

ln(1 + c2k),

which yield ∫ ω

0

[
a1(t)eu1(t−τ1(t)) +

c(t)eu2(t−σ1(t))

m1(t)eu2(t−σ1(t)) + eu1(t−τ2(t))

]
dt

=
∫ ω

0

b1(t)dt+
q∑

k=1

ln(1 + c1k),
(e3.3)

∫ ω

0

a2(t)eu1(t−τ3(t))

m2(t)eu2(t−σ2(t)) + eu1(t−τ3(t))
dt =

∫ ω

0

b2(t)dt−
q∑

k=1

ln(1 + c2k). (e3.4)

In view of (e3.2), (e3.3) and (e3.4), we have∫ ω

0

|u1
′(t)|dt ≤ 2

∫ ω

0

b1(t)dt+
q∑

k=1

ln(1 + c1k) = 2b1ω +
q∑

k=1

ln(1 + c1k), (e3.5)

∫ ω

0

|u2
′(t)|dt ≤ 2

∫ ω

0

b2(t)dt−
q∑

k=1

ln(1 + c2k) = 2b2ω −
q∑

k=1

ln(1 + c2k). (e3.6)

Since u(t) = (u1(t), u2(t))T ∈ X, there exist ηi, ξi ∈ [0, ω], (i = 1, 2) such that

ui(η+
i ) = sup

t∈[0,ω]

ui(t) or ui(η−i ) = sup
t∈[0,ω]

ui(t),

ui(ξ+i ) = inf
t∈[0,ω]

ui(t) or ui(ξ−i ) = inf
t∈[0,ω]

ui(t), (i = 1, 2).

Whichever they are, for the sake of simplicity, we can denote them as follows:

ui(ηi) = sup
t∈[0,ω]

ui(t), ui(ξi) = inf
t∈[0,ω]

ui(t), (i = 1, 2).

Furthermore, it follows from (e3.3) that

b1ω +
q∑

k=1

ln(1 + c1k) ≥
∫ ω

0

a1(t)eu1(t−τ1(t))dt ≥ a1ωe
u1(ξ1),
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b1ω +
q∑

k=1

ln(1 + c1k)

=
∫ ω

0

a1(t)eu1(t−τ1(t))dt+
∫ ω

0

c(t)eu2(t−σ1(t))

m1(t)eu2(t−σ1(t)) + eu1(t−τ2(t))
dt

≤ a1ωe
u1(η1) + (

c

m1
)ω.

So, from the condition (1), we have

u1(ξ1) ≤ ln
b1ω +

∑q
k=1 ln(1 + c1k)
a1ω

=: H1, (e3.7)

u1(η1) ≥ ln
b1ω − ( c

m1
)ω +

∑q
k=1 ln(1 + c1k)

a1ω
=: H2. (e3.8)

Hence, (e3.5)–(e3.8) yield

u1(t) ≤ u1(ξ1) +
∫ ω

0

|u1
′(t)|dt+

q∑
k=1

|ln(1 + c1k)|

≤ H1 + 2b1ω +
q∑

k=1

[
ln(1 + c1k) + |ln(1 + c1k)|

]
=: H3,

(e3.9)

u1(t) ≥ u1(η1)−
∫ ω

0

|u1
′(t)|dt−

q∑
k=1

|ln(1 + c1k)|

≥ H2 − 2b1ω −
q∑

k=1

[
ln(1 + c1k) + |ln(1 + c1k)|

]
=: H4.

(e3.10)

It follows from the two equations above that

sup
t∈[0,ω]

|u1(t)| ≤ max{|H3|, |H4|} =: K1. (e3.11)

On the other hand, from (e3.4), we can easily get

b2ω−
q∑

k=1

ln(1+c2k) ≤
∫ ω

0

a2(t)eu1(η1)

m2(t)eu2(ξ2) + eu1(η1)
dt ≤ aM

2 eu1(η1)ω

ml
2e

u2(ξ2) + eu1(η1)
, (e3.12)

and

b2ω −
q∑

k=1

ln(1 + c2k) ≥
∫ ω

0

a2(t)eu1(ξ1)

m2(t)eu2(η2) + eu1(ξ1)
dt ≥ al

2e
u1(ξ1)ω

mM
2 eu2(η2) + eu1(ξ1)

.

(e3.13)
Thus, from (e3.11)–(e3.13) and the conditions (2) and (3), one has

u2(ξ2) ≤ ln

[
aM
2 ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
eK1

ml
2

[
b2ω −

∑q
k=1 ln(1 + c2k)

] = H5 +K1, (e3.14)

u2(η2) ≥ ln

[
al
2ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
e−K1

mM
2

[
b2ω −

∑q
k=1 ln(1 + c2k)

] = H6 −K1, (e3.15)
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where

H5 = ln

[
aM
2 ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
ml

2

[
b2ω −

∑q
k=1 ln(1 + c2k)

] ,

H6 = ln

[
al
2ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
mM

2

[
b2ω −

∑q
k=1 ln(1 + c2k)

] .

Furthermore, from (e3.6), (e3.14) and (e3.15), it follows that

u2(t) ≤ u2(ξ2) +
∫ ω

0

|u2
′(t)|dt+

q∑
k=1

|ln(1 + c2k)|

≤ H5 +K1 + 2b2ω −
q∑

k=1

ln(1 + c2k) +
q∑

k=1

|ln(1 + c2k)| =: H7,

(e3.16)

u2(t) ≥ u2(η2)−
∫ ω

0

|u2
′(t)|dt−

q∑
k=1

|ln(1 + c2k)|

≥ H6 −K1 − 2b2ω +
q∑

k=1

ln(1 + c2k)−
q∑

k=1

|ln(1 + c2k)| =: H8.

(e3.17)

Therefore,

sup
t∈[0,ω]

|u2(t)| ≤ max{|H7|, |H8|} =: K2. (e3.18)

Set K = 1 +K1 +K2 + |H1|+ |H2|+ |H5|+ |H6|. Clearly, K is independent of λ
(λ ∈ (0, 1)). Then it follows from (e3.11) and (e3.18) that

‖u‖ ≤ K. (e3.19)

Suppose u = (u1, u2)T ∈ R2. Then from the expression of QNu , we obtain

QN

(
u1

u2

)
=

((
b1 − a1e

u1 − 1
ω

∫ ω

0
c(t)eu2

m1(t)eu2+eu1 dt+ 1
ω

∑q
k=1 ln(1 + c1k)

−b2 + 1
ω

∫ ω

0
a2(t)e

u1

m2(t)eu2+eu1 dt+ 1
ω

∑q
k=1 ln(1 + c2k)

)
, 0, . . . , 0

)
.

(e3.20)
Consider the equation

b1 − a1e
u1 − 1

ω

∫ ω

0

c(t)eu2

m1(t)eu2 + eu1
dt+

1
ω

q∑
k=1

ln(1 + c1k) = 0,

−b2 +
1
ω

∫ ω

0

a2(t)eu1

m2(t)eu2 + eu1
dt+

1
ω

q∑
k=1

ln(1 + c2k) = 0.

(e3.21)

By analysis similar to the one for (e3.7), (e3.8), (e3.14) and (e3.15), it is not difficult
to see that any solution u∗ = (u∗1, u

∗
2)

T ∈ R2 of (e3.21) exists, it must satisfy:
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H2 ≤ u∗1 ≤ H1,

u∗2 ≤ ln

[
aM
2 ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
eu∗1

ml
2

[
b2ω −

∑q
k=1 ln(1 + c2k)

]
= ln

[
aM
2 ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
ml

2

[
b2ω −

∑q
k=1 ln(1 + c2k)

] + u∗1

= H5 +H1,

u∗2 ≥ ln

[
al
2ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
eu∗1

mM
2

[
b2ω −

∑q
k=1 ln(1 + c2k)

]
= ln

[
al
2ω − b2ω +

∑q
k=1 ln(1 + c2k)

]
mM

2

[
b2ω −

∑q
k=1 ln(1 + c2k)

] + u∗1

= H6 +H2,

which yield
‖u∗‖ ≤ K. (e3.22)

Put Ω = {u = (u1, u2)T ∈ X : ‖u‖ < K0}, where K0 = K+1. Then it follows from
(e3.19) that condition (a) of lem2.1 is satisfied.

Furthermore, for each u = (u1, u2)T ∈ ∂Ω ∩ kerL = ∂Ω ∩ R2, we know that
u = (u1, u2)T is a constant vector in R2 with ‖u‖ = K0, and then can directly get
QNu 6= 0 by (e3.20)-(e3.22). This shows that condition (b) of lem2.1 is satisfied.

Finally, let us prove that the condition (c) of lem2.1 is satisfied. Define φ :
Ω ∩ kerL× [0, 1] → R2 by

φ(u1, u2, η) =

(
b1 − a1e

u1 + 1
ω

∑q
k=1 ln(1 + c1k)

−b2 + 1
ω

∫ ω

0
a2(t)e

u1

m2(t)eu2+eu1 dt+ 1
ω

∑q
k=1 ln(1 + c2k)

)

+ η

(
− 1

ω

∫ ω

0
c(t)eu2

m1(t)eu2+eu1 dt

0

)
,

where u = (u1, u2)T ∈ Ω∩kerL, η ∈ [0, 1]. First, we will prove that φ(u1, u2, η) 6= 0
when u = (u1, u2)T ∈ ∂Ω∩kerL, η ∈ [0, 1]. Assume the conclusion is not true, then
there exists a constant vector u = (u1, u2)T with ‖u‖ = K0, such that φ(u1, u2, η) =
0 for a certain η ∈ [0, 1]; i.e.,

b1 − a1e
u1 +

1
ω

q∑
k=1

ln(1 + c1k)− η

ω

∫ ω

0

c(t)eu2

m1(t)eu2 + eu1
dt = 0,

−b2 +
1
ω

∫ ω

0

a2(t)eu1

m2(t)eu2 + eu1
dt+

1
ω

q∑
k=1

ln(1 + c2k) = 0.

(e3.23)

By a similar discussion on the solutions of (e3.21), it is easy to see that any solution
u = (u1, u2)T ∈ R2 of (e3.23) must satisfy

‖u‖ ≤ K < K0, (e3.24)

which contradicts ‖u‖ = K0 (∀u ∈ ∂Ω ∩ kerL). This shows that φ(u1, u2, η) 6= 0
when u = (u1, u2)T ∈ ∂Ω ∩ R2 and η ∈ [0, 1]. We next prove that the equation
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φ(u1, u2, 0) = 0 in Ω ∩ kerL has a unique solution u∗∗ = (u∗∗1 , u
∗∗
2 )T . In fact,

φ(u∗∗1 , u
∗∗
2 , 0) = 0 means

b1 − a1e
u∗∗1 +

1
ω

q∑
k=1

ln(1 + c1k) = 0,

−b2 +
1
ω

∫ ω

0

a2(t)eu∗∗1

m2(t)eu∗∗2 + eu∗∗1
dt+

1
ω

q∑
k=1

ln(1 + c2k) = 0;

(e3.25)

that is,

u∗∗1 = ln
b1 + 1

ω

∑q
k=1 ln(1 + c1k)
a1

,

−b2 +
1
ω

∫ ω

0

a2(t)eu∗∗1

m2(t)eu∗∗2 + eu∗∗1
dt+

1
ω

q∑
k=1

ln(1 + c2k) = 0.
(e3.26)

For u2 ∈ R, let

g(u2) = −b2 +
1
ω

∫ ω

0

a2(t)eu∗∗1

m2(t)eu2 + eu∗∗1
dt+

1
ω

q∑
k=1

ln(1 + c2k), (e3.27)

then g(u2) ∈ C1(R,R) and

g′(u2) = − 1
ω

∫ ω

0

a2(t)m2(t)eu∗∗1 eu2[
m2(t)eu2 + eu∗∗1

]2 dt < 0;

that is, g(u2) is strictly monotonous decreasing in R. From the conditions (2) and
(3), it is easy to obtain

g(+∞) = −b2 +
1
ω

q∑
k=1

ln(1 + c2k) < 0,

g(−∞) = a2 − b2 +
1
ω

q∑
k=1

ln(1 + c2k) > 0.

Therefore, there exists a unique u∗∗2 ∈ R such that g(u∗∗2 ) = 0; that is,

−b2 +
1
ω

∫ ω

0

a2(t)eu∗∗1

m2(t)eu∗∗2 + eu∗∗1
dt+

1
ω

q∑
k=1

ln(1 + c2k) = 0. (e3.28)

Then by integral mean value theorem, there exists a t0 ∈ [0, ω] such that

−b2 +
a2(t0)eu∗∗1

m2(t0)eu∗∗2 + eu∗∗1
+

1
ω

q∑
k=1

ln(1 + c2k) = 0. (e3.29)

It follows from (e3.29) and conditions (2), (3) that

u∗∗2 = ln

[
a2(t0)− b2 + 1

ω

∑q
k=1 ln(1 + c2k)

]
m2(t0)

[
b2 − 1

ω

∑q
k=1 ln(1 + c2k)

] + u∗∗1 . (e3.30)

Thus, from (e3.24) and (e3.30), we obtain

H2 ≤ u∗∗1 ≤ H1, H2 +H6 ≤ u∗∗2 ≤ H1 +H5,

which imply
‖u∗∗‖ ≤ K < K0;
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i.e., the equation φ(u1, u2, 0) = 0 in Ω∩kerL has a unique solution u∗∗ = (u∗∗1 , u
∗∗
2 )T .

Now define the isomorphism J : ImQ→kerL by

J
( 1
ω

(∫ ω

0

u(t)dt+
q∑

k=1

rk

)
, 0, 0, . . . , 0

)
=

1
ω

(∫ ω

0

u(t)dt+
q∑

k=1

rk

)
,

then JQNu = φ(u1, u2, 1) for each u = (u1, u2)T ∈ Ω ∩ kerL. Using the property
of topological degree, from (e3.25) and (e3.29), we have

deg{JQN,Ω ∩ kerL, 0}
= deg{φ(u1, u2, 1),Ω ∩ kerL, 0}
= deg{φ(u1, u2, 0),Ω ∩ kerL, 0}

= sign

∣∣∣∣∣ −a1e
u∗∗1 0

a2(t0)m2(t0)e
u∗∗1 eu∗∗2

(m2(t0)e
u∗∗2 +eu∗∗1 )2

−a2(t0)m2(t0)e
u∗∗1 eu∗∗2

(m2(t0)e
u∗∗2 +eu∗∗1 )2

∣∣∣∣∣ 6= 0.

Thus, condition (c) of lem2.1 holds and by now we have proved that all the con-
ditions of lem2.1 are satisfied. Hence, system (e3.1) has at least one ω-periodic
solution. Accordingly, system (e1.2) has at least one positive ω–periodic solution.
This completes the proof. �

If we set σ1(t) = τ1(t) = τ2(t) = 0, τ3(t) = σ2(t) = τ , ω = T , then system (e1.2)
is simplified to system (e1.1) which was studied by Liu and Li in [9].

Obviously, our result in this paper extends and improves greatly the result in
[9]. Finally, let us consider the system without impulse

x′(t) = x(t)
[
b1(t)− a1(t)x(t− τ1(t))−

c(t)y(t− σ1(t))
m1(t)y(t− σ1(t)) + x(t− τ2(t))

]
,

y′(t) = y(t)
[
− b2(t) +

a2(t)x(t− τ3(t))
m2(t)y(t− σ2(t)) + x(t− τ3(t))

]
,

(e3.31)

where a1(t), a2(t), b1(t), b2(t), c(t), m1(t) and m2(t) are all positive continuous ω-
periodic functions; σ1(t), σ2(t), τ1(t), τ2(t) and τ3(t) are all continuous ω-periodic
functions. From 3 and its proof, we immediately get the following result.
thm3.2 If system (e3.31) satisfies the conditions

b1 > (
c

m1
), al

2 > b2,

then (e3.31) has at least one positive ω-periodic solution.

4. An example

In this section, we give an example that illustrates the feasibility of our results.
Consider the system

x′(t) = x(t)
[
(
1
2

+ | cos t|)− x(t− | sin t|)−
( 1
2 | sin t|+

1
4 )y(t− | cos t|)

y(t− | cos t|) + x(t− | sin 2t|)
]
, t 6= tk,

y′(t) = y(t)
[
− (

3
4

+
1
2

sin t) +
4
πx(t− | sin 3t|)

2y(t− | cos 2t|) + x(t− | sin 3t|)
]
, t 6= tk,

x(t+k )− x(t−k ) = c1kx(tk),

y(t+k )− y(t−k ) = c2ky(tk), k = 1, 2, . . . ,
(4.1)
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where

t1 =
π

2
, t2 =

3π
2
, tk+2 = tk + 2π, c11 = 1, c12 = −1

2
,

c21 = 1, c22 = −3
4
, ci(k+2) = cik, i = 1, 2, k = 1, 2, . . . .

Corresponding to (e1.2), we have

ω = 2π, a1(t) = 1, a2(t) =
4
π
, b1(t) =

1
2

+ | cos t|, b2(t) =
3
4

+
1
2

sin t,

c(t) =
1
2
| sin t|+ 1

4
, m1(t) = 1, m2(t) = 2, σ1(t) = | cos t|,

σ2(t) = | cos 2t|, τ1(t) = | sin t|, τ2(t) = | sin 2t|, τ3(t) = | sin 3t|.
It is easy to obtain that,

b1 =
1
2π

∫ 2π

0

(
1
2

+ | cos t|)dt =
2
π

+
1
2
, b2 =

1
2π

∫ 2π

0

(
3
4

+
1
2

sin t)dt =
3
4
,

(
c

m1
) =

1
2π

∫ 2π

0

(
1
2
| sin t|+ 1

4
)dt =

1
4

+
1
π
,

2∑
k=1

ln(1 + c1k) = ln 2− ln 2 = 0,
2∑

k=1

ln(1 + c2k) = ln 2− ln 4 = − ln 2,

and then

b1ω +
2∑

k=1

ln(1 + c1k) = π + 4 > 2 +
π

2
= (

c

m1
)ω,

al
2ω +

2∑
k=1

ln(1 + c2k) = 8− ln 2 >
3π
2

= b2ω,

b2ω =
3π
2
> − ln 2 =

2∑
k=1

ln(1 + c2k).

Thus, all the conditions of thm3.1 are satisfied. Then system (e4.1) has at least
one positive 2π-periodic solution.

Acknowledgements. The authors are grateful to the anonymous referees for their
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