Electronic Journal of Differential Equations, Vol. 2008(2008), No. 165, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

NGUYEN THANH CHUNG

ABSTRACT. Using a recent result by Bonanno [2], we obtain a multiplicity result for the quasilinear elliptic problem

$$-\Delta_p u + |u|^{p-2}u = \lambda f(u) \quad \text{in } \Omega,$$
$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \mu g(u) \quad \text{on } \partial\Omega,$$

where Ω is a bounded domain in \mathbb{R}^N , $N \geq 3$ with smooth boundary $\partial\Omega$, $\frac{\partial}{\partial\nu}$ is the outer unit normal derivative, the functions f, g are (p-1)-sublinear at infinity $(1 , <math>\lambda$ and μ are positive parameters.

1. INTRODUCTION AND PRELIMINARIES

Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 3$ with smooth boundary $\partial \Omega$ and a constant p with 1 . In this paper, we consider the quasilinear elliptic problems

$$-\Delta_p u + |u|^{p-2} u = \lambda f(u) \quad \text{in } \Omega,$$

$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \mu g(u) \quad \text{on } \partial\Omega.$$
 (1.1)

Such problems were studied in many works, for example [1, 3, 4, 5, 6]. In [3], Bonder studied the problem in the case: $f \equiv 0$ and g is a sign-changing Carathéodory function. Then, using the variational techniques in [8] the author obtained at least two solutions in the space $W^{1,p}(\Omega)$ provided that μ is large enough. In [4], the author considered a more general situation, where the functions f, g are involved, but not the parameters λ and μ . Using the Lusternik - Schnirelman method for non-compact manifolds, the author showed the existence of at least three solutions, and the sign of the solutions are also well-defined. We also find that the lower and upper solutions and variational methods were combined with together in [1] to obtain multiplicity results for the problems of (1.1) type. Finally, in the papers [5], [6] and [12], existence results of infinitely many solutions were investigated and the corresponding Neumann problems involving the p(x)-Laplacian operator were also studied in [7] and [11]. In the present paper, we are interested in the case: the functions f, g are (p-1)-sublinear at infinity. Hence, our main ingredient is a

²⁰⁰⁰ Mathematics Subject Classification. 35J65, 35J20.

Key words and phrases. Multiple solutions; quasilinear elliptic problems;

nonlinear boundary conditions.

^{©2008} Texas State University - San Marcos.

Submitted October 20, 2008. Published December 23, 2008.

recent critical point result due to G. Bonanno [2]. Using this interesting result we show that problem (1.1) has at least two nontrivial solutions provided that λ and μ are suitable. In order to state our main result we introduce some hypotheses.

We assume that the functions f and $g : \mathbb{R} \to \mathbb{R}$ satisfy the following conditions: (H1) There exist constants $M_1, M_2 > 0$ such that for all $t \in \mathbb{R}^N$,

- $|f(t)| \le M_1(1+|t|^{p-1}), \quad |g(t)| \le M_2|t|^{p-1};$
- (H2) f is superlinear at zero; i.e.,

$$\lim_{t \to 0} \frac{f(t)}{|t|^{p-1}} = 0;$$

(H3) if we set $F(t) = \int_0^t f(t)dt$ and $G(t) = \int_0^t g(t)dt$, then there exists $t_0 \in \mathbb{R}$ such that

$$F(t_0) = \int_0^{t_0} f(t)dt > 0$$
 or $G(t_0) = \int_0^{t_0} g(t)dt > 0.$

Let $W^{1,p}(\Omega)$ be the usual Sobolev space with respect to the norm

$$||u||_{1,p}^p = \int_{\Omega} (|\nabla u|^p + |u|^p) dx$$

and $W_0^{1,p}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. For any $1 and <math>1 \le q \le p^{\star} = \frac{Np}{N-p}$, we denote by $S_{q,\Omega}$ the best constant in the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ and for all $1 \le q \le p_{\star} = \frac{(N-1)p}{N-p}$, we also denote by $S_{q,\partial\Omega}$ the best constant in the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$, i.e.

$$S_{q,\partial\Omega} = \inf_{u \in W^{1,p}(\Omega) \setminus W_0^{1,p}(\Omega)} \frac{\int_{\Omega} (|\nabla u|^p + |u|^p) dx}{\left(\int_{\partial\Omega} |u|^q d\sigma\right)^{p/q}}.$$

Moreover, if $1 \leq q < p^*$, then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact and if $1 \leq q < p_*$, then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ is compact. As a consequence, we have the existence of extremals, i.e. functions where the infimum is attained (see [3, 6]).

Definition 1.1. We say that $u \in W^{1,p}(\Omega)$ is a weak solution of problem (1.1) if and only if

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u \nabla \varphi + |u|^{p-2} u \varphi) dx - \lambda \int_{\Omega} f(u) \varphi dx - \mu \int_{\partial \Omega} g(u) \varphi d\sigma = 0$$

for all $\varphi \in W^{1,p}(\Omega)$.

Theorem 1.2. Assuming hypotheses (H1)–(H3) are fulfilled then there exist an open interval Λ_{μ} and a constant $\delta_{\mu} > 0$ such that for all $\lambda \in \Lambda_{\mu}$, problem (1.1) has at least two weak solutions in $W^{1,p}(\Omega)$ whose $\|\cdot\|_{1,p}$ -norms are less than δ_{μ} .

We emphasize that the condition (H3) cannot be omitted. Indeed, if for instance $f \equiv 0$ and $g \equiv 0$, then (H1) and (H2) clearly hold, but problem (1.1) has only the trivial solution. Theorem 1.2 will be proved by using a recent result on the existence of at least three critical points by Bonanno [2] which is actually a refinement of a general principle of Ricceri (see [9, 10]). For the reader's convenience, we describe it as follows.

EJDE-2008/165

Lemma 1.3 (see [2, Theorem 2.1]). Let $(X, \|\cdot\|)$ be a separable and reflexive real Banach space, $\mathcal{A}, \mathcal{F} : X \to \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_0 \in X$ such that $\mathcal{A}(x_0) = \mathcal{F}(x_0) = 0$, $\mathcal{A}(x) \ge 0$ for all $x \in X$ and there exist $x_1 \in X$, $\rho > 0$ such that

(i) $\rho < \mathcal{A}(x_1),$ (ii) $\sup_{\{\mathcal{A}(x) < \rho\}} \mathcal{F}(x) < \rho \frac{\mathcal{F}(x_1)}{\mathcal{A}(x_1)}.$

Further, put

$$\overline{a} = \frac{\xi \rho}{\rho \frac{\mathcal{F}(x_1)}{\mathcal{A}(x_1)} - \sup_{\{\mathcal{A}(x) < \rho\}} \mathcal{F}(x)}, \quad with \ \xi > 1,$$

and assume that the functional $\mathcal{A} - \lambda \mathcal{F}$ is sequentially weakly lower semicontinuous, satisfies the Palais-Smale condition and

(*iii*)
$$\lim_{\|x\|\to\infty} [\mathcal{A}(x) - \lambda \mathcal{F}(x)] = +\infty$$
 for every $\lambda \in [0, \overline{a}]$.

Then, there exist an open interval $\Lambda \subset [0, \overline{a}]$ and a positive real number δ such that each $\lambda \in \Lambda$, the equation

$$D\mathcal{A}(u) - \lambda D\mathcal{F}(u) = 0$$

has at least three solutions in X whose $\|\cdot\|$ -norms are less than δ .

2. Multiple solutions

Throughout this section, we suppose that all assumptions of Theorem 1.2 are satisfied. For λ and $\mu \in \mathbb{R}$, we define the functional $\Phi_{\mu,\lambda} : W^{1,p}(\Omega) \to \mathbb{R}$ by

$$\Phi_{\mu,\lambda}(u) = \mathcal{I}_{\mu}(u) - \lambda \mathcal{J}(u) \text{ for all } u \in W_0^{1,p}(\Omega),$$

where

$$\mathcal{I}_{\mu}(u) = \int_{\Omega} (|\nabla u|^p + |u|^p) dx - \mu \int_{\partial \Omega} G(u) d\sigma, \quad \mathcal{J}(u) = \int_{\Omega} F(u) dx \tag{2.1}$$

with $F(t) = \int_0^t f(t)dt$ and $G(t) = \int_0^t g(t)dt$.

A simple computation implies that the functional $\Phi_{\mu,\lambda}$ is of C^1 -class and hence weak solutions of (1.1) correspond to the critical points of $\Phi_{\mu,\lambda}$. To prove Theorem 1.2, we shall apply Lemma 1.3 by choosing $X = W^{1,p}(\Omega)$ as well as $\mathcal{A} = \mathcal{I}_{\mu}$ and $\mathcal{F} = \mathcal{J}$ as in (2.1). Now, we shall check all assumptions of Lemma 1.3. For each $\mu \in$ $[0, \frac{pS_{p,\partial\Omega}}{M_2})$ we have $\mathcal{I}_{\mu}(u) \geq 0$ for all $u \in W^{1,p}(\Omega)$ and $\mathcal{I}_{\mu}(0) = \mathcal{J}(0) = 0$ since the assumption (H1) holds. Moreover, by the compact embeddings $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ and $W^{1,p}(\Omega) \hookrightarrow L^p(\partial\Omega)$, a simple computation helps us to conclude the following lemma.

Lemma 2.1. For every $\mu \in [0, \frac{pS_{p,\partial\Omega}}{M_2})$ and all $\lambda \in \mathbb{R}$, the functional $\Phi_{\mu,\lambda}$ is sequentially weakly lower semicontinuous on $W^{1,p}(\Omega)$.

Lemma 2.2. There exist two positive constants $\overline{\mu}$ and $\overline{\lambda}$ such that for all $\mu \in [0, \overline{\mu})$ and all $\lambda \in [0, \overline{\lambda})$, the functional $\Phi_{\lambda,\mu}$ is coercive and satisfies the Palais-Smale condition in $W^{1,p}(\Omega)$. *Proof.* By (H1), we have

$$\Phi_{\mu,\lambda}(u) = \int_{\Omega} (|\nabla u|^p + |u|^p) dx - \lambda \int_{\Omega} F(u) dx - \mu \int_{\partial\Omega} G(u) d\sigma$$

$$\geq \|u\|_{1,p}^p - \lambda M_1 \int_{\Omega} (|u| + \frac{|u|^p}{p}) dx - \mu \frac{M_2}{p} \int_{\partial\Omega} |u|^p d\sigma$$

$$\geq \|u\|_{1,p}^p \left(1 - \lambda \frac{M_1}{pS_{p,\Omega}} - \mu \frac{M_2}{pS_{p,\partial\Omega}}\right) - \lambda \frac{M_1}{S_{1,\Omega}} \|u\|_{1,p}.$$
(2.2)

Since relation (2.2) holds, by choosing

$$\overline{\mu} = \overline{\lambda} = \min\left\{\frac{pS_{p,\Omega}}{2M_1}, \frac{pS_{p,\partial\Omega}}{2M_2}\right\},\,$$

where M_1, M_2 are given in (H1), we conclude that for all $\lambda \in [0, \overline{\lambda})$ and all $\mu \in [0, \overline{\mu})$, the functional $\Phi_{\mu,\lambda}$ is coercive.

Now, let $\{u_m\}$ be a Palais-Smale sequence for the functional $\Phi_{\mu,\lambda}$ in $W^{1,p}(\Omega)$; i.e.,

$$|\Phi_{\mu,\lambda}(u_m)| \le \overline{c}, \quad D\Phi_{\mu,\lambda}(u_m) \to 0 \text{ in } W^{-1,p}(\Omega), \tag{2.3}$$

where $W^{-1,p}(\Omega)$ is the dual space of $W^{1,p}(\Omega)$. Since $\Phi_{\mu,\lambda}$ is coercive, the sequence $\{u_m\}$ is bounded in $W^{1,p}(\Omega)$. Therefore, there exists a subsequence of $\{u_m\}$, denoted by $\{u_m\}$ such that $\{u_m\}$ converges weakly to some $u \in W^{1,p}(\Omega)$ and hence converges strongly to u in $L^p(\Omega)$ and in $L^p(\partial\Omega)$. We shall prove that $\{u_m\}$ converges strongly to u in $W^{1,p}(\Omega)$. Indeed, we have

$$\begin{split} \|u_m - u\|_{1,p}^p &\leq \int_{\Omega} (|\nabla u_m|^{p-2} \nabla u_m - |\nabla u|^{p-2} \nabla u) (\nabla u_m - \nabla u) dx \\ &+ \int_{\Omega} (|u_m|^{p-2} u_m - |u|^{p-2} u) (u_m - u) dx \\ &= [D\Phi_{\mu,\lambda}(u_m) - D\Phi_{\mu,\lambda}(u)] (u_m - u) + \lambda \int_{\Omega} [f(u_m) - f(u)] (u_m - u) dx \\ &+ \mu \int_{\partial \Omega} [g(u_m) - g(u)] (u_m - u) dx. \end{split}$$

On the other hand, the compact embeddings and (H1) imply

$$\begin{split} &|\int_{\Omega} [f(u_m) - f(u)](u_m - u)dx| \\ &\leq \int_{\Omega} |f(u_m) - f(u)||u_m - u|dx \\ &\leq M_1 \int_{\Omega} (2 + |u_m|^{p-1} + |u|^{p-1})|u_m - u|dx \\ &\leq M_1 (2 \operatorname{meas}(\Omega)^{\frac{p-1}{p}} + ||u_m||_{L^p(\Omega)}^{p-1} + ||u||_{L^p(\Omega)}^{p-1})||u_m - u||_{L^p(\Omega)}^p \end{split}$$

which approaches 0 as $m \to \infty$. Similarly, we obtain

$$\begin{split} |\int_{\partial\Omega} [g(u_m) - g(u)](u_m - u)dx| &\leq \int_{\partial\Omega} |g(u_m) - g(u)||u_m - u|dx\\ &\leq M_2 \int_{\partial\Omega} (|u_m|^{p-1} + |u|^{p-1})|u_m - u|dx\\ &\leq M_2 (||u_m||^{p-1}_{L^p(\partial\Omega)} + ||u||^{p-1}_{L^p(\partial\Omega)})||u_m - u||^p_{L^p(\partial\Omega)}) \end{split}$$

EJDE-2008/165

which approaches zero as $m \to \infty$. Hence, by (2.3) we have $||u_m - u||_{1,p} \to 0$ as $m \to \infty$; i.e., the functional $\Phi_{\mu,\lambda}$ satisfies the Palais-Smale condition.

Lemma 2.3. For every $\mu \in [0, \overline{\mu})$ with $\overline{\mu}$ as in Lemma 2.2, we have

$$\lim_{\rho \to 0^+} \frac{\sup\{\mathcal{J}(u) : \mathcal{I}_{\mu}(u) < \rho\}}{\rho} = 0.$$

Proof. Let $\lambda \in [0, \overline{\lambda})$ and $\mu \in [0, \overline{\mu})$ be fixed. By (H2), for any $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$|f(s)| < \epsilon p S_{p,\Omega} \left(1 - \mu \frac{M_2}{p S_{p,\partial\Omega}} \right) |s|^{p-1} \text{ for all } |s| < \delta.$$

We first fix $q \in (p, p^*)$. Combining the above inequalities with (H1) we deduce that

$$|F(s)| \le \epsilon S_{p,\Omega} \left(1 - \mu \frac{M_2}{p S_{p,\partial\Omega}} \right) |s|^p + C_\delta |s|^q,$$
(2.4)

for all $s \in \mathbb{R}$, where C_{δ} is a constant depending on δ . Now, for every $\rho > 0$, we define the sets

$$\mathcal{B}^1_\rho = \{ u \in W^{1,p}(\Omega) : \mathcal{I}_\mu(u) < \rho \}$$

and

$$\mathcal{B}_{\rho}^{2} = \left\{ u \in W^{1,p}(\Omega) : \left(1 - \mu \frac{M_{2}}{pS_{p,\partial\Omega}} \right) \| u \|_{1,p}^{p} < \rho \right\}.$$

Then $\mathcal{B}^1_{\rho} \subset \mathcal{B}^2_{\rho}$. From (2.4) we get

$$|\mathcal{J}(u)| \le \epsilon \left(1 - \mu \frac{M_2}{pS_{p,\partial\Omega}}\right) \|u\|_{1,p}^p + \frac{C_\delta}{S_{q,\Omega}^{\frac{q}{p}}} \|u\|_{1,p}^q.$$
(2.5)

It is clear that $0 \in \mathcal{B}^1_{\rho}$ and $\mathcal{J}(0) = 0$. Hence, $0 \leq \sup_{u \in \mathcal{B}^1_{\rho}} \mathcal{J}(u)$, using (2.5) we get

$$0 \le \frac{\sup_{u \in \mathcal{B}_{\rho}^{1}} \mathcal{J}(u)}{\rho} \le \frac{\sup_{u \in \mathcal{B}_{\rho}^{2}} \mathcal{J}(u)}{\rho} \le \epsilon + \frac{C_{\delta}}{S_{q,\Omega}^{\frac{q}{p}}} \left(1 - \mu \frac{M_{2}}{pS_{p,\partial\Omega}}\right)^{-\frac{q}{p}} \rho^{\frac{q}{p}-1}.$$
 (2.6)

We complete the proof of the lemma by letting $\rho \to 0^+$, since $\epsilon > 0$ is arbitrary. \Box

Proof of Theorem 1.2 completed. Let s_0 be as in (H3). We choose a constant $r_0 > 0$ such that $r_0 < \text{dist}(0, \partial \Omega)$. For each $\delta \in (0, 1)$ we define the function

$$u_{\delta}(x) = \begin{cases} 0, & \text{if } x \in \mathbb{R}^{N} \setminus B_{r_{0}}(0) \\ s_{0}, & \text{if } x \in B_{\delta r_{0}}(0) \\ \frac{s_{0}}{r_{0}(1-\delta)}(r_{0}-|x|), & \text{if } x \in B_{r_{0}}(0) \setminus B_{\delta r_{0}}(0), \end{cases}$$

where $B_{r_0}(0)$ denotes the open ball with center 0 and radius $r_0 > 0$. Then, it is clear that $u_{\delta} \in W_0^{1,p}(\Omega)$. Moreover, we have

$$\|u_{\delta}\|_{1,p}^{p} \ge \frac{|s_{0}|^{p}(1-\delta^{N})}{(1-\delta)^{p}}r_{0}^{N-p}\omega_{N} > 0,$$
(2.7)

$$\mathcal{J}(u_{\delta}) \ge [F(s_0)\delta^N - \max_{|t| \le |s_0|} |F(t)|(1-\delta^N)]\omega_N r_0^N,$$
(2.8)

where ω_N is the volume of the unit ball in \mathbb{R}^N . From (2.8), there is $\delta_0 > 0$ such that $\|u_{\delta_0}\|_{1,p} > 0$ and $\mathcal{J}(u_{\delta_0}) > 0$. Now, by Lemma 2.3, we can choose $\rho_0 \in (0,1)$ such that

$$\rho_0 < \left(1 - \mu \frac{M_2}{pS_{p,\partial\Omega}}\right) \|u_{\delta_0}\|_{1,p}^p \le \mathcal{I}_{\mu}(u_{\delta_0})$$

and satisfies

$$\frac{\sup\{\mathcal{J}(u):\mathcal{I}_{\mu}(u)<\rho_0\}}{\rho_0}<\frac{\mathcal{J}(u_{\delta_0})}{2\mathcal{I}_{\mu}(u_{\delta_0})}.$$

To apply Lemma 1.3, we choose $x_1 = u_{\delta_0}$ and $x_0 = 0$. Then, the assumptions (i) and (ii) of Lemma 1.3 are satisfied. Next, we define

$$a_{\mu} = \frac{1+\rho_0}{\frac{\mathcal{J}(u_{\delta_0})}{\mathcal{I}_{\mu}(u_{\delta_0})} - \frac{\sup\{\mathcal{J}(u):\mathcal{I}_{\mu}(u)<\rho_0\}}{\rho_0}} > 0 \quad \text{and} \quad \overline{a}_{\mu} = \min\{a_{\mu}, \overline{\lambda}\}.$$

A simple computation implies that (iii) are verified. Hence, there exist an open interval $\Lambda_{\mu} \subset [0, \overline{a}_{\mu}]$ and a real positive number δ_{μ} such that for each $\lambda \in \Lambda_{\mu}$, the equation $D\Phi_{\mu,\lambda}(u) = D\mathcal{I}_{\mu}(u) - \lambda D\mathcal{J}(u) = 0$ has at least three solutions in $W^{1,p}(\Omega)$ whose $\|\cdot\|_{1,p}$ -norms are less than δ_{μ} . By (H1) and (H2), one of them may be the trivial one. Thus, (1.1) has at least two weak solutions in $W^{1,p}(\Omega)$. The proof is complete.

Acknowledgments. The author would like to thank the referees for their suggesions and helpful comments on this work.

References

- E. A. M. Abreu, J. M. do Ó and E.S. Medeiros; Multiplicity of solutions for a class of quasilinear nonhomogeneuous Neumann problems, *Nonlinear Analysis*, **60** (2005), 1443 -1471.
- [2] G. Bonanno; Some remarks on a three critical points theorem Nonlinear Analysis, 54 (2003), 651 - 665.
- [3] J. F. Bonder; Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities, Abstr. Appl. Anal., 2004(12) (2004), 1047 - 1056.
- [4] J. F. Bonder; Multiple solutions for the p-Laplacian equation with nonlinear boundary conditions, *Electron. J. Diff. Eqns.*, 2006 no. 37, (2006), 1-7.
- [5] J. F. Bonder, S. Martínez and J. D. Rossi; Existence results for gradient elliptic systems with nonlinear boundary conditions, NoDEA, 14(1-2) (2007), 153 - 179.
- [6] J. F. Bonder and J. D. Rossi; Existence Results for the p-Laplacian with Nonlinear Boundary Conditions, J. Math. Anal. Appl., 263 (2001), 195 - 223.
- [7] X. Fan; Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395 - 1412.
- [8] K. Perera; Multiple positive solutions for a class of quasilinear elliptic boundary-value problems, *Electron. J. Diff. Eqns.*, 07 (2003), 1 - 5.
- [9] B. Ricceri; On a three critical points, Arch. Math., (Basel) 75 (2000), 220 226.
- [10] B. Ricceri; Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling, 32 (2000), 1485 - 1494.
- [11] J. Yao; Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Analysis, **68** (2006), 1271 - 1283.
- [12] Ji-Hong Zhao, Pei-Hao Zhao; Infinitely many weak solutions for a p-Laplacian equations with nonlinear boundary conditions, *Electron. J. Diff. Eqns.*, 2006 no. 90 (2006), 1-14.

Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

E-mail address: ntchung82@yahoo.com