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NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF
HIGHER ORDER DIFFERENTIAL EQUATIONS WITH

p-LAPLACIAN

YUJI LIU

Abstract. We establish sufficient conditions for the existence of positive so-
lutions to five multi-point boundary value problems. These problems have a

common equation (in different function domains) and different boundary con-

ditions. It is interesting note that the methods for solving all these problems
and most of the reference are based on the Mawhin’s coincidence degree the-

ory. First, we present a survey of multi-point boundary-value problems and
the motivation of this paper. Then we present the main results which gen-

eralize and improve results in the references. We conclude this article with

examples of problems that can not solved by methods known so far.

1. Introduction

Multi-point boundary-value problems (BVPs) for differential equations were ini-
tialed by Il’in and Moiseev [20] and have received a wide attention because of their
potential applications. There are many exciting results concerned with the exis-
tence of positive solutions of boundary-value problems of second or higher order
differential equations with or without p-Laplacian subjected to the special homo-
geneous multi-point boundary conditions (BCs); we refer the readers to [1]–[11],
[9]–[24] [27]–[47], [49]–[52], [55]–[79]. The methods used for finding positive solu-
tions of these problems at non-resonance cases, or solutions at resonance cases, are
critical point theory, fixed point theorems in cones in Banach spaces, fixed point
index theory, alternative of Leray-Schauder, upper and lower solution methods with
iterative techniques, and so on. There are also several results concerned with the
existence of positive solutions of multi-point boundary-value problems for differen-
tial equations with non-homogeneous BCs; see for example [12, 13, 25, 26, 48, 53]
and the early paper [79]. For the reader’s information and to compare our results
with the known ones, we now give a simple survey.
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Multi-point boundary-value problems with homogeneous BCs consist of the sec-
ond order differential equation and the multi-point homogeneous boundary condi-
tions. The second order differential equation is either

[φ(x′(t))]′ + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

or one of the following cases

x′′(t) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),[
φ(x′(t))

]′ + f(t, x(t)) = 0, t ∈ (0, 1),

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1).

The multi-point homogeneous boundary conditions are either

x(0)−
m∑

i=1

αix(ξi) = x(1)−
n∑

i=1

βix(ηi) = 0,

x′(0)−
m∑

i=1

αix
′(ξi) = x(1)−

n∑
i=1

βix(ηi) = 0,

x(0)−
m∑

i=1

αix(ξi) = x′(1)−
n∑

i=1

βix
′(ηi) = 0,

x′(0)−
m∑

i=1

αix
′(ξi) = x′(1)−

n∑
i=1

βix
′(ηi) = 0,

x(0)−
m∑

i=1

αix
′(ξi) = x(1)−

n∑
i=1

βix
′(ηi) = 0,

x(0)−
m∑

i=1

αix
′(ξi) = x(1)−

n∑
i=1

βix(ηi) = 0,

x(0)−
m∑

i=1

αix
′(ξi) = x′(1)−

n∑
i=1

βix
′(ηi) = 0,

or their special cases, where 0 < ξ1 < · · · < ξm < 1 and 0 < ηi < · · · < ηn < 1,
αi, βj ∈ R are constants. These problems were studied extensively in papers [1]–[75]
and the references therein.

1. For the second order differential equations, Gupta [16] studied the following
multi-point boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + r(t), t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x(1)−
n∑

i=1

βix(ηi) = 0,
(1.1)

and
x′′(t) = f(t, x(t), x′(t)) + r(t), t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x′(1)−
n∑

i=1

βix
′(ηi) = 0,

(1.2)

where 0 < ξi < · · · < ξm < 1, 0 < η1 < · · · < ηn < 1, αi, βi ∈ R with
(
∑m

i=1 αiξi)(1 −
∑n

i=1 βi) 6= (1 −
∑m

i=1 αi)(
∑n

i=1 βiηi − 1) for (1.1) and with (1 −∑m
i=1 αi)(1 −

∑n
i=1 βi) 6= 0 for (1.2). Some existence results for solutions of (1.1)
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and (1.2) were established in [14]. Liu [36] established the existence results of
solutions of (1.1) for the case

m∑
i=1

αiξi = 1−
m∑

i=1

αi = 1−
∑
i=1

βi = 1−
m∑

i=1

βiξi = 0.

Liu and Yu [33, 34, 35, 37] studied the existence of solutions of (1.1) and (1.2) at
some special cases.

Zhang and Wang [78] studied the multi-point boundary-value problem

x′′(t) = f(t, x(t)), t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x(1)−
n∑

i=1

βix(ηi) = 0,
(1.3)

where 0 < ξi < · · · < ξm < 1, αi, βi ∈ [0,+∞) with 0 <
∑m

i=1 αi < 1 and∑m
i=1 βi < 1. Under certain conditions on f , they established some existence results

for positive solutions of (1.3).
Liu in [32], and Liu and Ge in [43] studied the four-point boundary-value problem

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0)− αx(ξ) = x(1)− βx(η) = 0,
(1.4)

where 0 < ξ, η < 1, α, β ≥ 0, f is a nonnegative continuous function. Using
the Green’s function of its corresponding linear problem, Liu established existence
results for at least one or two positive solutions of (1.4).

Ma in [49], and Zhang and Sun in [77] studied the following multi-point boundary-
value problem

x′′(t) + a(t)f(x(t)) = 0, t ∈ (0, 1),

x(0) = x(1)−
m∑

i=1

αix(ξi) = 0,
(1.5)

where 0 < ξi < 1, αi ≥ 0 with
∑m

i=1 αiξi < 1, a and f are nonnegative continuous
functions, there is t0 ∈ [ξm, 1] so that a(t0) > 0. Let

lim
x→0

f(x)
x

= l, lim
x→+∞

f(x)
x

= L.

It was proved that if l = 0, L = +∞ or l = +∞, L = 0, then (1.5) has at least one
positive solution.

Ma and Castaneda [51] studied the problem

x′′(t) + a(t)f(x(t)) = 0, t ∈ (0, 1),

x′(0)−
m∑

i=1

αix
′(ξi) = x(1)−

m∑
i=1

βix(ξi) = 0,
(1.6)

where 0 < ξi < · · · < ξm < 1, αi, βi ≥ 0 with 0 <
∑m

i=1 αi < 1 and 0 <
∑m

i=1 βi < 1
and a and f are nonnegative continuous functions, there is t0 ∈ [ξm, 1] so that
a(t0) > 0. Ma and Castaneda established existence results for positive solutions of
(1.6) under the assumptions

lim
x→0

f(x)
x

= 0, lim
x→+∞

f(x)
x

= +∞ or lim
x→0

f(x)
x

= +∞, lim
x→+∞

f(x)
x

= 0.
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2. For second order differential equations with p-Laplacian, Drabek and Takc [8]
studied the existence of solutions of the problem

−(φ(x′(t))′ − λφ(x) = f(t), t ∈ (0, T ),

x(0) = x(T ) = 0,
(1.7)

In a recent paper [28], the author established multiplicity results for positive
solutions of the problems[

φp(x′(t))
]′ + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) =
∫ 1

0

x(s)dh(s), φp(x′(1)) =
∫ 1

0

φp(x′(s))dg(s),

and [
φp(x′(t))

]′ + f(t, x(t)) = 0, t ∈ (0, 1),

φp(x′(0)) =
∫ 1

0

φp(x′(s))dh(s), x(1) =
∫ 1

0

x(s)dg(s).

Gupta [17] studied the existence of solutions of the problem[
φ(x′(t))

]′ + f(t, x(t), x′(t)) + e(t) = 0, t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x(1)−
m∑

i=1

βix(ξi) = 0
(1.8)

by using topological degree and some a priori estimates.
Bai and Fang [6] investigated the following multi-point boundary-value problem[

φ(x′(t))
]′ + a(t)f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = x(1)−
m∑

i=1

βix(ξi) = 0,
(1.9)

where 0 < ξi < · · · < ξm < 1, βi ≥ 0 with
∑m

i=1 βiξi < 1, a is continuous
and nonnegative and there is t0 ∈ [ξm, 1] so that a(t0) > 0, f is a continuous
nonnegative function. The purpose of [6] is to generalize the results in [49]. Wang
and Ge [63], Ji, Feng and Ge [21], Feng, Ge and Jiang [9], Rynne [58] studied the
existence of multiple positive solutions of the following more general problem[

φ(x′(t))
]′ + a(t)f(t, x(t)) = 0, t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x(1)−
m∑

i=1

βix(ξi) = 0

by using fixed point theorems for operators in cones. Sun, Qu and Ge [62] using
the monotone iterative technique established existence results of positive solutions
of the problem [

φ(x′(t))
]′ + a(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x(1)−
m∑

i=1

βix(ξi) = 0.
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Bai and Fang [5] studied the problem[
φ(x′(t))

]′ + f(t, x(t)) = 0, t ∈ (0, 1),

x′(0)−
m∑

i=1

αix
′(ξi) = x(1)−

m∑
i=1

βix(ξi) = 0,
(1.10)

where 0 < ξi < · · · < ξm < 1, αi ≥ 0, βi ≥ 0 with 0 <
∑m

i=1 αi < 1 and
0 <

∑m
i=1 βi < 1, f is continuous and nonnegative. The purpose of [5] is to

generalize and improve the results in [51]. In paper Ma, Du and Ge [54] studied
(1.6) by using the monotone iterative methods. The existence of monotone positive
solutions of (1.6) were obtained. Based upon the fixed point theorem due to Avery
and Peterson [4], Wang and Ge [64], Sun, Ge and Zhao [61] established existence
results of multiple positive solutions of the following problems[

φ(x′(t))
]′ + a(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x′(0)−
m∑

i=1

αix
′(ξi) = x(1)−

m∑
i=1

βix(ξi) = 0

and [
φ(x′(t))

]′ + a(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = x′(1)−
m∑

i=1

βix
′(ξi) = 0.

In [28, 37], the authors studied the existence of solutions of the following BVPs
at resonance cases

x′′(t) = f(t, x(t), x′(t)) + e(t), 0t ∈ (0, T ),

x′(0) = αx′(ξ), x′(1) =
m∑

i=1

βix
′(ξi).

(1.11)

In a recent paper [11], the authors investigated the existence of solutions of the
following problem for p-Laplacian differential equation

(φ(x′(t))′ = f(t, x(t), x′(t)), t ∈ (0, T ),

x′(0) = 0, θ(x′(1)) =
m∑

i=1

αiθ(x′(ξi)),
(1.12)

where θ and φ are two odd increasing homeomorphisms from R to R with φ(0) =
θ(0) = 0.

In the recent papers [19, 24, 25, 29, 36, 56, 60, 61, 63, 64, 65, 66, 71, 76], the
authors studied the existence of multiple positive solutions of (1.8), (1.9), (1.10) or
other more general multi-point boundary-value problems, respectively, by using of
multiple fixed point theorems in cones in Banach spaces such as the five functionals
fixed point theorem [19], the fixed-point index theory [59], the fixed point theorem
due to Avery and Peterson, a two-fixed-point theorem [19, 61, 63, 64], Krasnosel-
skii’s fixed point theorem and the contraction mapping principle [22, 29, 56, 60, 71],
the Leggett-Williams fixed-point theorem [23, 36], the generalization of polar coor-
dinates [65], using the solution of an implicit functional equation [22, 23].
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3. For higher order differential equations, there have been many papers discussed
the existence of solutions of multi-point boundary-value problems for third order
differential equations [15, 47, 55]. Ma [47] studied the solvability of the problem

x′′′(t) + k2x′(t) + g(x(t), x′(t)) = p(t), t ∈ (0, π),

x(0) = 0, x′(0) = x′(π) = 0,
(1.13)

where k ∈ N , g is continuous and bounded, p is continuous. In [15, 55], the authors
investigated the solvability of the problem

x′′′(t) + k2x′(t) + g(t, x(t), x′(t), x′′(t)) = p(t),

x′(0) = x′(1) = 0, x(0) = 0,
(1.14)

where g and p are continuous, k ∈ R. It was supposed in [55] that g is bounded
and in [15] g satisfies g(t, u, v, w)v ≥ 0 for t ∈ [0, 1], (u, v, w) ∈ R3,

lim
|v|→∞

g(t, u, v, w)
v

< 3π2 uniformly in t, u, w.

The upper and lower solution methods with monotone iterative technique are
used to solve multi-point boundary-value problems for third or fourth order differ-
ential equations in papers [76] and [66].

In [40], the authors studied the problem

x(n)(t)) + λf(x(t)) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 3,

x(n−2)(0)− αx(n−2)(η) = x(n−2)(1)− βx(n−2)(η) = 0,

(1.15)

the existence results for positive solutions of (1.15) were established in [40] in the
case that the nonlinearity f changes sign.

The existence of positive solutions of the following two problems:

x(n)(t)) + φ(t)f(t, x(t)), . . . , x(n−2)(t)) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 2, x(n−1)(0) = 0,
(1.16)

and
x(n)(t)) + φ(t)f(t, x(t)), . . . , x(n−2)(t)) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 2, x(n−2)(0) = 0,
(1.17)

were studied in [2, 73].
4. For Sturm-Liouville type multi-point boundary conditions, Grossinho [12]

studied the problem

x′′′(t) + f(t, x(t), x′(t), x′′(t)) = 0, t ∈ (0, 1),

x(0) = 0, ax′(0)− bx′′(0) = A, cx′(1) + dx′′(1) = B.
(1.18)

By using theory of Leray-Schauder degree, it was proved that (1.18) has solutions
under the assumptions that there exist super and lower solutions of the correspond-
ing problem.
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Agarwal and Wong [3], Qi [57] investigated the solvability of the following prob-
lem with Sturm-Liouville type boundary conditions

x(n)(t) = f(t, x(t), . . . , x(n−2)(t)), t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 3,

αx(n−2)(0)− βx(n−1)(0) = γx(n−2)(1) + τx(n−1)(1) = 0,

(1.19)

The authors in [24] studied the existence and nonexistence of solutions of a situation
more general than (1.18).

Lian and Wong [31] studied the existence of positive solutions of the follow-
ing BVPs consisting of the p-Laplacian differential equation and Sturm-Liouville
boundary conditions[

φ(x(n−1)(t)
]′ + f(t, x(t), . . . , x(n−2)(t)) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 3,

αx(n−2)(0)− βx(n−1)(0) = γx(n−2)(1) + τx(n−1)(1) = 0,

(1.20)

In all above mentioned papers, all of the boundary conditions concerned are
homogeneous cases. However, in many applications, BVPs are nonhomogeneous
BVPc, for example,

y′′ =
1
λ

(1 + y2)
1
2 , t ∈ (a, b),

y(a) = aα, y(b) = β

and

y′′ = − (1 + y′(t))2

2(y(t)− α)
, t ∈ (a, b),

y(a) = aα, y(b) = β

are very well known BVPs, which were proposed in 1690 and 1696, respectively.
In 1964, The BVPs studied by Zhidkov and Shirikov in [USSR Computational
Mathematics and Mathematical Physics, 4(1964)18-35] and by Lee in [Chemical
Engineering Science, 21(1966)183-194] are nonhomogeneous BVPs too.

There are also several papers concerning with the existence of positive solutions
of BVPs for differential equations with non-homogeneous BCs. Ma [48] studied
existence of positive solutions of the following BVP consisting of second order dif-
ferential equations and three-point BC

x′′(t)) + a(t)f(x(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1)− αx(η) = b,
(1.21)

In a recent paper [25, 26], using lower and upper solutions methods, Kong and
Kong established results for solutions and positive solutions of the following two
problems

x′′(t)) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x′(0)−
m∑

i=1

αix
′(ξi) = λ1, x(1)−

m∑
i=1

βix(ξi) = λ2,
(1.22)
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and

x′′(t)) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x(0)−
m∑

i=1

αix(ξi) = λ1, x(1)−
m∑

i=1

βix(ξi) = λ2,
(1.23)

respectively. We note that the boundary conditions in (1.17), (1.20), (1.21) and
(1.22) are two-parameter non-homogeneous BCs.

The purpose of this paper is to investigate the more generalized BVPs for higher
order differential equation with p-Laplacian subjected to non-homogeneous BCs, in
which the nonlinearity f contains t, x, . . . , x(n−1), i.e. the problems[

φ(x(n−1)(t))
]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−2)(0)−
m∑

i=1

αix
(n−2)(ξi) = λ1,

x(n−2)(1)−
m∑

i=1

βix
(n−2)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3;

(1.24)

[
φ(x(n−1)(t))

]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−1)(0)−
m∑

i=1

αix
(n−1)(ξi) = λ1,

x(n−2)(1)−
m∑

i=1

βix
(n−2)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3;

(1.25)

[
φ(x(n−1)(t))

]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−2)(0)−
m∑

i=1

αix
(n−2)(ξi) = λ1,

x(n−1)(1)−
m∑

i=1

βix
(n−1)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3;

(1.26)

[
φ(x(n−1)(t))

]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−2)(0)−
m∑

i=1

αix
(n−1)(ξi) = λ1,

x(n−2)(1) +
m∑

i=1

βix
(n−1)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3;

(1.27)
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and [
φ(x(n−1)(t))

]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

φ(x(n−1)(0))−
m∑

i=1

αiφ(x(n−1)(ξi)) = λ1,

θ(x(n−1)(1)) +
m∑

i=1

βiθ(x(n−1)(ξi)) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3;

(1.28)

where n ≥ 2, 0 < ξi < · · · < ξm < 1, αi, βi ∈ R, λ1, λ2 ∈ R, f is continuous, φ is
called p-Laplacian, φ(x) = |x|p−2x for x 6= 0 and φ(0) = 0 with p > 1, its inverse
function is denoted by φ−1(x) with φ−1(x) = |x|q−2x for x 6= 0 and φ−1(0) = 0,
where 1/p + 1/q = 1, θ is an odd increasing homeomorphisms from R to R with
θ(0) = 0.

We establish sufficient conditions for the existence of at least one positive solution
of (1.24), (1.25), (1.26), (1.27), and at least one solution of (1.28), respectively.

The first motivation of this paper is that it is of significance to investigate the
existence of positive solutions of (1.9) and (1.10) since the operators defined in
[5, 6, 48, 49] are can not be used; furthermore, it is more interesting to establish
existence results for positive solutions of higher order BVPs with non-homogeneous
BCs.

The second motivation to study (1.24), (1.25), (1.26), (1.27) and (1.28) comes
from the facts that

(i) (1.24) contains (1.1), (1.3), (1.4), (1.5), (1.7) (1.8), (1.9), (1.13), (1.14),
(1.15), (1.17) and (1.23) as special cases;

(ii) (1.25) contains (1.6), (1.10) and (1.22) as special cases;
(iii) (1.26) contains (1.2) and (1.16) as special cases;
(iv) (1.27) contains (1.18) and (1.19) as special cases;
(v) (1.28) contains (1.11) and (1.12) as special cases.

Furthermore, in most of the known papers, the nonlinearity f only depends on
a part of lower derivatives, the problem is that under what conditions problems
have solutions when f depends on all lower derivatives, such as in BVPs above, f
depends on x, x′, . . . , x(n−1).

The third motivation is that there exist several papers discussing the solvability
of Sturm-Liouville type boundary-value problems for p-Laplacian differential equa-
tions, whereas there is few paper concerned with the solvability of Sturm-Liouville
type multi-point boundary-value problems for p-Laplacian differential equations,
such as (1.27).

The fourth motivation comes from the challenge to find simple conditions on the
function f , for the existence of a solution of (1.28), as the nonlinear homeomor-
phisms φ and θ generating, respectively, the differential operator and the boundary
conditions are different. The techniques for studying the existence of positive solu-
tions of multi-point boundary-value problems consisting of the higher-order differ-
ential equation with p-Laplacian and non-homogeneous BCs are few.

Additional motivation is that the coincidence degree theory by Mawhin is re-
ported to be an effective approach to the study the existence of periodic solutions
of differential equations with or without delays, the existence of solutions of multi-
point boundary-value problems at resonance case for differential equations; see
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for example [33, 35, 37, 39, 45] and the references therein, but there is few pa-
per concerning the existence of positive solutions of non-homogeneous multi-point
boundary-value problems for higher order differential equations with p-Laplacian
by using the coincidence degree theory.

The following of this paper is organized as follows: the main results and remarks
are presented in Section 2, and some examples are given in Section 3. The methods
used and the results obtained in this paper are different from those in known papers.
Our theorems generalize and improve the known ones.

2. Main Results

In this section, we present the main results in this paper, whose proofs will be
done by using the following fixed point theorem due to Mawhin.

Let X and Y be real Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator
of index zero, P : X → X, Q : Y → Y be projectors such that

Im P = KerL, KerQ = Im L, X = KerL⊕KerP, Y = Im L⊕ Im Q.

It follows that
L|D(L)∩Ker P : D(L) ∩KerP → Im L

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X, D(L)∩Ω 6= ∅, the map N : X → Y will be

called L-compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω → X is compact.

Lemma 2.1 ([10]). Let L be a Fredholm operator of index zero and let N be L-
compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ Im L for every x ∈ KerL ∩ ∂Ω;
(iii) deg(∧QN

∣∣
Ker L

, Ω ∩ KerL, 0) 6= 0, where ∧ : Y/ Im L → KerL is an
isomorphism.

Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

In this paper, we choose X = Cn−2[0, 1]× C0[0, 1] with the norm

‖(x, y)‖ = max{‖x‖∞, . . . , ‖x(n−2)‖∞, ‖y‖∞},
and Y = C0[0, 1]× C0[0, 1]×R2 with the norm

‖(x, y, a, b)‖ = max{‖x‖∞, ‖y‖∞, |a|, |b|},
then X and Y are real Banach spaces. Let

D(L) =
{
(x1, x2) ∈ Cn−1[0, 1]× C1[0, 1] : x

(i)
1 (0) = 0, i = 0, . . . , n− 3

}
.

Now we prove an important lemma. Then we will establish existence results for
positive solutions of (1.24), (1.25), (1.26), (1.27) and (1.28) in sub-section 2.1, 2.2,
2.3, 2.4 and 2.5, respectively.

Lemma 2.2.
∑m

i=1 aσ
i ≤ Km−1

σ (
∑m

i=1 ai)σ for all ai ≥ 0 and σ > 0, where Kσ is
defined by Kσ = 1 for σ ≥ 1 and Kσ = 2 for σ ∈ (0, 1).

Proof. Case 1. m = 2. Without loss of generality, suppose a1 ≥ a2. Let g(x) =
Kσ(1 + x)σ − (1 + xσ), x ∈ [1,+∞), then

g(1) = Kσ2σ − 2 =

{
2σ − 2 ≥ 0, σ ≥ 1,

2σ+1 − 2 ≥ 0, σ ∈ (0, 1)
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and for x ∈ [1,∞), we get

g′(x) = σxσ−1[Kσ(1 + 1/x)σ−1− 1] ≥

{
0, σ ≥ 1,

σxσ−1[2(1 + 1/1)0−1 − 1] = 0, σ ∈ (0, 1).

We get that g(x) ≥ g(1) for all x ≥ 1 and so 1+xσ ≤ Kσ(1+x)σ for all x ∈ [1,+∞).
Hence aσ

1 + aσ
2 = aσ

2 [1 + (a1/a2)σ] ≤ Kσaσ
2 [1 + a1/a2]σ = Kσ(a1 + a2)σ.

Case 2. m > 2. It is easy to see that
m∑

i=1

aσ
i = aσ

1 + aσ
2 +

m∑
i=3

aσ
i

≤ Kσ(a1 + a2)σ +
m∑

i=3

aσ
i

≤ Kσ

(
(a1 + a2)σ +

m∑
i=3

aσ
i

)
≤ Kσ

(
(a1 + a2)σ + aσ

3 +
m∑

i=4

aσ
i

)
≤ Kσ

(
Kσ(a1 + a2 + a3)σ +

m∑
i=4

aσ
i

)
≤ K2

σ

(
(a1 + a2 + a3)σ +

m∑
i=4

aσ
i

)
≤ . . .

≤ Km−1
σ

( m∑
i=1

ai

)σ

.

The proof is complete. �

Remark 2.3. It is easy to see that
m∑

i=1

φ(ai) ≤ Km−1
p−1 φ(

m∑
i=1

ai),
m∑

i=1

φ−1(ai) ≤ Km−1
q−1 φ−1(

m∑
i=1

ai).

2.1. Positive solutions of Problem (1.24). Let

f∗(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−2, xn−1), (t, x0, . . . , xn−1) ∈ [0, 1]× Rn,

where x = max{0, x}. The following assumptions, which will be used in the proofs
of all lemmas in this sub-section, are supposed.

(H1) f : [0, 1]× [0,+∞)n−1 ×R → [0,+∞) is continuous with f(t, 0, . . . , 0) 6≡ 0
on each sub-interval of [0,1];

(H2) λ1, λ2 ≥ 0, αi ≥ 0, βi ≥ 0 satisfy 0 <
∑m

i=1 αi < 1, 0 <
∑m

i=1 βi < 1 and
λ1/(1−

∑m
i=1 αi) = λ2/(1−

∑m
i=1 βi);

(H3) there exist continuous nonnegative functions a, bi and c so that

|f(t, x0, . . . , xn−2, xn−1)| ≤ a(t) +
n−2∑
i=0

bi(t)φ(|xi|) + c(t)φ(|xn−1|),

for (t, x0, . . . , xn−1) ∈ [0, 1]×Rn;
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(H4) The following inequality holds

Km−1
q−1 φ

(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)[ n−3∑
i=0

φ
( 1
(n− 2− i)!

) ∫ 1

0

bi(s)ds

+
∫ 1

0

bn−2(s)ds
]

+
∫ 1

0

c(s)ds < 1.

We consider the problem[
φ(x(n−1)(t))

]′ + f∗(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 3,

x(n−2)(0)−
m∑

i=1

αix
(n−2)(ξi) = λ1,

x(n−2)(1))−
m∑

i=1

βix
(n−2)(ξi) = λ2.

(2.1)

Lemma 2.4. If (H1)–(H2) hold and x is a solution of (2.1), then x(t) > 0 for all
t ∈ (0, 1), and x is a positive solution of (1.24).

Proof. (H1) implies that [φ(x(n−1)(t)]′ = −f∗(t, x(t), . . . , x(n−1)(t)) ≤ 0 (6≡ 0), and
then x(n−1)(t) is decreasing and so x(n−2) is concave on [0,1], thus

min
t∈[0,1]

x(n−2)(t) = min{x(n−2)(0), x(n−2)(1)}.

Together with the boundary conditions in (29) and (H2), we get that

x(n−2)(0) =
m∑

i=1

αix
(n−2)(ξi) + λ1 ≥

m∑
i=1

αi min{x(n−2)(0), x(n−2)(1)}, (2.2)

and

x(n−2)(1) =
m∑

i=1

βix
(n−2)(ξi) + λ2 ≥

m∑
i=1

βi min{x(n−2)(0), x(n−2)(1)}.

Without loss of generality, assume that
∑m

i=1 αi ≥
∑m

i=1 βi.
If min{x(n−2)(0), x(n−2)(1)} < 0, then

x(n−2)(1) ≥
m∑

i=1

βi min{x(n−2)(0), x(n−2)(1)} ≥
m∑

i=1

αi min{x(n−2)(0), x(n−2)(1)}.

Together with (30), we have

min{x(n−2)(0), x(n−2)(1)} ≥
m∑

i=1

αi min{x(n−2)(0), x(n−2)(1)}.

Hence min{x(n−2)(0), x(n−2)(1)} ≥ 0. It follows that min{x(n−2)(0), x(n−2)(1)} ≥
0. So (H1) implies that x(n−2)(t) > 0 for all t ∈ (0, 1). Then from the bound-
ary conditions, we get x(i)(t) > 0 for all t ∈ (0, 1) and i = 0, . . . , n − 3. Then
f∗(t, x(t), . . . , x(n−1)(t)) = f(t, x(t), . . . , x(n−1)(t)). Thus x is a positive solution of
(1.24). The proof is complete. �

Lemma 2.5. If (H1)–(H2) hold and x is a solutions of (2.1), then there exists
ξ ∈ [0, 1] such that x(n−1)(ξ) = 0.
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Proof. In fact, if x(n−1)(t) > 0 for all t ∈ [0, 1], then

x(n−2)(0) =
m∑

i=1

αix
(n−2)(ξi) + λ1 >

m∑
i=1

αix
(n−2)(0) + λ1,

then x(n−2)(0) > λ1/(1 −
∑m

i=1 αi), it follows that x(n−2)(1) > λ1/(1 −
∑m

i=1 αi).
On the other hand,

x(n−2)(1) =
m∑

i=1

βix
(n−2)(ξi) + λ2 <

m∑
i=1

βix
(n−2)(1) + λ2,

thus

x(n−2)(1) < λ2/(1−
m∑

i=1

βi) = λ1/(1−
m∑

i=1

αi) < x(n−2)(1),

a contradiction. if x(n−1)(t) < 0 for all t ∈ [0, 1], then

x(n−2)(1) =
m∑

i=1

βix
(n−2)(ξi) + λ2 >

m∑
i=1

βix
(n−2)(1) + λ2,

then x(n−2)(1) > λ2/(1 −
∑m

i=1 βi), it follows that x(n−2)(0) > λ2/(1 −
∑m

i=1 βi).
On the other hand,

x(n−2)(0) =
m∑

i=1

αix
(n−2)(ξi) + λ1 <

m∑
i=1

αix
(n−2)(0) + λ1,

thus

x(n−2)(0) < λ1/(1−
m∑

i=1

αi) = λ2/(1−
m∑

i=1

βi) < x(n−2)(0),

contradiction too. Hence there is ξ ∈ [0, 1] so that x(n−1)(ξ) = 0. The proof is
complete. �

Lemma 2.6. If (x1, x2) is a solution of the problem

x
(n−1)
1 (t) = φ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −f∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

x
(n−2)
1 (0)−

m∑
i=1

αix
(n−2)
1 (ξi) = λ1,

x
(n−2)
1 (1)−

n∑
i=1

βix
(n−2)
1 (ξi) = λ2,

x
(i)
1 (0) = 0, i = 0, . . . , n− 3,

(2.3)

then x1 is a solution of (2.1).

The proof of the above lemma is simple; os it is omitted. Define the operators

L(x1, x2) =
(
x

(n−1)
1 , x′2, x

(n−2)
1 (0)−

m∑
i=1

αix
(n−2)
1 (ξi), x

(n−2)
1 (1)−

n∑
i=1

βix
(n−2)
1 (ξi)

)
,

(x1, x2) ∈ X ∩D(L);

N(x1, x2) = (φ−1(x2),−f∗(t, x1, . . . , x
(n−2), φ−1(x2)), λ1, λ2), (x1, x2) ∈ X.
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Under the assumptions (H1)–(H2), it is easy to show the following results:
(i) KerL = {(0, c) : c ∈ R} and

Im L =
{
(y1, y2, a, b) :

1
1−

∑m
i=1 αi

(
m∑

i=1

αi

∫ ξi

0

y1(s)ds + a)

+
1

1−
∑m

i=1 βi
(
∫ 1

0

y1(s)ds−
m∑

i=1

βi

∫ ξi

0

y1(s)ds− b) = 0
}

(ii) L is a Fredholm operator of index zero;
(iii) There exist projectors P : X → X and Q : Y → Y such that Ker L = Im P

and Ker Q = Im L. Furthermore, let Ω ⊂ X be an open bounded subset
with Ω ∩D(L) 6= ∅, then N is L-compact on Ω;

(iv) x = (x1, x2) is a solution of (2.3) if and only if x is a solution of the operator
equation Lx = Nx in D(L).

We present the projectors P and Q as follows: P (x1, x2) = (0, x2(0)) for all x =
(x1, x2) ∈ X and

Q(y1, y2, a, b) =
( 1

∆

[ 1
1−

∑m
i=1 αi

( m∑
i=1

αi

∫ ξi

0

y1(s)ds + a
)

+
1

1−
∑m

i=1 βi

( ∫ 1

0

y1(s)ds−
m∑

i=1

βi

∫ ξi

0

y1(s)ds− b
)]

, 0, 0, 0
)
,

where

∆ =
1

1−
∑m

i=1 αi

m∑
i=1

αiξi +
1

1−
∑m

i=1 βi

(
1−

m∑
i=1

βiξi

)
.

The generalized inverse of L : D(L) ∩KerP → Im L is defined by

KP (y1, y2, a, b) =
( ∫ t

0

(t− s)n−2

(n− 2)!
y1(s)ds

+
tn−2

(n− 2)!
1

1−
∑m

i=1 αi

( m∑
i=1

αi

∫ ξi

0

y1(s)ds + a
)
,

∫ t

0

y2(s)ds
)
,

the isomorphism ∧ : Y/ Im L → KerL is defined by ∧(c, 0, 0, 0) = (0, c).

Lemma 2.7. Suppose that (H1)-(H4) hold, and let

Ω0 = {(x1, x2) ∈ D(L) \KerL : L(x1, x2) = λN(x1, x2) for some λ ∈ (0, 1)}.
Then Ω0 is bounded.

Proof. For (x1, x2) ∈ Ω0, we get L(x1, x2) = λN(x1, x2). Then

x
(n−1)
1 (t) = λφ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −λf∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t)), t ∈ [0, 1],

x
(n−2)
1 (0)−

m∑
i=1

αix
(n−2)
1 (ξi) = λλ1,

x
(n−2)
1 (1)−

m∑
i=1

βix
(n−2)
1 (ξi) = λλ2,

x
(i)
1 (0) = 0, i = 0, . . . , n− 3,
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where λ ∈ (0, 1). If (x1, x2) is a solution of L(x1, x2) = λN(x1, x2) and (x1, x2) 6≡
(0, c), it follows from Lemma 2.5 that there is ξ ∈ [0, 1] so that x2(ξ) = 0. Then
(H3) implies

|x2(t)| =
∣∣− λ

∫ t

ξ

f∗(s, x1(s), . . . , x
(n−2)
1 (s), φ−1(x2(s)))ds

∣∣
≤

∫ 1

0

|f∗(s, x1(s), . . . , x
(n−2)
1 (s), φ−1(x2(s)))|ds

≤
∫ 1

0

(a(s) +
n−2∑
i=0

bi(s)φ(|x(i)
1 (s)|) + c(s)|x2(s)|)ds,

|x(n−2)
1 (0)| = 1

1−
∑m

i=1 αi

∣∣x(n−2)
1 (0)−

m∑
i=1

αix
(n−2)
1 (0)

∣∣
≤ 1

1−
∑m

i=1 αi

( m∑
i=1

αi|x(n−2)
1 (0)− x

(n−2)
1 (ξi)|+ λ1

)
≤ 1

1−
∑m

i=1 αi

( m∑
i=1

αiξ
(i)
1 |x(n−1)

1 (θi)|+ λ1

)
, θi ∈ [0, ξi],

≤ 1
1−

∑m
i=1 αi

( m∑
i=1

αiξiφ
−1(‖x2‖∞) + λ1

)
.

Then Lemma 2.2; i.e., Remark 2.3, implies

|x(n−2)
1 (t)| ≤ |x(n−2)

1 (0)|+
∣∣ ∫ t

0

x
(n−1)
1 (s)ds

∣∣
≤

(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
φ−1(‖x2‖∞) +

λ1

1−
∑m

i=1 αi

≤ Kq−1

[
φ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x2‖∞ + φ

( λ1

1−
∑m

i=1 αi

)]
.

Similarly, for i = 0, . . . , n− 3, we get

|x(i)
1 (t)| ≤

∣∣x(i)(0) +
∫ t

0

(t− s)n−3−i

(n− 3− i)!
x(n−2)(s)ds

∣∣
≤

∣∣ ∫ t

0

(t− s)n−i−3

(n− i− 3)!
ds

∣∣‖x(n−2)‖∞

≤ 1
(n− 2− i)!

‖x(n−2)
1 ‖∞

≤ 1
(n− 2− i)!

(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
φ−1(‖x2‖∞) +

1
(n− 2− i)!

λ1

1−
∑m

i=1 αi

≤ Kq−1

[
φ
( 1
(n− 2− i)!

)
φ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x2‖∞ + φ

( 1
(n− 2− i)!

)
× (

λ1

1−
∑m

i=1 αi
)
]
.
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It follows that

|x2(t)|

≤
∫ 1

0

a(s)ds +
∫ 1

0

bn−2(s)dsφ
((

1 +
∑m

i=1 αiξi

1−
∑m

i=1 αi

)
φ−1(‖x2‖∞) +

λ1

1−
∑m

i=1 αi

)
+

n−3∑
i=0

∫ 1

0

bi(s)dsφ
( 1

(n− 2− i)!
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
φ−1(‖x2‖∞)

+
1

(n− 2− i)!
λ1

1−
∑m

i=1 αi

)
+

∫ 1

0

c(s)ds‖x2‖∞

≤
∫ 1

0

a(s)ds + φ(Kq−1)
n−3∑
i=0

∫ 1

0

bi(s)dsφ
( 1
(n− 2− i)!

)
φ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x2‖∞

+ φ(Kq−1)
∫ 1

0

bn−2(s)dsφ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x2‖∞ +

∫ 1

0

c(s)ds‖x2‖∞

+ φ(Kq−1)
n−3∑
i=0

∫ 1

0

bi(s)dsφ
( 1
(n− 2− i)!

λ1

1−
∑m

i=1 αi

)
+ φ(Kq−1)

∫ 1

0

bn−2(s)dsφ
( λ1

1−
∑m

i=1 αi

)
.

It follows that

‖x2‖∞

≤
∫ 1

0

a(s)ds + φ(Kq−1)
n−3∑
i=0

∫ 1

0

bi(s)dsφ
( 1
(n− 2− i)!

)
φ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x2‖∞

+ φ(Kq−1)
∫ 1

0

bn−2(s)dsφ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x2‖∞ +

∫ 1

0

c(s)ds‖x2‖∞

+ φ(Kq−1)
n−3∑
i=0

∫ 1

0

bi(s)dsφ
( 1
(n− 2− i)!

λ1

1−
∑m

i=1 αi

)
+ φ(Kq−1)

∫ 1

0

bn−2(s)dsφ
( λ1

1−
∑m

i=1 αi

)
.

Then [
1− φ(Kq−1)

n−3∑
i=0

φ
( 1
(n− 2− i)!

) ∫ 1

0

bi(s)dsφ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
− φ(Kq−1)

∫ 1

0

bn−2(s)dsφ
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
−

∫ 1

0

c(s)ds
]
‖x2‖∞

≤
∫ 1

0

a(s)ds + φ(Kq−1)
n−3∑
i=0

∫ 1

0

bi(s)dsφ
( 1
(n− 2− i)!

λ1

1−
∑m

i=1 αi

)
+ φ(Kq−1)

∫ 1

0

bn−2(s)dsφ
( λ1

1−
∑m

i=1 αi

)
.
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It follow from (H4) that there is a constant M > 0 so that ‖x2‖∞ ≤ M . Since
|x(i)

1 (t)| ≤ 1
(n−3−i)!‖x

(n−2)
1 ‖∞ and |x(n−2)

1 (t)| ≤ (1 +
Pm

i=1 αiξi

1−
Pm

i=1 αi
)φ−1(‖x2‖∞) +

λ1
1−

Pm
i=1 αi

, there exist constants Mi > 0 so that ‖x(i)
1 ‖∞ ≤ Mi for all i = 0, . . . , n−2.

Then Ω0 is bounded. The proof is complete. �

Lemma 2.8. Suppose that (H2) holds. Then there exists a constant M ′
1 > 0 such

that for each x = (0, c) ∈ KerL, if N(0, c) ∈ Im L, we get that |c| ≤ M ′
1.

Proof. For each x = (0, c) ∈ KerL, if N(0, c) ∈ Im L, we get(
φ−1(c),−f∗(t, 0, . . . , 0, φ−1(c)), λ1, λ2

)
∈ Im L.

Then

1
1−

∑m
i=1 αi

( m∑
i=1

αi

∫ ξi

0

φ−1(c)ds + λ1

)
+

1
1−

∑m
i=1 βi

( ∫ 1

0

φ−1(c)ds−
m∑

i=1

βi

∫ ξi

0

φ−1(c)ds− λ2

)
= 0.

It follows that

φ−1(c) =
( ∑m

i=1 αiξi

1−
∑m

i=1 αi
+

1−
∑m

i=1 βiξi

1−
∑m

i=1 βi

)−1( λ2

1−
∑m

i=1 βi
+

λ1

1−
∑m

i=1 αi

)
.

So there exists a constant M ′
1 > 0 such that |c| ≤ M ′

1. The proof is complete. �

Lemma 2.9. Suppose that (H2) holds. Then there exists a constant M ′
2 > 0 such

that for each x = (0, c) ∈ KerL, if λ ∧−1 (0, c) + (1− λ) sgn(∆)QN(0, c) = 0, then
|c| ≤ M ′

2.

Proof. For each x = (0, c) ∈ KerL, if λ∧−1 (0, c) + (1− λ) sgn(∆)QN(0, c) = 0, we
get

λc = −(1− λ) sgn(∆)
1
∆

[( ∑m
i=1 αiξi

1−
∑m

i=1 αi
+

1−
∑m

i=1 βiξi

1−
∑m

i=1 βi

)
φ−1(c)

+
λ1

1−
∑m

i=1 αi
+

λ2

1−
∑m

i=1 βi

]
.

Thus

λc2 = −(1− λ) sgn(∆)
1
∆

[( ∑m
i=1 αiξi

1−
∑m

i=1 αi
+

1−
∑m

i=1 βiξi

1−
∑m

i=1 βi

)
φ−1(c)c

+
( λ1

1−
∑m

i=1 αi
+

λ2

1−
∑m

i=1 βi

)
c
]
.

If λ = 1, then c = 0. If λ ∈ [0, 1), since

q > 1,

∑m
i=1 αiξi

1−
∑m

i=1 αi
+

1−
∑m

i=1 βiξi

1−
∑m

i=1 βi
> 0,

one sees, for sufficiently large |c|, that

λc2 = −(1− λ) sgn(∆)
1
∆

[( ∑m
i=1 αiξi

1−
∑m

i=1 αi
+

1−
∑m

i=1 βiξi

1−
∑m

i=1 βi

)
|c|q

+
( λ1

1−
∑m

i=1 αi
+

λ2

1−
∑m

i=1 βi

)
c
]

< 0



18 Y. LIU EJDE-2008/20

a contradiction. So there exists a constant M ′
2 > 0 such that |c| ≤ M ′

2. The proof
is complete. �

Theorem 2.10. Suppose (H1)–(H4) hold. Then (1.24) has at least one positive
solution.

Proof. Let Ω ⊇ Ω0 be a bounded open subset of X centered at zero with its diameter
greater than max{M ′

1,M
′
2}. It follows from Lemmas 2.7, 2.8, 2.9 that Lx 6= λNx

for all (x, λ) ∈ [(D(L) \Ker L)∩ ∂Ω]× (0, 1); Nx /∈ Im L for every x ∈ KerL∩ ∂Ω;
deg(∧QN

∣∣
Ker L

, Ω ∩KerL, 0) 6= 0.
Since (H1) holds, L be a Fredholm operator of index zero and N be L-compact

on Ω. It follows from Lemma 2.1 that Lx = Nx has at least one solution x =
(x1, x2). Then x1 is a solution of (2.1). We note that x

(i)
1 (t) ≥ 0 for t ∈ [0, 1] and

i = 0, . . . , n− 2, so

f∗
(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1(x2(t))

)
= f

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1(x2(t))

)
.

Hence x1 is a positive solution of (1.24). The proof is complete. �

Remark 2.11. The operator defined in [6] can not be used, so we follow a different
method. Theorem 2.10 also generalizes and improves the results in [8, 14, 32, 40, 49].

2.2. Positive solutions of Problem (1.25). Let

f∗(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−2, xn−1), (t, x0, . . . , xn−1) ∈ [0, 1]× Rn,

and x = max{0, x} and y = min{0, y}. We consider the problem[
φ(x(n−1)(t))

]′ + f∗(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−1)(0)−
m∑

i=1

αix
(n−1)(ξi) = λ1,

x(n−2)(1)−
m∑

i=1

βix
(n−2)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3,

(2.4)

Suppose (H3) and the following assumptions, which will be used in the proof of all
lemmas in this sub-section.

(H5) f : [0, 1]×[0,+∞)n−1×(−∞, 0] → [0,+∞) is continuous and f(t, 0, . . . , 0) 6≡
0 on each sub-interval of [0,1];

(H6) λ1 ≤ 0, λ2 ≥ 0, αi, βi ≥ 0 with
∑m

i=1 φ(αi) < 1/φ(Km
q−1),

∑m
i=1 αi < 1 and∑m

i=1 βi < 1.
(H7) The following inequality holds(

1 +
φ(Km

q−1)
1− φ(Km

q−1)
∑m

i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
×

[
‖bn−2‖∞φ(Kq−1)φ

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
n−3∑
i=0

‖bi‖∞φ(Kq−1)φ
( 1
(n− 2− i)!

)
φ
(
1 +

∑m
i=1 βi(1− ξi)
1−

∑m
i=1 βi

)
+ ‖c‖∞

]
< 1.
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Lemma 2.12. If (x1, x2) is a solution of the problem

x
(n−1)
1 (t) = φ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −f∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

φ−1(x2(0))−
m∑

i=1

αiφ
−1(x2(ξi)) = λ1,

x
(n−2)
1 (1)−

n∑
i=1

βix
(n−2)
1 (ξi) = λ2,

x
(i)
1 (0) = 0, i = 0, . . . , n− 3,

(2.5)

then x1 is a solution of (2.4).

The proof of the above lemma is simple and is omitted.

Lemma 2.13. If (H5)–(H6) hold and x is a solution of (2.4), then x(t) > 0 for
all t ∈ (0, 1), and x is a positive solution of (1.25).

Proof. Firstly, since [φ(x(n−1)(t)]′ = −f∗(t, x(t), . . . , x(n−1)(t)) ≤ 0 and αi ≥
0,

∑m
i=1 αi < 1 and λ1 ≤ 0, we have, using (1.6), that

x(n−1)(0) =
m∑

i=1

αix
(n−1)(ξi) + λ1 ≤

m∑
i=1

αix
(n−1)(0).

Hence x(n−1)(0) ≤ 0 and (H6). We get x(n−1)(t) ≤ 0 for all t ∈ [0, 1].
Since x(n−1)(t) ≤ 0 for all t ∈ [0, 1], we get x(n−2)(1) =

∑m
i=1 βix

(n−2)(ξi)+λ2 ≥∑m
i=1 βix

(n−2)(1). So one gets x(n−2)(1) ≥ 0. Thus we get x(n−2)(t) > 0 for all t ∈
(0, 1) since x(n−1)(t) ≤ 0 for all t ∈ [0, 1]. It follows from the boundary conditions
that x(i)(t) > 0 for all t ∈ (0, 1), i = 0, . . . , n− 3. Then f∗(t, x(t), . . . , x(n−1)(t)) =
f(t, x(t), . . . , x(n−1)(t)). Thus x is a positive solution of (1.25). The proof is com-
plete. �

Let λ ∈ (0, 1), consider the problem

x
(n−1)
1 (t) = λφ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −λf∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

0 = λ(φ−1(x2(0))−
m∑

i=1

αiφ
−1(x2(ξi))− λ1),

x
(n−2)
1 (1)−

n∑
i=1

βix
(n−2)
1 (ξi) = λλ2,

x
(i)
1 (0) = 0, i = 0, . . . , n− 3.

(2.6)

Lemma 2.14. Suppose (H5)–(H6) hold. If (x1, x2) is a solution of (2.6), then

‖x2‖∞

≤ ‖x′2‖∞
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
+

φ(Km
q−1)|λ1|

1− φ(Km
q−1)

∑m
i=1 φ(αi)

.
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Proof. Since (H5)–(H6) and (2.6) imply that x′2(t) ≤ 0 for all t ∈ [0, 1]. Similar to
the discussion of Lemma 2.13, λ1 ≤ 0 and using (2.6), we have

φ−1(x2(0)) =
m∑

i=1

αiφ
−1(x2(ξi)) + λ1 ≤

m∑
i=1

αiφ
−1(x2(ξi)) ≤

m∑
i=1

αiφ
−1(x2(0)).

This together with (H6), one sees that x2(0) ≤ 0. Then x2(t) ≤ 0 for all t ∈ [0, 1].
It follows from

φ−1(x2(0))−
m∑

i=1

αiφ
−1(x2(ξi))− λ1 = 0

and Lemma 2.2 that

−φ−1(x2(0)) ≤ Km
q−1φ

−1(−
m∑

i=1

φ(αi)x2(ξi)− φ(λ1)).

Hence we get −x2(0) ≤ −φ(Km
q−1)

( ∑m
i=1 φ(αi)x2(ξi) − φ(λ1)

)
. Thus, from (H6),

we see, there is ηi ∈ [0, ξi], that

−x2(0) =
1

1− φ(Km
q−1)

∑m
i=1 φ(αi)

(
− x2(0) + φ(Km

q−1)
m∑

i=1

φ(αi)x2(0)
)

≤ 1
1− φ(Km

q−1)
∑m

i=1 φ(αi)

(
− φ(Km

q−1)
m∑

i=1

φ(αi)x2(ξi)

+ φ(Km
q−1)

m∑
i=1

φ(αi)x2(0) + φ(Km
q−1|λ1|)

)
=

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi[−x′2(ηi)] +
φ(Km

q−1|λ1|)
1− φ(Km

q−1)
∑m

i=1 φ(αi)

≤ ‖x′2‖∞
φ(Km

q−1)
1− φ(Km

q−1)
∑m

i=1 φ(αi)

m∑
i=1

φ(αi)ξi +
φ(Km

q−1|λ1|)
1− φ(Km

q−1)
∑m

i=1 φ(αi)
.

Hence we get

|x2(t)| ≤ |x2(t)− x2(0)|+ |x2(0)|

≤ ‖x′2‖∞ + ‖x′2‖∞
φ(Km

q−1)
1− φ(Km

q−1)
∑m

i=1 φ(αi)

m∑
i=1

φ(αi)ξi

+
φ(Km

q−1|λ1|)
1− φ(Km

q−1)
∑m

i=1 φ(αi)
.

Thus

‖x2‖∞

≤ ‖x′2‖∞
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
+

φ(Km
q−1|λ1|)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

.

�
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Lemma 2.15. Suppose (H5)–(H6) hold. If (x1, x2) is a solution of (2.6), then

‖x(n−2)
1 ‖∞ ≤ φ−1(‖x2‖∞)

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
λ2

1−
∑m

i=1 βi
.

Proof. In fact,

|x(n−2)
1 (1)| = 1

1−
∑m

i=1 βi

∣∣∣∣∣x(n−2)
1 (1)−

m∑
i=1

βix
(n−2)
1 (1)

∣∣∣∣∣
≤ 1

1−
∑m

i=1 βi

m∑
i=1

βi(1− ξi)‖x(n−1)
1 ‖∞ +

λ2

1−
∑m

i=1 βi

≤ 1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)φ−1(‖x2‖∞) +
λ2

1−
∑m

i=1 βi
.

Then we get

|x(n−2)
1 (t)| ≤ |x(n−2)

1 (t)− x
(n−2)
1 (1)|+ |x(n−2)

1 (1)|

≤ 1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)φ−1(‖x2‖∞) +
λ2

1−
∑m

i=1 βi
+ ‖x(n−1)

1 ‖∞

≤ 1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)φ−1(‖x2‖∞) +
λ2

1−
∑m

i=1 βi
+ φ(‖x2‖∞).

Then

‖x(n−2)
1 ‖∞ ≤ φ−1(‖x2‖∞)

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
λ2

1−
∑m

i=1 βi
.

and for i = 0, . . . , n− 3,

‖x(i)
1 ‖∞ ≤ 1

(n− i− 2)!
‖x(n−2)

1 ‖∞

≤ 1
(n− i− 2)!

[
φ−1(‖x2‖∞)

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
λ2

1−
∑m

i=1 βi

]
.

Define the operators

L(x1, x2) = ((x(n−1)
1 , x′2, 0, x

(n−2)
1 (1)−

n∑
i=1

βix
(n−2)
1 (ξi)), (x1, x2) ∈ X ∩D(L),

N(x1, x2) = (φ−1(x2),−f∗(t, x1, φ
−1(x2), φ−1(x2(0))

−
m∑

i=1

αiφ
−1(x2(ξi))− λ1, λ2), (x1, x2) ∈ X.

Suppose (H5)–(H6) hold. It is easy to show the following results:

(i) KerL = {(0, c) : c ∈ R} and Im L = {(y1, y2, a, b) : a = 0};
(ii) L is a Fredholm operator of index zero;
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(iii) There are projectors P : X → X and Q : Y → Y such that KerL = Im P
and Ker Q = Im L. Furthermore, let Ω ⊂ X be an open bounded subset
with Ω ∩D(L) 6= ∅, then N is L-compact on Ω;

(iv) x = (x1, x2) is a solution of (2.5) if and only if x is a solution of the operator
equation Lx = Nx in D(L).

We present the projectors P and Q as follows: P (x1, x2) = (0, x2(0)) for all x =
(x1, x2) ∈ X and Q(y1, y2, a, b) = (0, 0, a, 0). The generalized inverse of L : D(L) ∩
KerP → Im L is defined by

KP (y1, y2, a, b) =
( ∫ t

0

(t− s)n−2

(n− 2)!
y1(s)ds− tn−2

(n− 2)!
1

1−
∑m

i=1 βi

( ∫ 1

0

y1(s)ds

−
m∑

i=1

βi

∫ ξi

0

y1(s)ds + b
)
,

∫ t

0

y2(s)ds
)
,

the isomorphism ∧ : Y/ Im L → KerL is defined by ∧(0, 0, c, 0) = (0, c). �

Lemma 2.16. Suppose (H3), (H5)–(H7) hold. Then the set

Ω0 =
{
(x1, x2) ∈ D(L) \KerL : L(x1, x2) = λN(x1, x2) for some λ ∈ (0, 1)

}
is bounded.

Proof. It follows from (2.6), (H3), Lemmas 2.2, 2.14 and 2.15 that

‖x2‖∞

≤ ‖x′2‖∞
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
+

φ(Km
q−1|λ1|)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

≤ max
t∈[0,1]

|f∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))|

×
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
+

φ(Km
q−1|λ1|)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

≤
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
×

(
‖a‖∞ +

n−2∑
i=0

‖bi‖∞φ(‖x(i)
1 ‖∞) + ‖c‖∞φ(φ−1(‖x2‖∞))

)
+

φ(Km
q−1|λ1|)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

≤
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
×

{
‖a‖∞ + ‖bn−2‖∞φ

(
φ−1(‖x2‖∞)

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
λ2

1−
∑m

i=1 βi

)
+

n−3∑
i=0

‖bi‖∞φ
( 1

(n− 2− i)!

[
φ−1(‖x2‖∞)

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)
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+
λ2

1−
∑m

i=1 βi

])
+ ‖c‖∞‖x2‖∞

}
+

φ(Km
q−1|λ1|)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

≤
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
×

[
‖a‖∞ +

(
‖bn−2‖∞φ(Kq−1)φ

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+ ‖c‖∞
)
‖x2‖∞

+ ‖bn−2‖∞φ(Kq−1)φ
( λ2

1−
∑m

i=1 βi

)
+

n−3∑
i=0

‖bi‖∞φ(Kq−1)φ
( 1
(n− 2− i)!

)
‖x2‖∞

× φ
(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
n−3∑
i=0

‖bi‖∞φ
( 1
(n− 2− i)!

)
φ(Kq−1)φ(

λ2

1−
∑m

i=1 βi
)
]

+
φ(Km

q−1|λ1|)
1− φ(Km

q−1)
∑m

i=1 φ(αi)
.

We get{
1−

(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)
×

[
‖bn−2‖∞φ(Kq−1)φ

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
n−3∑
i=0

‖bi‖∞φ(Kq−1)φ
( 1
(n− 2− i)!

)
φ
(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+ ‖c‖∞
]}
‖x2‖∞

≤
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

m∑
i=1

φ(αi)ξi

)(
‖a‖∞ + φ(Kq−1)φ

( λ2

1−
∑m

i=1 βi

)
× ‖bn−2‖∞ +

n−3∑
i=0

‖bi‖∞φ
( 1
(n− 2− i)!

)
φ(Kq−1)φ

( λ2

1−
∑m

i=1 βi

))
+

φ(Km
q−1|λ1|)

1− φ(Km
q−1)

∑m
i=1 φ(αi)

.

It follows from (H7) that there is a constant M > 0 so that ‖x2‖∞ ≤ M . Thus,
from Lemma 2.15,

‖x(n−2)
1 ‖∞ ≤ φ−1(M)

(
1 +

1
1−

∑m
i=1 βi

m∑
i=1

βi(1− ξi)
)

+
λ2

1−
∑m

i=1 βi
=: Mn−2,

and there exist constants Mi > 0 such that ‖x(i)
1 ‖∞ ≤ Mi for i = 0, . . . , n − 3. So

Ω0 is bounded. The proof is complete. �

Lemma 2.17. Suppose (H5)–(H7) hold. If (0, c) ∈ KerL and N(0, c) ∈ Im L, then
there exists a constant M ′

1 > 0 such that |c| ≤ M ′
1.
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Proof. If (0, c) ∈ KerL and N(0, c) ∈ Im L, we get φ−1(c) −
∑m

i=1 αiφ
−1(c) = λ1.

Then (H6) implies that there is M ′
1 > 0 such that |c| ≤ M ′

1. �

Lemma 2.18. Suppose (H5)–(H7) hold. If (0, c) ∈ KerL with λ ∧−1 (0, c) + (1 −
λ)QN(0, c) = 0, then there exists a constant M ′

2 > 0 such that |c| ≤ M ′
2.

Proof. If (0, c) ∈ KerL with λ ∧−1 (0, c) + (1− λ)QN(0, c) = 0, then

λc = −(1− λ)
(
φ−1(c)−

m∑
i=1

αiφ
−1(c)− λ1

)
.

It follows that

λc2 = −cφ−1(c)(1− λ)
(
1−

m∑
i=1

αi −
λ1

φ−1(c)

)
.

It is easy to see that there is M ′
2 > 0 so that |c| ≤ M ′

2. �

Theorem 2.19. Suppose (H3), (H5)–(H7) hold. Then (1.25) has at least one
positive solution.

Proof. Let Ω ⊇ Ω0 be a bounded open subset of X centered at zero with its
diameter greater than max{M ′

1,M
′
2}. Then Lemmas 2.16, 2.17 and 2.18 imply

that Lx 6= λNx for all (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1); Nx /∈ Im L for every
x ∈ KerL ∩ ∂Ω; deg(∧QN

∣∣
Ker L

,Ω ∩KerL, 0) 6= 0.
Since (H5) holds, we let L be a Fredholm operator of index zero and N be L-

compact on Ω. It follows from Lemma 2.1 that Lx = Nx has at least one solution
x = (x1, x2). Then x1 is a solution of (2.4). We note that x

(i)
1 (t) ≥ 0 for t ∈ [0, 1]

and i = 0, . . . , n− 2, and x2(t) ≤ 0 for all t ∈ [0, 1], so

f∗
(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1(x2(t))

)
= f

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1(x2(t))

)
.

Hence x1 is a positive solution of (1.25). �

Remark 2.20. The operator defined in [5] can not be used, so follow a different
method. Theorem 2.19 generalizes and improves the theorems in [5, 14, 26, 51].

2.3. Positive solutions of Problem (1.26). Let

f∗(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−2, xn−1), (t, x0, . . . , xn−1) ∈ [0, 1]× Rn,

and x = max{0, x}. We consider the problem[
φ(x(n−1)(t))

]′ + f∗(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−2)(0)−
m∑

i=1

αix
(n−2)(ξi) = λ1,

x(n−1)(1)−
m∑

i=1

βix
(n−1)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3,

(2.7)
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Problem (2.3) can be transformed into

x
(n−1)
1 (t) = φ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −f∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t)), t ∈ [0, 1],

x
(n−2)
1 (0)−

m∑
i=1

αix
(n−2)
1 (ξi) = λ1,

0 = φ−1(x2(1))−
n∑

i=1

βiφ
−1(x2(ξi))− λ2,

x
(i)
1 (0) = 0, i = 0, . . . , n− 3.

(2.8)

Suppose that (H3) and the following assumptions hold.

(H8) f : [0, 1]× [0,+∞)n → [0,+∞) is continuous with f(t, 0, . . . , 0) 6≡ 0 on each
sub-interval of [0,1];

(H9) λ1 ≥ 0, λ2 ≥ 0, αi, βi ≥ 0 with
∑m

i=1 φ(βi) < 1/φ(Km
q−1),

∑m
i=1 αi < 1 and∑m

i=1 βi < 1.
(H10) The following inequality holds(

1 +
φ(Km

q−1)
1− φ(Km

q−1)
∑m

i=1 φ(βi)

m∑
i=1

φ(βi)(1− ξi)
)

[
‖bn−2‖∞φ(Kq−1)φ

(
1 +

1
1−

∑m
i=1 αi

m∑
i=1

αiξi

)
+

n−3∑
i=0

‖bi‖∞φ(Kq−1)φ
( 1
(n− 2− i)!

)
φ
( ∑m

i=1 αiξi

1−
∑m

i=1 αi

)
+ ‖c‖∞

]
< 1.

Define the operators

L(x1, x2) =
(
x

(n−1)
1 , x′2, x

(n−2)
1 (0)−

n∑
i=1

αix
(n−2)
1 (ξi), 0

)
, (x1, x2) ∈ X ∩D(L),

N(x1, x2) =
(
φ−1(x2),−f∗(t, x1(t), . . . , x

(n−2)
1 (t)), λ1, φ

−1(x2(1))

−
m∑

i=1

βiφ
−1(x2(ξi)− λ2)

)
for (x1, x2) ∈ X. It is easy to show the following results:

(i) KerL = {(0, c) : c ∈ R} and Im L = {(y1, y2, a, b) : b = 0};
(ii) L is a Fredholm operator of index zero;
(iii) There are projectors P : X → X and Q : Y → Y such that KerL = Im P

and Ker Q = Im L. Furthermore, let Ω ⊂ X be an open bounded subset
with Ω ∩D(L) 6= ∅, then N is L-compact on Ω;

(iv) x = (x1, x2) is a solution of (2.8) if and only if x is a solution of the operator
equation Lx = Nx in D(L).

We define the projectors P and Q as follows: P (x1, x2) = (0, x2(0)) for all x =
(x1, x2) ∈ X and Q(y1, y2, a, b) = (0, 0, 0, b). The generalized inverse of L is defined
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by

KP (y1, y2, a, b) =
( ∫ t

0

(t− s)n−2

(n− 2)!
y1(s)ds

+
tn−2

(n− 2)!
1

1−
∑m

i=1 αi

( m∑
i=1

αi

∫ ξi

0

y1(s)ds + a
)
,

∫ t

0

y2(s)ds
)
,

the isomorphism ∧ : Y/ Im L → KerL is defined by ∧(0, 0, 0, b) = (0, b).
Similar to the lemmas in sub-section 2.2, it is easy to prove the following Lemmas.

Lemma 2.21. If (x1, x2) is a solution of problem (2.8), then x1 is a solution of
(2.7).

The proof is easy; it is omitted.

Lemma 2.22. Suppose that (H8)–(H9) hold. If x is a solution of the problem (2.7),
then x(t) > 0 for all t ∈ (0, 1).

The proof is similar to that of Lemma 2.13; it is omitted.
Let λ ∈ (0, 1), consider the problem

x
(n−1)
1 (t) = λφ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −λf∗(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

0 = λ(φ−1(x2(1))−
m∑

i=1

βiφ
−1(x2(ξi))− λ2),

x
(n−2)
1 (0)−

n∑
i=1

αix
(n−2)
1 (ξi) = λλ1,

x
(i)
1 (0) = 0, i = 0, . . . , n− 3.

(2.9)

Lemma 2.23. Suppose that (H8)–(H9) hold. If (x1, x2) is a solution of (2.9), then

‖x2‖∞ ≤ ‖x′2‖∞
(
1 +

φ(Km
q−1)

1− φ(Km
q−1)

∑m
i=1 φ(βi)

m∑
i=1

φ(βi)(1− ξi)
)

+
φ(Km

q−1λ2)
1− φ(Km

q−1)
∑m

i=1 φ(βi)
.

Lemma 2.24. Suppose that (H8)–(H9) hold. If (x1, x2) is a solution of (2.5), then

‖x(n−2)
1 ‖∞ ≤ φ−1(‖x2‖∞)

(
1 +

1
1−

∑m
i=1 αi

m∑
i=1

αiξi

)
+

λ1

1−
∑m

i=1 αi
,

and for i = 0, . . . , n− 3,

‖x(i)
1 ‖∞ ≤ 1

(n− i− 3)!
‖x(n−2)

1 ‖∞

≤ 1
(n− i− 3)!

(φ−1(‖x2‖∞)
(
1 +

1
1−

∑m
i=1 αi

m∑
i=1

αi(1− ξi)
)

+
λ1

1−
∑m

i=1 αi
).

Similar to Theorem 2.19, we obtain the following theorem.
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Theorem 2.25. Suppose (H3), (H8)–(H10) hold. Then (1.26) has at least one
positive solution.

We remark that Theorem 2.25 generalizes the theorems in [2, 14, 73].

2.4. Solutions of Problem (1.27). We consider (1.27), (H1), (H3) and the fol-
lowing assumptions are supposed in this sub-section.
(H11) αi, βi ≥ 0 for all i = 1, . . . ,m and λ1, λ2 ∈ R;
(H12) The following inequality holds

φ(Kq−1)
[ n−3∑

i=0

φ
(1 +

∑m
i=1 αi

(n− 2− i)!
) ∫ 1

0

bi(s)ds

+ φ
(
1 +

m∑
i=1

αi

) ∫ 1

0

bn−2(s)ds
]

+
∫ 1

0

c(s)ds < 1 .

Let x1 = x and x2 = φ(x1), then (1.24) is transformed into

x
(n−1)
1 (t) = φ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −f(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

x
(n−2)
1 (0) =

m∑
i=1

αiφ
−1(x2(ξi)) + λ1,

x
(n−2)
1 (1) = −

n∑
i=1

βiφ
−1(x2(ξi)) + λ2,

x
(i)
1 (0) = 0, i = 0 . . . , n− 3,

(2.10)

Suppose λ ∈ (0, 1), we consider the problem

x
(n−1)
1 (t) = λφ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −λf(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

x
(n−2)
1 (0) = λ(

m∑
i=1

αiφ
−1(x2(ξi)) + λ1),

x
(n−2)
1 (1) = λ(−

n∑
i=1

βiφ
−1(x2(ξi)) + λ2),

x
(i)
1 (0) = 0, i− 0 . . . , n− 3,

(2.11)

Define the operators

L(x1, x2) =
(
x

(n−1)
1 , x′2, x

(n−2)
1 (0), x(n−2)

1 (1)
)
, (x1, x2) ∈ X ∩D(L),

N(x1, x2) =
(
φ−1(x2),−f∗(t, x1(t), . . . , x

(n−2)
1 (t), φ−1(x2(t))),

m∑
i=1

αiφ
−1(x2(ξi)) + λ1,−

n∑
i=1

βiφ
−1(x2(ξi)) + λ2

)
,

for (x1, x2) ∈ X. Suppose (H11)–(H12) hold. It is easy to show the following
results:

(i) KerL = {(0, c) : c ∈ R} and Im L = {(y1, y2, a, b) :
∫ 1

0
y1(s)ds = b− a};
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(ii) L is a Fredholm operator of index zero;
(iii) There are projectors P : X → X and Q : Y → Y such that KerL = Im P

and Ker Q = Im L. Furthermore, let Ω ⊂ X be an open bounded subset
with Ω ∩D(L) 6= ∅, then N is L-compact on Ω;

(iv) x = (x1, x2) is a solution of (2.11) if and only if x is a solution of the
operator equation Lx = λNx in D(L).

We define the projectors P and Q as follows: P (x1, x2) = (0, x2(0)) for all x =
(x1, x2) ∈ X and Q(y1, y2, a, b) = (

∫ 1

0
y1(s)ds − b + a, 0, 0, 0). The generalized

inverse of L is

KP (y1, y2, a, b) =
( a

(n− 2)!
tn−2 +

∫ t

0

(t− s)n−2

(n− 2)!
y1(s)ds,

∫ t

0

y2(s)ds
)
,

the isomorphism ∧ : Y/ Im L → KerL is defined by ∧(c, 0, 0, 0) = (0, c).
Similar to Lemmas in sub-section 2.2, it is easy to prove the following Lemmas.

Lemma 2.26. Suppose (H11), (H12) hold. If x = (x1, x2) is a solution of (2.11),
then there exists ξ ∈ [0, 1] such that

|φ−1(x(n−1)(ξ))| ≤ M =:

{ |λ1−λ2|Pm
i=1 αi+

Pm
i=1 βi

,
∑m

i=1 αi +
∑m

i=1 βi 6= 0,

|λ1 − λ2|,
∑m

i=1 αi +
∑m

i=1 βi = 0.

Proof. Case 1.
∑m

i=1 αi+
∑m

i=1 βi = 0. Then αi = βi = 0. In this case, x
(n−2)
1 (0) =

λλ1 and x
(n−2)
1 (1) = λλ2, it is easy to see that there is ξ ∈ [0, 1] so that |x(n−1)(ξ)| =

λ|λ1 − λ2|. Then
λ|φ−1(x2(ξ))| = λ|λ1 − λ2|.

So |φ−1(x2(ξ))| = |λ1 − λ2|.
Case 2.

∑m
i=1 αi +

∑m
i=1 βi 6= 0. In this case, if |φ−1(x2(t))| > M for all t ∈ (0, 1),

then x
(n−2)
1 (0) < x

(n−2)
1 (1).

If λ1 ≥ λ2, from the boundary conditions, using (H11), we obtain

x
(n−2)
1 (0) > λ

m∑
i=1

αiM + λλ1

≥ λ
m∑

i=1

αi
−λ1 + λ2∑m

i=1 αi +
∑m

i=1 βi
+ λλ1

= λ
λ2

∑m
i=1 αi + λ1

∑m
i=1 βi∑m

i=1 αi +
∑m

i=1 βi
.

On the other hand,

x
(n−2)
1 (1) < −λ

m∑
i=1

βiM + λλ2 ≤ λ

m∑
i=1

βi
λ1 − λ2∑m

i=1 αi +
∑m

i=1 βi
+ λλ2 < x

(n−2)
1 (0),

a contradiction. Similar to above discussion, if x(n−1)(t) < −M for all t ∈ (0, 1),
we can get a contradiction. Then there is ξ ∈ (0, 1) so that |φ−1(x2(ξ))| ≤ M .

If λ1 < λ2, we can get that there is ξ ∈ (0, 1) so that |φ−1(x2(ξ))| ≤ M . �

Lemma 2.27. Suppose (H11)–(H12) hold. If (x1, x2) is a solution of (2.11), then

‖x(n−2)
1 ‖∞ ≤

(
1 +

m∑
i=1

αi

)
φ−1(‖x2‖∞) + |λ1|.
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Proof. From the boundary conditions, we get |x(n−2)
1 (0)| ≤

∑m
i=1 αiφ

−1(‖x2‖∞) +
|λ1|. So we get

|x(n−2)
1 (t)| ≤ |x(n−2)

1 (t)− x
(n−2)
1 (0)|+ |x(n−2)

1 (0)| ≤
(
1 +

m∑
i=1

αi

)
φ−1(‖x2‖∞) + |λ1|.

This completes the proof. We also get, for i = 0, . . . , n− 3, that

|x(i)
1 (t)| ≤ 1

(n− 2− i)!
[(

1 +
m∑

i=1

αi

)
φ−1(‖x2‖∞) + |λ1|

]
.

�

Lemma 2.28. Let Ω0 = {x ∈ D(L) \KerL : Lx = λNx for λ ∈ (0, 1)}. Then Ω0

is bounded.

Proof. In fact, if x ∈ Ω0, we get (2.11). It follows from Lemma 2.26 that there is
ξ ∈ (0, 1) so that φ−1(|x2(ξ)|) ≤ M . Thus using (H3) and Lemma 2.2 we get

|x2(t)| ≤ φ(M) + λ
∣∣ ∫ t

ξ

f(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t)))dt

∣∣
≤ φ(M) +

∫ 1

0

|f(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t)))|dt

≤ φ(M) +
∫ 1

0

a(s)ds +
n−2∑
i=0

∫ 1

0

bi(s)φ(|x(i)
1 (s)|)ds +

∫ 1

0

c(s)|x2(s)|ds

≤ φ(M) +
∫ 1

0

a(s)ds +
n−3∑
i=0

∫ 1

0

bi(s)ds

× φ
( 1

(n− 2− i)!
(
1 +

m∑
i=1

αi

)
φ−1(‖x2‖∞) +

1
(n− 2− i)!

|λ1|
)

+
∫ 1

0

bn−2(s)dsφ
((

1 +
m∑

i=1

αi

)
φ−1(‖x2‖∞) + |λ1|

)
+

∫ 1

0

c(s)ds‖x2‖∞

≤ φ(M) +
∫ 1

0

a(s)ds +
n−3∑
i=0

∫ 1

0

bi(s)ds

× φ(Kq−1)φ
( 1
(n− 2− i)!

)
φ
(
1 +

m∑
i=1

αi

)
‖x2‖∞ + φ

( 1
(n− 2− i)!

|λ1|
)

+
∫ 1

0

bn−2(s)dsφ
(
1 +

m∑
i=1

αi

)
‖x2‖∞ + φ(|λ1|) +

∫ 1

0

c(s)ds‖x2‖∞.

Then

‖x2‖∞ ≤ φ(M) +
∫ 1

0

a(s)ds +
n−3∑
i=0

∫ 1

0

bi(s)dsφ(Kq−1)φ
( 1
(n− 2− i)!

)
× φ

(
1 +

m∑
i=1

αi

)
‖x2‖∞ + φ

( 1
(n− 2− i)!

|λ1|
)
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+
∫ 1

0

bn−2(s)dsφ
(
1 +

m∑
i=1

αi

)
‖x2‖∞ + φ(|λ1|) +

∫ 1

0

c(s)ds‖x2‖∞.

Hence[
1− φ(Kq−1)(

n−3∑
i=0

φ
(1 +

∑m
i=1 αi

(n− 2− i)!

) ∫ 1

0

bi(s)ds + φ
(
1 +

m∑
i=1

αi

) ∫ 1

0

bn−2(s)ds)

+
∫ 1

0

c(s)ds
]
‖x2‖∞

≤ φ(M) +
∫ 1

0

a(s)ds + φ
( 1
(n− 2− i)!

|λ1|
)

+ φ(|λ1|).

From (H12), we get that there is A > 0 so that ‖x2‖∞ ≤ A. Hence

‖x(n−2)
1 ‖∞ ≤

(
1 +

m∑
i=1

αi

)
φ−1(A) + |λ1|.

And for i = 0, . . . , n− 3, we get

‖x(i)
1 ‖∞ ≤ 1

(n− 2− i)!
[(

1 +
m∑

i=1

αi

)
φ−1(A) + |λ1|

]
.

The above inequalities imply that Ω0 is bounded. �

Lemma 2.29. Let Ω1 = {x ∈ KerL : Nx ∈ Im L}. Then Ω1 is bounded.

Proof. In fact, (0, c) ∈ Ω1, then (0, c) ∈ KerL and N(0, c) ∈ Im L, then we get

φ−1(c) = −
m∑

i=1

αiφ
−1(c)−

m∑
i=1

βiφ
−1(c) + λ2 − λ1.

Hence there is M1 > 0 so that |c| ≤ M1. �

Lemma 2.30. Let Ω2 = {x ∈ KerL : λ ∧−1 x + (1 − λ)QNx = 0}. Then Ω2 is
bounded.

Proof. In fact, if (0, c) ∈ Ω2, then

λc = −(1− λ)
( m∑

i=1

αiφ
−1(c) +

m∑
i=1

βiφ
−1(c)− λ2 + λ1

)
.

Thus

λc2 = −(1− λ)cφ−1(c)
( m∑

i=1

αi +
m∑

i=1

βi −
λ2 − λ1

φ−1(c)

)
.

Hence there is M1 > 0 so that |c| ≤ M1. �

The following theorem has proof similar to that of Theorem 2.10; its proof is
omitted.

Theorem 2.31. Suppose (H1), (H3), (H11), (H12) hold. Then (1.27) has at least
one solution.
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Remark 2.32. Consider the problems[
φ(x(n−1)(t))

]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−2)(0)− αx(n−1)(0) = λ1,

x(n−2)(1) + βx(n−1)(1) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3,

(2.12)

where α ≥ 0, β ≥ 0, λ1 ≥ 0, λ2 ≥ 0, and f is nonnegative and continuous. If x(t) is
a solution of (2.12), then x(n−1) is decreasing on [0, 1].
Case 1. x(n−1)(0) ≥ 0 and x(n−1)(1) ≥ 0; At this case, we see that x(n−2)(t) is
increasing on [0, 1]. It follows from

x(n−2)(0) = αx(n−1)(0) + λ1 ≥ 0

that x(n−2)(t) > 0 for all t ∈ (0, 1). Then x(t) is a positive solution of (2.12).
Case 2. x(n−1)(0) ≥ 0 and x(n−1)(1) ≤ 0; At this case, one sees that

x(n−2)(1) = −βx(n−1)(1) + λ2 ≥ 0

and
x(n−2)(0) = −αx(n−1)(0) + λ2 ≥ 0.

It follows from x(n)(t) ≤ 0 that x(n−2)(t) ≥ 0 for all t ∈ [0, 1]. Then x is a positive
solution of (2.12).
Case 2. x(n−1)(0) ≤ 0 and x(n−1)(1) ≤ 0; At this case, one sees that x(n−2)(t) is
decreasing on [0, 1]. It follows from

x(n−2)(1) = −βx(n−1)(1) + λ2 ≥ 0

that x(n−2)(t) > 0 for all t ∈ (0, 1). Then x(t) is a positive solution of (2.12).
We can establish similar results for the existence of positive solutions of (2.12)

and the details are omitted.

Remark 2.33. Consider the problems[
φ(x(n−1)(t))

]′ + f(t, x(t), . . . , x(n−1)(t)) = 0, t ∈ (0, 1),

x(n−2)(0)− αx(n−1)(0) = λ1,

x(n−2)(1) +
m∑

i=1

βix
(n−1)(ξi) = λ2,

x(i)(0) = 0, i = 0, . . . , n− 3,

(2.13)

where α ≥ 0, βi ≥ 0, λ1 ≥ 0, λ2 ≥ 0, and f is nonnegative and continuous. (2.13)
need not has positive solution. It is easy to show that the problem

x′′ + 8 + 6t = 0, t ∈ (0, 1),

x(0)− x′(0) = 1,

x(1) + θx′(
1
8
) = 0

has no positive solution since the solution of the above problem is

x(t) = −4t2 − t3 +
4 + 67

64θ

2 + θ
t +

4 + 67
64θ

2 + θ
+ 1.
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Then

x(1) = −5 + 2
4 + 67

64θ

2 + θ
+ 1 = −4 + 2

4 + 67
64θ

2 + θ
< 0 if θ > 0.

2.5. Solutions of (1.28). We consider (1.28), assuming (H3) and the following
conditions:

(H13) there are nonnegative numbers α, θi and L so that |f(t, x0, . . . , xn−1)| ≥
αφ(|xn−2|)−

∑n−3
i=0 θiφ(|xi|)− θn−1φ(|xn−1|)− L;

(H14)

lim
|a|→+∞

|f(t, tn−2

(n−2)!a, . . . , a, φ( λ1
1−

Pm
i=1 αi

))|
φ(|a|)

= µ

and the following three inequalities hold:

φ−1(Kn−1
p−1 )

n−3∑
i=0

φ(
θi

α
)φ

( 1
(n− 2− i)!

)
< 1,

µ +
n−3∑
i=0

θiφ
( 1
(n− 2− i)!

)
< α,

and

(1 +
∑m

i=1 αiξi

1−
∑m

i=1 αi
)(

n−3∑
i=0

‖bi‖∞φ
( 1
(n− 2− i)!

)
+ ‖bn−2‖∞)

× φ
( 1
(1− φ−1(Kn−1

p−1 ))
∑m

i=1 φ−1(βi

α )
1

(n− 2− i)!
)
φ(Kp−1)

× φ
(
1 + φ−1(Kp−1)

)
φ−1(

βn−1

α
) +

(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖c‖∞ < 1.

(H15) φ
(
θ−1( λ2

1−
Pm

i=1 βi
)
)

= λ1
1−

Pm
i=1 αi

;
(H16) λ1, λ2 ∈ R, αi ≥ 0, βi ≥ 0 for i = 1, . . . ,m with

∑m
i=1 αi < 1 and

∑m
i=1 βi <

1.

Let x1 = x and x2 = φ(x1), then (1.28) is transformed into

x
(n−1)
1 (t) = φ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −f(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

0 = x2(0)−
m∑

i=1

αix2(ξi)− λ1,

0 = θ(φ−1(x2(1)))−
m∑

i=1

βiθ(φ−1(x2(ξi)))− λ2,

x
(i)
1 (0) = 0, i = 0 . . . , n− 3,

(2.14)
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Suppose λ ∈ (0, 1), we consider the following problem

x
(n−1)
1 (t) = λφ−1(x2(t)), t ∈ [0, 1],

x′2(t) = −λf(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t))), t ∈ [0, 1],

0 = λ(x2(0)−
m∑

i=1

αix2(ξi)− λ1),

0 = λ(θ(φ−1(x2(1)))−
m∑

i=1

βiθ(φ−1(x2(ξi)))− λ2),

x
(i)
1 (0) = 0, i = 0 . . . , n− 3,

(2.15)

Define the operators

L(x1, x2) = (x(n−1)
1 , x′2, 0, 0), (x1, x2) ∈ X ∩D(L),

N(x1, x2) =


φ−1(x2)

−f∗(t, x1, . . . , x
(n−2)
1 (t), φ−1(x2))

x2(0)−
∑m

i=1 αix2(ξi)− λ1

θ(φ−1(x2(1)))−
∑n

i=1 βiθ(φ−1(x2(ξi)))− λ2


T

, (x1, x2) ∈ X.

Suppose that (H14), (H15), (H16) hold. It is easy to show the following results:

(i) KerL = {( tn−2

(n−2)!a, b) : a, b ∈ R} and Im L = {(y1, y2, a, b) : a = b = 0};
(ii) L is a Fredholm operator of index zero;
(iii) There are projectors P : X → X and Q : Y → Y such that KerL = Im P

and Ker Q = Im L. Furthermore, let Ω ⊂ X be an open bounded subset
with Ω ∩D(L) 6= ∅, then N is L-compact on Ω;

(iv) x = (x1, x2) is a solution of (2.14) if and only if x is a solution of the
operator equation Lx = Nx in D(L).

We present the projectors P and Q as follows: P (x1, x2) = ( tn−2

(n−2)!x
(n−2)
1 (0), x2(0))

for all x = (x1, x2) ∈ X and Q(y1, y2, a, b) = (0, 0, a, b). The generalized inverse of
L is

KP (y1, y2, a, b) = (
∫ t

0

(t− s)n−2

(n− 2)!
y1(s)ds,

∫ t

0

y2(s)ds),

the isomorphism ∧ : Y/ Im L → KerL is defined by ∧(0, 0, a, b) = ( tn−2

(n−2)!a, b).

Lemma 2.34. If (x1, x2) is a solution of problem (42), then x1 is a solution of
(1.28).

Lemma 2.35. Suppose that (H14), (H15), (H16) hold. If (x1, x2) is a solution of
problem (2.15), then there is a ξ ∈ (0, 1) so that x′2(ξ) = 0.

Proof. In fact, if x′2(t) > 0 for all t ∈ (0, 1), we get

x2(0) =
m∑

i=1

αix2(ξi) + λ1 >

m∑
i=1

αix2(0) + λ1.

So x2(0) > λ1/(1 −
∑m

i=1 αi). It follows from x′2(t) > 0 that x2(1) > λ1/(1 −∑m
i=1 αi). On the other hand,

θ(φ−1(x2(1))) =
m∑

i=1

βiθ(φ−1(x2(ξi))) + λ2 <
m∑

i=1

βiθ(φ−1(x2(1))) + λ2.
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Then θ(φ−1(x2(1))) < λ2/(1 −
∑m

i=1 βi). So we get x2(1) < φ(θ−1(λ2/(1 −∑m
i=1 βi))) = λ1/(1 −

∑m
i=1 αi) < x2(1), a contradiction. If x2(t) < 0 for all

t ∈ (0, 1), the same contradiction can be derived. So there is ξ ∈ [0, 1] such that
x2(ξ) = 0. �

Lemma 2.36. Suppose that (H14), (H15), (H16) hold. If (x1, x2) is a solution of
problem (2.15), then

|x2(t)| ≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x′2‖∞ +

|λ1|
1−

∑m
i=1 αi

.

Proof. In fact,

|x2(0)| = 1
1−

∑m
i=1 αi

∣∣x2(0)−
m∑

i=1

αix2(0)
∣∣

≤ 1
1−

∑m
i=1 αi

( m∑
i=1

αi|x2(ξi)− x2(0)|+ |λ1|
)

≤ 1
1−

∑m
i=1 αi

( m∑
i=1

αiξi‖x′2‖∞ + |λ1|
)
.

Hence

|x2(t)| ≤ |x2(t)− x2(0)|+ |x2(0)| ≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x′2‖∞ +

|λ1|
1−

∑m
i=1 αi

.

�

Lemma 2.37. Suppose that (H3), (H13)-(H16) hold. Let Ω0 = {(x1, x2) ∈ D(L) \
KerL : L(x1, x2) = λN(x1, x2) for some λ ∈ (0, 1)}. Then Ω0 is bounded.

Proof. In fact, if (x1, x2) ∈ Ω0, we get (2.15). It follows from Lemmas 2.34, 2.35
and 2.36 that

|x2(t)| ≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖x′2‖∞ +

|λ1|
1−

∑m
i=1 αi

and there is ξ ∈ [0, 1] so that x2(ξ) = 0. Then

|x2(t)| ≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
max

t∈[0,1]

∣∣f(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t)))

∣∣
+

|λ1|
1−

∑m
i=1 αi

and f(ξ, x1(ξ), . . . , x
(n−2)
1 (ξ), φ−1(x2(ξ))) = 0. Then (H13) implies

φ(|x(n−2)
1 (ξ)|) ≤ 1

α

n−3∑
i=0

θiφ(|x(i)
1 (ξ)|) +

θn−1

α
|x2(ξ)|+

L

α

≤ 1
α

n−3∑
i=0

θiφ
( 1

(n− 2− i)!
‖x(n−2)

1 ‖∞
)

+
θn−1

α
‖x2‖∞ +

L

α
.

So from Lemma 2.2 we have

|x(n−2)
1 (ξ)| ≤ φ−1

( 1
α

n−3∑
i=0

θiφ
( 1
(n− 2− i)!

‖x(n−2)
1 ‖∞

)
+

θn−1

α
‖x2‖∞ +

L

α

)
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≤ φ−1
[
Kn−1

p−1 φ
( n−3∑

i=0

φ−1(θi/α)
1

(n− 2− i)!
‖x(n−2)

1 ‖∞

+ φ−1(θn−1/α)φ−1(‖x2‖∞) + φ−1(L/α)
)]

≤ φ−1(Kn−1
p−1 )

( n−3∑
i=0

φ−1(θi/α)
1

(n− 2− i)!
‖x(n−2)

1 ‖∞

+ φ−1(θn−1/α)φ−1(‖x2‖∞) + φ−1(L/α)
)
.

So

|x(n−2)
1 (t)| ≤ |x(n−2)

1 (t)− x
(n−2)
1 (ξ)|+ |x(n−2)

1 (ξ)|

≤ φ−1(‖x2‖∞) + φ−1(Kn−1
p−1 )

( n−3∑
i=0

φ−1(θi/α)
1

(n− 2− i)!
‖x(n−2)

1 ‖∞

+ φ−1
(θn−1

α

)
φ−1(‖x2‖∞) + φ−1(L/α)

)
≤ φ−1(Kn−1

p−1 )
n−3∑
i=0

φ−1(θi/α)φ
( 1
(n− 2− i)!

)
‖x(n−2)

1 ‖∞

+
(
1 + φ−1(Kn−1

p−1 )φ−1
(θn−1

α

))
φ−1(‖x2‖∞) + φ−1(Kn−1

p−1 )φ−1(L/α).

We get, from (H13) and

φ−1(Kn−1
p−1 )

n−3∑
i=0

φ(
θi

α
)φ

( 1
(n− 2− i)!

)
< 1,

that

‖x(n−2)
1 ‖∞ ≤

(
1− φ−1(Kn−1

q−1 )
n−3∑
i=0

φ−1(θi/α)φ
( 1
(n− 2− i)!

))−1

×
[
(1 + φ−1(Kn−1

q−1 )φ−1(θn−1|/α))φ−1(‖x2‖∞)

+ φ−1(Kn−1
q−1 )φ−1(L/α)

]
.

It follows from Lemma 2.2 that

φ(‖x(n−2)
1 ‖∞)

≤ φ
( 1

(1− φ−1(Kn−1
p−1 ))

∑n−3
i=0 φ−1(θi/α)φ

(
1

(n−2−i)!

))
× φ

(
(1 + φ−1(Kn−1

p−1 )φ−1(θn−1/α))φ−1(‖x2‖∞) + φ−1(Kn−1
p−1 )φ−1(

L

α
)
)

≤ φ
( 1

(1− φ−1(Kn−1
p−1 ))

∑n−3
i=0 φ−1(θi/α)φ

(
1

(n−2−i)!

))
× φ(Kp−1)

[
φ(1 + φ−1(Kn−1

p−1 ))φ−1
(θn−1

α

)
‖x2‖∞ +

Kp−1L

α

]
.
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On the other hand,

|x2(t)| ≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
× max

t∈[0,1]

∣∣f(t, x1(t), . . . , x
(n−2)
1 (t), φ−1(x2(t)))

∣∣ +
|λ1|

1−
∑m

i=1 αi

≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)(
‖a‖∞ +

n−2∑
i=0

‖bi‖∞φ(‖x(i)
1 ‖∞) + ‖c‖∞‖x2‖∞

)
+

|λ1|
1−

∑m
i=1 αi

≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)(
‖a‖∞ +

n−3∑
i=0

‖bi‖∞φ(1/(n− 2− i)!)φ(‖x(n−2)
1 ‖∞)

+ ‖bn−2‖∞φ(‖x(n−2)
1 ‖∞) + ‖c‖∞‖x2‖∞

)
+

|λ1|
1−

∑m
i=1 αi

.

Then

‖x2‖∞ ≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

){
‖a‖∞ +

( n−3∑
i=0

‖bi‖∞φ(1/(n− 2− i)!) + ‖bn−2‖∞
)

× φ
( 1

(1− φ−1(Kp−1))
∑n−3

i=0 φ−1(θi/α)
φ
( 1
(n− 2− i)!

))
× φ(Kp−1)

[
φ(1 + φ−1(Kn−1

p−1 ))φ−1
(θn−1

α

)
‖x2‖∞ +

Kn−1
p−1 L

α

]
+ ‖c‖∞‖x2‖∞

}
+

|λ1|
1−

∑m
i=1 αi

.

We get

[
1−

(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)( n−3∑
i=0

‖bi‖∞φ
( 1
(n− 2− i)!

)
+ ‖bn−2‖∞

)
× φ

( 1
(1− φ−1(Kp−1))

∑n−3
i=0 φ−1(θi/α)φ

(
1

(n−2−i)!

))
φ(Kp−1)

× φ
(
1 + φ−1(Kn−1

p−1 )
)
φ−1

(θn−1

α

)
−

(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖c‖∞

]
‖x2‖∞

≤
(
1 +

∑m
i=1 αiξi

1−
∑m

i=1 αi

)
‖a‖∞ +

|λ1|
1−

∑m
i=1 αi

.

It follows that there is a constant M > 0 so that ‖x2‖∞ ≤ M . Hence

‖x(n−2)
1 ‖∞ ≤

(
1− φ−1(Kp−1)

n−3∑
i=0

φ−1(θi/α)
1

(n− 2− i)!

)−1

×
[
(1 + φ−1(Kp−1)φ−1(θn−1/α))φ−1(M) + φ−1(Kp−1)φ−1(L/α)

]
=: Mn−2,
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and for i = 0, . . . , n− 3, we get

‖x(i)
1 ‖∞ ≤ 1

(n− 2− i)!
‖x(n−2)

1 ‖∞ ≤ 1
(n− 2− i)!

Mn−2 =: Mi.

Hence Ω0 is bounded. �

Lemma 2.38. Suppose that (H3), (H14), (H15), (H16) hold. Let Ω1 = {x ∈
KerL, Nx ∈ Im L}. Then Ω1 is bounded.

Proof. In fact, if x = ( tn−2

(n−2)!a, b) ∈ KerL and Nx ∈ Im L, then we get

b−
m∑

i=1

αib− λ1 = 0, θ(φ−1(b))−
m∑

i=1

βiθ(φ−1(b))− λ2 = 0.

So we have b = λ1/(1−
∑m

i=1 αi). From (H14), choose ε > 0 so that
n−3∑
i=0

θiφ
( 1
(n− 2− i)!

)
+ (µ + ε) < α,

and then there is a δ > 0 so that∣∣f(
t,

tn−2

(n− 2)!
x, . . . , x, φ−1(λ1/(1−

m∑
i=1

αi))
)∣∣ < (µ + ε)φ(|x|), |x| > δ.

Let

A = max
t∈[0,1],|x|≤δ

∣∣f(
t,

tn−2

(n− 2)!
x, . . . , x, φ−1(λ1/(1−

m∑
i=1

αi))
)∣∣.

Then one sees that

(µ + ε)φ(|a|) + A ≥
∣∣f(

t,
tn−2

(n− 2)!
a, . . . , a, φ−1(λ1/(1−

m∑
i=1

αi))
)∣∣

≥ αφ(|a|)−
n−3∑
i=0

θiφ
( tn−2−i

(n− 2− i)!
|a|

)
− θn−1|λ1|/

(
1−

m∑
i=1

αi

)
− L.

So

θn−1|λ1|/(1−
m∑

i=1

αi) + L ≥ φ(|a|)
(
α−

n−3∑
i=0

θiφ(
tn−2−i

(n− 2− i)!
)− (µ + ε)

)
≥ φ(|a|)

(
α−

n−3∑
i=0

θiφ
( 1
(n− 2− i)!

)
− (µ + ε)

)
Then there is M ′

1 > 0 so that |a| ≤ M ′
1. Hence |a|, |b| are bounded. Then Ω1 is

bounded. �

Lemma 2.39. Suppose that (H3), (H14), (H15), (H16) hold. Then the set Ω2 =
{x ∈ KerL, λ ∧−1 x + (1− λ)QNx = 0, λ ∈ [0, 1]} is bounded.

Proof. In fact, if Ω2 is unbounded, then there are sequences {λn ∈ [0, 1]} and
{xn = ( tn−2

(n−2)!an, bn)} such that

λn(0, 0, an, bn)+(1−λn)
(
0, 0, bn−

m∑
i=1

αibn−λ1, θ(φ−1(bn))−
m∑

i=1

βiθ(φ−1(bn))−λ2

)
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and either |bn| → +∞ as n tends to infinity or {bn} is bounded and |an| → +∞ as
n tends to infinity. It follows that

λnan = −(1− λn)(bn −
m∑

i=1

αibn − λ1), (2.16)

λnbn = −(1− λn)(θ(φ−1(bn))−
m∑

i=1

βiθ(φ−1(bn))− λ2). (2.17)

Then

λnb2
n = −(1− λn)θ(φ−1(bn))bn

[(
1−

m∑
i=1

βi

)
− λ2

θ(φ−1(bn))
]

implies that there is a constant B > 0 so that |bn| ≤ B since φ−1(bn))bn > 0. Thus
we get that |an| → +∞ as n tends to infinity. It follows from (2.16) that λn → 0
as n tends to infinity. Thus (2.17) implies that

bn → b0 = φ(θ−1(λ2/(1−
m∑

i=1

βi))) = λ1/(1−
m∑

i=1

αi).

Then

(µ + ε)φ(|an|) + A ≥
∣∣f(

t,
tn−2

(n− 2)!
an, . . . , an, φ−1(λ1/(1−

m∑
i=1

αi))
)∣∣

≥ αφ(|an|)−
n−3∑
i=0

θiφ
( tn−2−i

(n− 2− i)!
φ(|an|)

)
− θn−1|λ1|/(1−

m∑
i=1

αi)− L.

So

θn−1|λ1|/(1−
m∑

i=1

αi) + L ≥ φ(|an|)(α−
n−3∑
i=0

θiφ(
tn−2−i

(n− 2− i)!
)− (µ + ε))

≥ φ(|an|)(α−
n−3∑
i=0

θiφ
( 1
(n− 2− i)!

)
− (µ + ε)).

It follows from
n−3∑
i=0

θiφ
( 1
(n− 2− i)!

)
+ (µ + ε) < α

that there is a constant C > 0 so that |an| ≤ C, a contradiction. Hence Ω2 is
bounded. �

Theorem 2.40. Suppose that (H3), (H13)–(H16) hold. Then (1.28) has at least
one solution.

Proof. Let Ω ⊇ Ω0∪Ω1∪Ω2 be a bounded open subset of X centered at zero Then
Lx 6= λNx for all (x, λ) ∈ [(D(L) \ KerL) ∩ ∂Ω] × (0, 1); Nx /∈ Im L for every
x ∈ KerL∩∂Ω; deg(∧QN

∣∣
Ker L

, Ω∩KerL, 0) 6= 0. It follows from Lemma 2.1 that
Lx = Nx has at least one solution x = (x1, x2). Then x1 is a solution of (2.14).
Hence x1 is a solution of (1.28). �

We remark that Theorem 2.40 generalizes the results in [11, 36].
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3. Examples

Now, we present some examples to illustrate the main results. These BVPs can
not be solved by known results.

Example 3.1. Consider the problem

x′′(t) + b(t)|x′(t)|+ c(t)x(t) + r(t) = 0, t ∈ (0, 1),

x(0) =
1
2
x(1/4) + 2, x(1) =

1
2
x(

1
2
) + 2,

(3.1)

where b, c and r are nonnegative continuous functions. Corresponding to (1.24),
it is easy to find that (H1), (H2), (H3) hold. We find from Theorem 2.10 that if
5
4

∫ 1

0
c(s)ds +

∫ 1

0
b(s)ds < 1, then (3.1) has at least one positive solution for each

r ∈ C[0, 1] with r(t) ≥ 0 and 6≡ 0 on each subinterval of [0,1].

Example 3.2. Consider the problem

(φ3(x′))′ + a(t)φ3(x) + b(t)φ3(|x′|) + r(t) = 0, t ∈ (0, 1),

x(0) =
1
2
x(1/2) + 6, x(1) =

1
4
x(1/4) +

1
3
x(1/2) + 7,

(3.2)

where a, b and r are nonnegative continuous functions. We find p = 3 and q = 3/2.
Then by application of Theorem 2.10, (3.2) has at least one positive solution if
φ3(2)φ3( 3

2 )
∫ 1

0
a(s)ds +

∫ 1

0
b(s)ds < 1 for each r ∈ C[0, 1] with r(t) ≥ 0 and 6≡ 0 on

each subinterval of [0,1].

Example 3.3. Consider the problem

(φ3(x′))′ + a(t)φ3(x) + b(t)φ3(|x′|) + r(t) = 0, t ∈ (0, 1),

x′(0) =
1
2
x′(1/2)− 3, x(1) =

1
4
x(1/4) +

1
3
x(1/2) + 4,

(3.3)

where a, b and r are nonnegative continuous functions. We find p = 3, q = 3/2,m =
2. Then by application of Theorem 2.19, (3.3) has at least one positive solution if(

1 +
φ3(4)

1− φ3(4)φ3(1/2)
φ3(1/2)

2

)[
‖b‖∞ + φ3(2)φ3(1 +

12
5

7
48

)‖a‖∞
]

< 1

for each r ∈ C[0, 1] with r(t) ≥ 0 and 6≡ 0 on each subinterval of [0,1].

Example 3.4. Consider the problem

(φ3(x′))′ + a(t)φ3(x) + b(t)φ3(|x′|) + r(t) = 0, t ∈ (0, 1),

x(0) =
1
2
x(1/2) +

1
3
x(3/4) + 6, x′(1) =

1
4
x(1/2) +

1
3
x′(3/4) + 7,

(3.4)

where a, b and r are nonnegative continuous functions. Then by application of
Theorem 2.25, (3.4) has at least one positive solution if(

1 +
φ(4)

1− φ(4)(φ(1/2) + φ(1/3))
(φ(1/4)

1
2

+ φ(1/3)
1
4
)
)

×
[
‖b‖∞ + φ(2)φ3(41/13)‖a‖∞

]
< 1

for each r ∈ C[0, 1] with r(t) ≥ 0 and 6≡ 0 on each subinterval of [0,1].
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Example 3.5. Consider the problem

x′′(t) + a(t)|x′(t)|+ b(t)x(t) + r(t) = 0, t ∈ (0, 1),

x(0) =
1
2
x′(0) + 6, x(1) = 4x′(1) + 7,

(3.5)

where a, b and r are nonnegative continuous functions. Then by Theorem 2.25,
(3.5) has at least one positive solution if

3
2

∫ 1

0

b(t)dt +
∫ 1

0

a(t)dt < 1

for each r ∈ C[0, 1] with r(t) ≥ 0 and 6≡ 0 on each subinterval of [0,1].
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