Electronic Journal of Differential Equations, Vol. 2008(2008), No. 165, pp. 1-6.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC
PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

NGUYEN THANH CHUNG

ABSTRACT. Using a recent result by Bonanno [2|, we obtain a multiplicity
result for the quasilinear elliptic problem
—Apu+ |[ulP7%u = Af(u) in Q,
19}
IVulP2 2 = jig(u) o 09,
ov

where Q is a bounded domain in RN, N > 3 with smooth boundary 9%, 3—811
is the outer unit normal derivative, the functions f, g are (p — 1)-sublinear at

infinity (1 < p < N), X and p are positive parameters.

1. INTRODUCTION AND PRELIMINARIES

Let © be a bounded domain in RY, N > 3 with smooth boundary 9Q and a
constant p with 1 < p < N. In this paper, we consider the quasilinear elliptic
problems

—Apu+ [uP~2u = Af(u) in Q,

(1.1)
|Vu|p*2% = ug(u) on 0.

Such problems were studied in many works, for example [I1,[3, 4, [5, 6]. In [3], Bonder
studied the problem in the case: f = 0 and g is a sign-changing Carathéodory
function. Then, using the variational techniques in [8] the author obtained at least
two solutions in the space W1P(2) provided that u is large enough. In [4], the
author considered a more general situation, where the functions f,g are involved,
but not the parameters A\ and p. Using the Lusternik - Schnirelman method for
non-compact manifolds, the author showed the existence of at least three solutions,
and the sign of the solutions are also well-defined. We also find that the lower
and upper solutions and variational methods were combined with together in [I]
to obtain multiplicity results for the problems of type. Finally, in the papers
[B], [6] and [12], existence results of infinitely many solutions were investigated and
the corresponding Neumann problems involving the p(z)-Laplacian operator were
also studied in [7] and [I1I]. In the present paper, we are interested in the case:
the functions f, g are (p — 1)-sublinear at infinity. Hence, our main ingredient is a
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recent critical point result due to G. Bonanno [2]. Using this interesting result we

show that problem has at least two nontrivial solutions provided that A and

w are suitable. In order to state our main result we introduce some hypotheses.
We assume that the functions f and g : R — R satisfy the following conditions:

(H1) There exist constants M, My > 0 such that for all t € RV,
FO] < M+ EPTY), g(t)] < Mot~
(H2) f is superlinear at zero; i.e.,

ft)

t—0 |t|p*1 -

bl

(H3) if we set F(t) = fg f(t)dt and G(t) = fgg(t)dt, then there exists o € R
such that

F(to) = Oto fO)dt >0 or Glt) = /Oto g(t)dt > 0.

Let W1P(€2) be the usual Sobolev space with respect to the norm
Jullt, = [ (Vul? + ul)da

and W, *(Q) the closure of C§°(Q) in WHP(Q). Forany 1 <p < N and 1 < ¢ <
P = NN—_’;, we denote by S, o the best constant in the embedding W1 (Q) — L7(2)
and for all 1 < g <p, = %, we also denote by S, s the best constant in the

embedding WP (Q) — L(09Q), i.e.

. VulP + |u|P)dx
Sq.00 = inf ) fQ(' | | ‘p;q .
wEWLP(O@\WG P (@) ([, ulido)

Moreover, if 1 < ¢ < p*, then the embedding W?(Q) — L9(Q) is compact and if
1 < ¢ < px, then the embedding W1?(Q) < L7(9) is compact. As a consequence,

we have the existence of extremals, i.e. functions where the infimum is attained
(see [3,16]).

Definition 1.1. We say that u € WP(Q) is a weak solution of problem (1.1)) if
and only if

/Q(|VU\P_2VUV<,0 + [ulP~2up)dr — /\/Qf(u)cpdx - ,u/{mg(u)goda =0

for all o € WHP(Q).

Theorem 1.2. Assuming hypotheses (H1)—(H3) are fulfilled then there exist an
open interval A, and a constant §, > 0 such that for all X € A, problem has
at least two weak solutions in W'P(Q) whose || - ||1,,-norms are less than 0,,.

We emphasize that the condition (H3) cannot be omitted. Indeed, if for instance
f=0and g =0, then (H1) and (H2) clearly hold, but problem has only the
trivial solution. Theorem[I.2will be proved by using a recent result on the existence
of at least three critical points by Bonanno [2] which is actually a refinement of a
general principle of Ricceri (see [9] [I0]). For the reader’s convenience, we describe
it as follows.
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Lemma 1.3 (see [2, Theorem 2.1]). Let (X,]|| - ||) be a separable and reflexive real
Banach space, A, F : X — R be two continuously Gateaux differentiable functionals.
Assume that there exists xo € X such that A(xo) = F(zo) = 0, A(z) > 0 for all
x € X and there exist x1 € X, p > 0 such that

(i) p < A(z1),

(i) supga(a)<p F(@) < PA) -
Further, put

&p
F(x )
PR = SUD ()< F

a= with & > 1,

and assume that the functional A—A\F is sequentially weakly lower semicontinuous,
satisfies the Palais-Smale condition and
(477) lim| gz —oc[A(z) — AF ()] = +o00 for every X € [0,a].

Then, there exist an open interval A C [0,@] and a positive real number § such that
each \ € A, the equation

DA(u) — ADF(u) =0

has at least three solutions in X whose || - ||-norms are less than §.

2. MULTIPLE SOLUTIONS

Throughout this section, we suppose that all assumptions of Theorem are
satisfied. For A and p € R, we define the functional @,  : W?(Q) — R by

B, 2 (u) = Z,(u) — AT (u) for all u € W) *(Q),

where
7, (u) :/Q(|Vu|p+|u|p)dx—,u/3QG(u)da, 7 () :/QF(u)da: (2.1)

with F(t) = [y f(t)dt and G(t) = [} g(t)dt.

A simple computation implies that the functional ®,, 5 is of C'-class and hence
weak solutions of correspond to the critical points of ®,, x. To prove Theorem
we shall apply Lemma by choosing X = W?(Q) as well as A = Z,, and
F = J asin (2.1). Now, we shall check all assumptions of Lemmal[l.3] For each p €
[0, 1’%4750) we have Z,,(u) > 0 for all u € WHP(Q) and Z,,(0) = J(0) = 0 since the
assumption (H1) holds. Moreover, by the compact embeddings WP () — LP(Q)
and WHP(Q) < LP(dR), a simple computation helps us to conclude the following
lemma.

Lemma 2.1. For every p € [0,“’;@%) and all X € R, the functional ®, 5 is

sequentially weakly lower semicontinuous on WP (Q).

Lemma 2.2. There exist two positive constants i and X such that for all u € [0,7)
and all X € [0,X), the functional @y, is coercive and satisfies the Palais-Smale
condition in W1P(£2).
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Proof. By (H1), we have

D, 5 (u) = /Q(|Vu|p + |u|P)dz — )\/ F(u)dx — p . G(u)do

Mo
> Jlull?, — AM, / (fuf + 14 ‘) 122 [ Jupdo
P Jaa

M, M2 M,
> [lull? (17/\ _ )f/\ wlli. 2.2
> ullf (1 = Ao — )~ Al (22

Since relation (2.2)) holds, by choosing

pSp,Q pSp,BQ}
2M, 7 2M,

where M, My are given in (H1), we conclude that for all A € [0, ) and all i € [0, z),
the functional ®,,  is coercive.

Now, let {u,} be a Palais-Smale sequence for the functional @, \ in W(Q);
ie.,

u:)\:min{

‘(I),u,)\(um)‘ <g D(I),u,)\(um) — 0in Wﬁl)p(Q)a (23)
where W~17(Q) is the dual space of WP(Q). Since ®,, 5 is coercive, the sequence
{t,,} is bounded in W1P(Q). Therefore, there exists a subsequence of {u,,}, de-
noted by {u,,} such that {u,,} converges weakly to some u € W1?(Q2) and hence
converges strongly to v in LP(Q) and in LP(0€2). We shall prove that {u,,} con-
verges strongly to u in WP(Q). Indeed, we have

[t —ullf , < /(|Vum|p72Vum — |VulP~2Vu) (Vy, — Vu)dr
Q
+ /Q(|um|p72um — |ulP%u) (tyy, — u)da
= DBy m) = DByr ()i — )+ A [ [Flam) = S —
Q

o /8 loitn) = g0}, — )

On the other hand, the compact embeddings and (H1) imply
[ ) = £l = )]
< [ 1$m) = £, = uld
<M /Q(z P + [P~ — ulda

o1
< M;(2meas(Q) » + ||“m||Lp Q) + H“”Lp Q))”um - uHZ[),p(Q)

which approaches 0 as m — oco. Similarly, we obtain
[ fon) =~ gl ~ ] < [ lg(un) — g6~ uldz
oQ o0
< Mz/ (P + [P i — uldee
o0

-1
< M2<||u7n||1[),p(ag) + ||UHL,, ag))”um - UHIE,p(aQ)
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which approaches zero as m — oco. Hence, by (2.3) we have ||uy, — ull1p, — 0 as
m — o0; i.e., the functional ®,, ) satisfies the Palais-Smale condition. d

Lemma 2.3. For every p € [0,71) with [t as in Lemma[2.9, we have
i SWPLT (W) 1 Zu(u) < p} _

p—07F P

Proof. Let A € [0,)\) and p € [0,7) be fixed. By (H2), for any € > 0, there exists
d = 6(€e) > 0 such that

0.

M
()] < epSpa(1 - pog

p,0

)|5|P*1 for all |s| < 4.

We first fix ¢ € (p, p*). Combining the above inequalities with (H1) we deduce that

M-
|F(s)| < €S ,9(1 b ZQ)\S\P+05|S|Q, (2.4)
b,

for all s € R, where Cs is a constant depending on 6. Now, for every p > 0, we
define the sets

B, ={ueW"P(Q): I,(u) < p}

and
M
2 _ 1, . 2
B2 = {ue W' (Q): (1 - “ps,,,m) lull?, < p}.
Then B, C B2. From (2.4) we get
My Cs
T < (1= o Yl + -l (2:5)
D, S{;Q

It is clear that 0 € B; and J(0) = 0. Hence, 0 < SUPye 31 J (u), using 1} we get

Sup,ept J(u)  sup,epe J(u
< €B} ( < €B2 ) C;(; (1 My
p p S;Q

<et )_5 L (26
hos o) 7 (2.6)

We complete the proof of the lemma by letting p — 0T, since € > 0 is arbitrary. O

Proof of Theorem[I-3 completed. Let so be as in (H3). We choose a constant ro > 0
such that ro < dist(0,09). For each § € (0,1) we define the function
0, it z € RN\ B,, (0)
ug(x) = < so, if x € Bsr, (0)
s (ro— [el). i 2 € By (0)\ By 0),

where B;,(0) denotes the open ball with center 0 and radius 7o > 0. Then, it is
clear that us € Wol’p(Q). Moreover, we have

P(1—6N) N_
Isol?(1 = 67) )’I“(J)V Pun >0, (2.7)

N (T
T (us) > [F(s0)6" — max |[F(t)|(1 —6™)]wnrd, (2.8)

[t[<|sol

[us]
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where wy is the volume of the unit ball in RY. From (2.8), there is 6y > 0 such
that |Jus,||1,, > 0 and J(us,) > 0. Now, by Lemma we can choose pg € (0,1)
such that

M.
po < (1= 1o s, < To(us,)
and satisfies
Sup (T () : Ty(u) < po} _ T(ua,)
Po QIM(u%) ’
To apply Lemma [1.3] we choose x; = us, and zo = 0. Then, the assumptions (i)
and (ii) of Lemma are satisfied. Next, we define

1+ po

J(usy) _ sup{J (u):Z,(u)<po}
Ty (usy) Po

a, = >0 and @, = min{a,, \}.

A simple computation implies that (iii) are verified. Hence, there exist an open
interval A, C [0,a,] and a real positive number J, such that for each A € A, the
equation D®,, \(u) = DZ,,(u) —ADJ (u) = 0 has at least three solutions in W1P()
whose || - ||1,,-norms are less than ¢,. By (H1) and (H2), one of them may be the
trivial one. Thus, has at least two weak solutions in W?(Q). The proof is
complete. O
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