Electronic Journal of Differential Equations, Vol. 2008(2008), No. 165, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

NGUYEN THANH CHUNG

Abstract

Using a recent result by Bonanno [2], we obtain a multiplicity result for the quasilinear elliptic problem $$
\begin{gathered} -\Delta_{p} u+|u|^{p-2} u=\lambda f(u) \quad \text { in } \Omega \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\mu g(u) \quad \text { on } \partial \Omega \end{gathered}
$$ where Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 3$ with smooth boundary $\partial \Omega, \frac{\partial}{\partial \nu}$ is the outer unit normal derivative, the functions f, g are $(p-1)$-sublinear at infinity $(1<p<N), \lambda$ and μ are positive parameters.

1. Introduction and Preliminaries

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 3$ with smooth boundary $\partial \Omega$ and a constant p with $1<p<N$. In this paper, we consider the quasilinear elliptic problems

$$
\begin{gather*}
-\Delta_{p} u+|u|^{p-2} u=\lambda f(u) \quad \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\mu g(u) \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

Such problems were studied in many works, for example [1, 3, 4, 5, 6, In [3], Bonder studied the problem in the case: $f \equiv 0$ and g is a sign-changing Carathéodory function. Then, using the variational techniques in [8] the author obtained at least two solutions in the space $W^{1, p}(\Omega)$ provided that μ is large enough. In [4], the author considered a more general situation, where the functions f, g are involved, but not the parameters λ and μ. Using the Lusternik - Schnirelman method for non-compact manifolds, the author showed the existence of at least three solutions, and the sign of the solutions are also well-defined. We also find that the lower and upper solutions and variational methods were combined with together in [1] to obtain multiplicity results for the problems of 1.1 type. Finally, in the papers [5], [6] and [12], existence results of infinitely many solutions were investigated and the corresponding Neumann problems involving the $p(x)$-Laplacian operator were also studied in [7] and 11. In the present paper, we are interested in the case: the functions f, g are $(p-1)$-sublinear at infinity. Hence, our main ingredient is a

[^0]recent critical point result due to G. Bonanno [2]. Using this interesting result we show that problem (1.1) has at least two nontrivial solutions provided that λ and μ are suitable. In order to state our main result we introduce some hypotheses.

We assume that the functions f and $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the following conditions:
(H1) There exist constants $M_{1}, M_{2}>0$ such that for all $t \in \mathbb{R}^{N}$,

$$
|f(t)| \leq M_{1}\left(1+|t|^{p-1}\right), \quad|g(t)| \leq M_{2}|t|^{p-1}
$$

(H2) f is superlinear at zero; i.e.,

$$
\lim _{t \rightarrow 0} \frac{f(t)}{|t|^{p-1}}=0
$$

$(\mathrm{H} 3)$ if we set $F(t)=\int_{0}^{t} f(t) d t$ and $G(t)=\int_{0}^{t} g(t) d t$, then there exists $t_{0} \in \mathbb{R}$ such that

$$
F\left(t_{0}\right)=\int_{0}^{t_{0}} f(t) d t>0 \quad \text { or } \quad G\left(t_{0}\right)=\int_{0}^{t_{0}} g(t) d t>0
$$

Let $W^{1, p}(\Omega)$ be the usual Sobolev space with respect to the norm

$$
\|u\|_{1, p}^{p}=\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x
$$

and $W_{0}^{1, p}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. For any $1<p<N$ and $1 \leq q \leq$ $p^{\star}=\frac{N p}{N-p}$, we denote by $S_{q, \Omega}$ the best constant in the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ and for all $1 \leq q \leq p_{\star}=\frac{(N-1) p}{N-p}$, we also denote by $S_{q, \partial \Omega}$ the best constant in the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$, i.e.

$$
S_{q, \partial \Omega}=\inf _{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x}{\left(\int_{\partial \Omega}|u|^{q} d \sigma\right)^{p / q}} .
$$

Moreover, if $1 \leq q<p^{\star}$, then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact and if $1 \leq q<p_{\star}$, then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ is compact. As a consequence, we have the existence of extremals, i.e. functions where the infimum is attained (see [3, 6]).
Definition 1.1. We say that $u \in W^{1, p}(\Omega)$ is a weak solution of problem 1.1 if and only if

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla \varphi+|u|^{p-2} u \varphi\right) d x-\lambda \int_{\Omega} f(u) \varphi d x-\mu \int_{\partial \Omega} g(u) \varphi d \sigma=0
$$

for all $\varphi \in W^{1, p}(\Omega)$.
Theorem 1.2. Assuming hypotheses (H1)-(H3) are fulfilled then there exist an open interval Λ_{μ} and a constant $\delta_{\mu}>0$ such that for all $\lambda \in \Lambda_{\mu}$, problem (1.1) has at least two weak solutions in $W^{1, p}(\Omega)$ whose $\|\cdot\|_{1, p}$ norms are less than δ_{μ}.

We emphasize that the condition (H3) cannot be omitted. Indeed, if for instance $f \equiv 0$ and $g \equiv 0$, then (H1) and (H2) clearly hold, but problem 1.1) has only the trivial solution. Theorem 1.2 will be proved by using a recent result on the existence of at least three critical points by Bonanno [2] which is actually a refinement of a general principle of Ricceri (see [9, 10]). For the reader's convenience, we describe it as follows.

Lemma 1.3 (see [2, Theorem 2.1]). Let $(X,\|\cdot\|)$ be a separable and reflexive real Banach space, $\mathcal{A}, \mathcal{F}: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_{0} \in X$ such that $\mathcal{A}\left(x_{0}\right)=\mathcal{F}\left(x_{0}\right)=0, \mathcal{A}(x) \geq 0$ for all $x \in X$ and there exist $x_{1} \in X, \rho>0$ such that
(i) $\rho<\mathcal{A}\left(x_{1}\right)$,
(ii) $\sup _{\{\mathcal{A}(x)<\rho\}} \mathcal{F}(x)<\rho \frac{\mathcal{F}\left(x_{1}\right)}{\mathcal{A}\left(x_{1}\right)}$.

Further, put

$$
\bar{a}=\frac{\xi \rho}{\rho \frac{\mathcal{F}\left(x_{1}\right)}{\mathcal{A}\left(x_{1}\right)}-\sup _{\{\mathcal{A}(x)<\rho\}} \mathcal{F}(x)}, \quad \text { with } \xi>1
$$

and assume that the functional $\mathcal{A}-\lambda \mathcal{F}$ is sequentially weakly lower semicontinuous, satisfies the Palais-Smale condition and
(iii) $\lim _{\|x\| \rightarrow \infty}[\mathcal{A}(x)-\lambda \mathcal{F}(x)]=+\infty$ for every $\lambda \in[0, \bar{a}]$.

Then, there exist an open interval $\Lambda \subset[0, \bar{a}]$ and a positive real number δ such that each $\lambda \in \Lambda$, the equation

$$
D \mathcal{A}(u)-\lambda D \mathcal{F}(u)=0
$$

has at least three solutions in X whose $\|\cdot\|$-norms are less than δ.

2. Multiple solutions

Throughout this section, we suppose that all assumptions of Theorem 1.2 are satisfied. For λ and $\mu \in \mathbb{R}$, we define the functional $\Phi_{\mu, \lambda}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ by

$$
\Phi_{\mu, \lambda}(u)=\mathcal{I}_{\mu}(u)-\lambda \mathcal{J}(u) \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

where

$$
\begin{equation*}
\mathcal{I}_{\mu}(u)=\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x-\mu \int_{\partial \Omega} G(u) d \sigma, \quad \mathcal{J}(u)=\int_{\Omega} F(u) d x \tag{2.1}
\end{equation*}
$$

with $F(t)=\int_{0}^{t} f(t) d t$ and $G(t)=\int_{0}^{t} g(t) d t$.
A simple computation implies that the functional $\Phi_{\mu, \lambda}$ is of C^{1}-class and hence weak solutions of $\sqrt{1.1}$ correspond to the critical points of $\Phi_{\mu, \lambda}$. To prove Theorem 1.2 , we shall apply Lemma 1.3 by choosing $X=W^{1, p}(\Omega)$ as well as $\mathcal{A}=\mathcal{I}_{\mu}$ and $\mathcal{F}=\mathcal{J}$ as in 2.1. Now, we shall check all assumptions of Lemma 1.3. For each $\mu \in$ $\left[0, \frac{p S_{p, \partial \Omega}}{M_{2}}\right)$ we have $\mathcal{I}_{\mu}(u) \geq 0$ for all $u \in W^{1, p}(\Omega)$ and $\mathcal{I}_{\mu}(0)=\mathcal{J}(0)=0$ since the assumption (H1) holds. Moreover, by the compact embeddings $W^{1, p}(\Omega) \hookrightarrow L^{p}(\Omega)$ and $W^{1, p}(\Omega) \hookrightarrow L^{p}(\partial \Omega)$, a simple computation helps us to conclude the following lemma.

Lemma 2.1. For every $\mu \in\left[0, \frac{p S_{p, \partial \Omega}}{M_{2}}\right)$ and all $\lambda \in \mathbb{R}$, the functional $\Phi_{\mu, \lambda}$ is sequentially weakly lower semicontinuous on $W^{1, p}(\Omega)$.

Lemma 2.2. There exist two positive constants $\bar{\mu}$ and $\bar{\lambda}$ such that for all $\mu \in[0, \bar{\mu})$ and all $\lambda \in[0, \bar{\lambda})$, the functional $\Phi_{\lambda, \mu}$ is coercive and satisfies the Palais-Smale condition in $W^{1, p}(\Omega)$.

Proof. By (H1), we have

$$
\begin{align*}
\Phi_{\mu, \lambda}(u) & =\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x-\lambda \int_{\Omega} F(u) d x-\mu \int_{\partial \Omega} G(u) d \sigma \\
& \geq\|u\|_{1, p}^{p}-\lambda M_{1} \int_{\Omega}\left(|u|+\frac{|u|^{p}}{p}\right) d x-\mu \frac{M_{2}}{p} \int_{\partial \Omega}|u|^{p} d \sigma \\
& \geq\|u\|_{1, p}^{p}\left(1-\lambda \frac{M_{1}}{p S_{p, \Omega}}-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)-\lambda \frac{M_{1}}{S_{1, \Omega}}\|u\|_{1, p} \tag{2.2}
\end{align*}
$$

Since relation 2.2 holds, by choosing

$$
\bar{\mu}=\bar{\lambda}=\min \left\{\frac{p S_{p, \Omega}}{2 M_{1}}, \frac{p S_{p, \partial \Omega}}{2 M_{2}}\right\}
$$

where M_{1}, M_{2} are given in (H1), we conclude that for all $\lambda \in[0, \bar{\lambda})$ and all $\mu \in[0, \bar{\mu})$, the functional $\Phi_{\mu, \lambda}$ is coercive.

Now, let $\left\{u_{m}\right\}$ be a Palais-Smale sequence for the functional $\Phi_{\mu, \lambda}$ in $W^{1, p}(\Omega)$; i.e.,

$$
\begin{equation*}
\left|\Phi_{\mu, \lambda}\left(u_{m}\right)\right| \leq \bar{c}, \quad D \Phi_{\mu, \lambda}\left(u_{m}\right) \rightarrow 0 \text { in } W^{-1, p}(\Omega) \tag{2.3}
\end{equation*}
$$

where $W^{-1, p}(\Omega)$ is the dual space of $W^{1, p}(\Omega)$. Since $\Phi_{\mu, \lambda}$ is coercive, the sequence $\left\{u_{m}\right\}$ is bounded in $W^{1, p}(\Omega)$. Therefore, there exists a subsequence of $\left\{u_{m}\right\}$, denoted by $\left\{u_{m}\right\}$ such that $\left\{u_{m}\right\}$ converges weakly to some $u \in W^{1, p}(\Omega)$ and hence converges strongly to u in $L^{p}(\Omega)$ and in $L^{p}(\partial \Omega)$. We shall prove that $\left\{u_{m}\right\}$ converges strongly to u in $W^{1, p}(\Omega)$. Indeed, we have

$$
\begin{aligned}
\left\|u_{m}-u\right\|_{1, p}^{p} \leq & \int_{\Omega}\left(\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}-|\nabla u|^{p-2} \nabla u\right)\left(\nabla u_{m}-\nabla u\right) d x \\
& +\int_{\Omega}\left(\left|u_{m}\right|^{p-2} u_{m}-|u|^{p-2} u\right)\left(u_{m}-u\right) d x \\
= & {\left[D \Phi_{\mu, \lambda}\left(u_{m}\right)-D \Phi_{\mu, \lambda}(u)\right]\left(u_{m}-u\right)+\lambda \int_{\Omega}\left[f\left(u_{m}\right)-f(u)\right]\left(u_{m}-u\right) d x } \\
& +\mu \int_{\partial \Omega}\left[g\left(u_{m}\right)-g(u)\right]\left(u_{m}-u\right) d x
\end{aligned}
$$

On the other hand, the compact embeddings and (H1) imply

$$
\begin{aligned}
& \left|\int_{\Omega}\left[f\left(u_{m}\right)-f(u)\right]\left(u_{m}-u\right) d x\right| \\
& \leq \int_{\Omega}\left|f\left(u_{m}\right)-f(u) \| u_{m}-u\right| d x \\
& \leq M_{1} \int_{\Omega}\left(2+\left|u_{m}\right|^{p-1}+|u|^{p-1}\right)\left|u_{m}-u\right| d x \\
& \leq M_{1}\left(2 \operatorname{meas}(\Omega)^{\frac{p-1}{p}}+\left\|u_{m}\right\|_{L^{p}(\Omega)}^{p-1}+\|u\|_{L^{p}(\Omega)}^{p-1}\right)\left\|u_{m}-u\right\|_{L^{p}(\Omega)}^{p}
\end{aligned}
$$

which approaches 0 as $m \rightarrow \infty$. Similarly, we obtain

$$
\begin{aligned}
\left|\int_{\partial \Omega}\left[g\left(u_{m}\right)-g(u)\right]\left(u_{m}-u\right) d x\right| & \leq \int_{\partial \Omega}\left|g\left(u_{m}\right)-g(u) \| u_{m}-u\right| d x \\
& \leq M_{2} \int_{\partial \Omega}\left(\left|u_{m}\right|^{p-1}+|u|^{p-1}\right)\left|u_{m}-u\right| d x \\
& \leq M_{2}\left(\left\|u_{m}\right\|_{L^{p}(\partial \Omega)}^{p-1}+\|u\|_{L^{p}(\partial \Omega)}^{p-1}\right)\left\|u_{m}-u\right\|_{L^{p}(\partial \Omega)}^{p}
\end{aligned}
$$

which approaches zero as $m \rightarrow \infty$. Hence, by 2.3 we have $\left\|u_{m}-u\right\|_{1, p} \rightarrow 0$ as $m \rightarrow \infty$; i.e., the functional $\Phi_{\mu, \lambda}$ satisfies the Palais-Smale condition.

Lemma 2.3. For every $\mu \in[0, \bar{\mu})$ with $\bar{\mu}$ as in Lemma 2.2, we have

$$
\lim _{\rho \rightarrow 0^{+}} \frac{\sup \left\{\mathcal{J}(u): \mathcal{I}_{\mu}(u)<\rho\right\}}{\rho}=0
$$

Proof. Let $\lambda \in[0, \bar{\lambda})$ and $\mu \in[0, \bar{\mu})$ be fixed. By (H2), for any $\epsilon>0$, there exists $\delta=\delta(\epsilon)>0$ such that

$$
|f(s)|<\epsilon p S_{p, \Omega}\left(1-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)|s|^{p-1} \text { for all }|s|<\delta
$$

We first fix $q \in\left(p, p^{\star}\right)$. Combining the above inequalities with (H1) we deduce that

$$
\begin{equation*}
|F(s)| \leq \epsilon S_{p, \Omega}\left(1-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)|s|^{p}+C_{\delta}|s|^{q} \tag{2.4}
\end{equation*}
$$

for all $s \in \mathbb{R}$, where C_{δ} is a constant depending on δ. Now, for every $\rho>0$, we define the sets

$$
\mathcal{B}_{\rho}^{1}=\left\{u \in W^{1, p}(\Omega): \mathcal{I}_{\mu}(u)<\rho\right\}
$$

and

$$
\mathcal{B}_{\rho}^{2}=\left\{u \in W^{1, p}(\Omega):\left(1-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)\|u\|_{1, p}^{p}<\rho\right\} .
$$

Then $\mathcal{B}_{\rho}^{1} \subset \mathcal{B}_{\rho}^{2}$. From 2.4 we get

$$
\begin{equation*}
|\mathcal{J}(u)| \leq \epsilon\left(1-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)\|u\|_{1, p}^{p}+\frac{C_{\delta}}{S_{q, \Omega}^{\frac{q}{p}}}\|u\|_{1, p}^{q} \tag{2.5}
\end{equation*}
$$

It is clear that $0 \in \mathcal{B}_{\rho}^{1}$ and $\mathcal{J}(0)=0$. Hence, $0 \leq \sup _{u \in \mathcal{B}_{\rho}^{1}} \mathcal{J}(u)$, using 2.5 we get

$$
\begin{equation*}
0 \leq \frac{\sup _{u \in \mathcal{B}_{\rho}^{1}} \mathcal{J}(u)}{\rho} \leq \frac{\sup _{u \in \mathcal{B}_{\rho}^{2}} \mathcal{J}(u)}{\rho} \leq \epsilon+\frac{C_{\delta}}{S_{q, \Omega}^{\frac{q}{p}}}\left(1-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)^{-\frac{q}{p}} \rho^{\frac{q}{p}-1} \tag{2.6}
\end{equation*}
$$

We complete the proof of the lemma by letting $\rho \rightarrow 0^{+}$, since $\epsilon>0$ is arbitrary.
Proof of Theorem 1.2 completed. Let s_{0} be as in (H3). We choose a constant $r_{0}>0$ such that $r_{0}<\operatorname{dist}(0, \partial \Omega)$. For each $\delta \in(0,1)$ we define the function

$$
u_{\delta}(x)= \begin{cases}0, & \text { if } x \in \mathbb{R}^{N} \backslash B_{r_{0}}(0) \\ s_{0}, & \text { if } x \in B_{\delta r_{0}}(0) \\ \frac{s_{0}}{r_{0}(1-\delta)}\left(r_{0}-|x|\right), & \text { if } x \in B_{r_{0}}(0) \backslash B_{\delta r_{0}}(0)\end{cases}
$$

where $B_{r_{0}}(0)$ denotes the open ball with center 0 and radius $r_{0}>0$. Then, it is clear that $u_{\delta} \in W_{0}^{1, p}(\Omega)$. Moreover, we have

$$
\begin{gather*}
\left\|u_{\delta}\right\|_{1, p}^{p} \geq \frac{\left|s_{0}\right|^{p}\left(1-\delta^{N}\right)}{(1-\delta)^{p}} r_{0}^{N-p} \omega_{N}>0, \tag{2.7}\\
\mathcal{J}\left(u_{\delta}\right) \geq\left[F\left(s_{0}\right) \delta^{N}-\max _{|t| \leq\left|s_{0}\right|}|F(t)|\left(1-\delta^{N}\right)\right] \omega_{N} r_{0}^{N}, \tag{2.8}
\end{gather*}
$$

where ω_{N} is the volume of the unit ball in \mathbb{R}^{N}. From 2.8, there is $\delta_{0}>0$ such that $\left\|u_{\delta_{0}}\right\|_{1, p}>0$ and $\mathcal{J}\left(u_{\delta_{0}}\right)>0$. Now, by Lemma 2.3, we can choose $\rho_{0} \in(0,1)$ such that

$$
\rho_{0}<\left(1-\mu \frac{M_{2}}{p S_{p, \partial \Omega}}\right)\left\|u_{\delta_{0}}\right\|_{1, p}^{p} \leq \mathcal{I}_{\mu}\left(u_{\delta_{0}}\right)
$$

and satisfies

$$
\frac{\sup \left\{\mathcal{J}(u): \mathcal{I}_{\mu}(u)<\rho_{0}\right\}}{\rho_{0}}<\frac{\mathcal{J}\left(u_{\delta_{0}}\right)}{2 \mathcal{I}_{\mu}\left(u_{\delta_{0}}\right)}
$$

To apply Lemma 1.3 , we choose $x_{1}=u_{\delta_{0}}$ and $x_{0}=0$. Then, the assumptions (i) and (ii) of Lemma 1.3 are satisfied. Next, we define

$$
a_{\mu}=\frac{1+\rho_{0}}{\frac{\mathcal{J}\left(u_{\delta_{0}}\right)}{\overline{\mathcal{I}}_{\mu}\left(u_{\delta_{0}}\right)}-\frac{\sup \left\{\mathcal{J}(u): \mathcal{I}_{\mu}(u)<\rho_{0}\right\}}{\rho_{0}}}>0 \quad \text { and } \quad \bar{a}_{\mu}=\min \left\{a_{\mu}, \bar{\lambda}\right\} .
$$

A simple computation implies that (iii) are verified. Hence, there exist an open interval $\Lambda_{\mu} \subset\left[0, \bar{a}_{\mu}\right]$ and a real positive number δ_{μ} such that for each $\lambda \in \Lambda_{\mu}$, the equation $D \Phi_{\mu, \lambda}(u)=D \mathcal{I}_{\mu}(u)-\lambda D \mathcal{J}(u)=0$ has at least three solutions in $W^{1, p}(\Omega)$ whose $\|\cdot\|_{1, p}$-norms are less than δ_{μ}. By (H1) and (H2), one of them may be the trivial one. Thus, 1.1 has at least two weak solutions in $W^{1, p}(\Omega)$. The proof is complete.

Acknowledgments. The author would like to thank the referees for their suggesions and helpful comments on this work.

References

[1] E. A. M. Abreu, J. M. do Ó and E.S. Medeiros; Multiplicity of solutions for a class of quasilinear nonhomogeneuous Neumann problems, Nonlinear Analysis, 60 (2005), 1443 1471.
[2] G. Bonanno; Some remarks on a three critical points theorem Nonlinear Analysis, 54 (2003), 651-665.
[3] J. F. Bonder; Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities, Abstr. Appl. Anal., 2004(12) (2004), 1047-1056.
[4] J. F. Bonder; Multiple solutions for the p-Laplacian equation with nonlinear boundary conditions, Electron. J. Diff. Eqns., 2006 no. 37, (2006), 1-7.
[5] J. F. Bonder, S. Martínez and J. D. Rossi; Existence results for gradient elliptic systems with nonlinear boundary conditions, NoDEA, 14(1-2) (2007), 153-179.
[6] J. F. Bonder and J. D. Rossi; Existence Results for the p-Laplacian with Nonlinear Boundary Conditions, J. Math. Anal. Appl., 263 (2001), 195-223.
[7] X. Fan; Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395-1412.
[8] K. Perera; Multiple positive solutions for a class of quasilinear elliptic boundary-value problems, Electron. J. Diff. Eqns., 07 (2003), 1-5.
[9] B. Ricceri; On a three critical points, Arch. Math., (Basel) 75 (2000), 220 - 226.
[10] B. Ricceri; Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling, 32 (2000), 1485-1494.
[11] J. Yao; Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Analysis, 68 (2006), 1271-1283.
[12] Ji-Hong Zhao, Pei-Hao Zhao; Infinitely many weak solutions for a p-Laplacian equations with nonlinear boundary conditions, Electron. J. Diff. Eqns., 2006 no. 90 (2006), 1-14.

Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

E-mail address: ntchung82@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 35J65, 35J20.
 Key words and phrases. Multiple solutions; quasilinear elliptic problems;
 nonlinear boundary conditions.
 (C) 2008 Texas State University - San Marcos.

 Submitted October 20, 2008. Published December 23, 2008.

