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FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT
THEOREM

RICHARD AVERY, JOHNNY HENDERSON, DONAL O’REGAN

Abstract. This paper presents a generalization of the fixed point theorems of

compression and expansion of functional type. As an application, the existence
of a positive solution to a second order conjugate boundary value problem is

considered. We conclude with an extension to multivalued maps.

1. Introduction

In this paper we provide a generalization of all the fixed point theorems of
compression and expansion involving functionals. The generalization also gives
an alternative, simpler argument of the Sun-Zhang fixed point theorem of cone
compression-expansion of functional type which applies convex functionals. The
use of functionals with the fixed point index to yield positive solutions can be
traced back to Leggett and Williams [13]. Several multiple fixed point theorems
have employed the use of functionals [4, 5, 6, 7] and most recently they have been
used [3, 19] to verify the existence of at least one fixed point. In [3] Anderson and
Avery generalized the fixed point theorem of Guo [9] by replacing the norm in places
by sublinear functionals, and in [19] Sun and Zhang showed that a certain set was a
retract, thus replacing the norm from the argument by a convex functional. In this
paper we provide a generalization of all of the compression-expansion arguments
that have utilized the norm and/or functionals (including [3, 9, 10, 12, 19]) in
verifying the existence of at least one fixed point. Our result does not require sets
to be invariant under our operator and yet maintains the freedom gained by using
functionals that satisfy either Property A1 or Property A2, properties defined in
the next section. We will follow the main result with an application and associated
example, and then we will conclude with an extension to multivalued maps.

2. Preliminaries

In this section we will state the definitions that are used in the remainder of the
paper.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if it satisfies the following two conditions:
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(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E if β : P → [0,∞)
is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and t ∈ [0, 1]. We say the map ψ is a sub-linear functional if

ψ(tx) ≤ tψ(x) for allx ∈ P, t ∈ [0, 1].

Property A1. Let P be a cone in a real Banach space E and Ω be a bounded
open subset of E with 0 ∈ Ω. Then a continuous functional β : P → [0,∞) is said
to satisfy Property A1 if one of the following conditions hold:

(i) β is convex, β(0) = 0, β(x) 6= 0 if x 6= 0, and inf
x∈P∩∂Ω

β(x) > 0,

(ii) β is sublinear, β(0) = 0, β(x) 6= 0 if x 6= 0, and inf
x∈P∩∂Ω

β(x) > 0,

(iii) β is concave and unbounded.
Note that if condition (i) of Property A1 is satisfied so is condition (ii), since

β(tx) = β(tx+ (1− t)0) ≥ tβ(x) + (1− t)β(0) = tβ(x).

Property A2. Let P be a cone in a real Banach space E and Ω be a bounded
open subset of E with 0 ∈ Ω. Then a continuous functional β : P → [0,∞) is said
to satisfy Property A2 if one of the following conditions hold:

(i) β is convex, β(0) = 0 and β(x) 6= 0 if x 6= 0,
(ii) β is sublinear, β(0) = 0 and β(x) 6= 0 if x 6= 0,
(iii) β(x+ y) ≥ β(x) + β(y) for all x, y ∈ P , β(0) = 0, β(x) 6= 0 if x 6= 0.
Note that he assumption β(x+y) ≥ β(x)+β(y) for all x, y ∈ P in condition (iii)

could be rephrased as −β satisfying the triangle inequality on P . Also note that if
condition (i) of Property A2 is satisfied so is condition (ii) (for the same reason as
in the remark following Property A1).

Definition 2.4. Let D be a subset of a real Banach space E. If ρ : E → D is
continuous with ρ(x) = x for all x ∈ D, then D is a retract of E, and the map ρ is
a retraction. The convex hull of a subset D of a real Banach space X is given by

conv(D) =
{ n∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],
n∑

i=1

λi = 1, and n ∈ N
}
.

The following theorem is due to Dugundji and a proof can be found in [8, p. 44].
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Theorem 2.5. For Banach spaces X and Y , let D ⊂ X be closed and let F :
D → Y be continuous. Then F has a continuous extension F̃ : X → Y such that
F̃ (X) ⊂ conv(F (D)).

Corollary 2.6. Every closed convex set of a Banach space is a retract of that
Banach space.

Note that for any positive real number r and non-negative continuous concave
functional α, Q(α, r) = {x ∈ P : r ≤ α(x)} is a retract of E by Corollary 2.6.
Note also, if r is a positive number and if α : P → [0,∞) is a uniformly continuous
convex functional with α(0) = 0 and α(x) > 0 for x 6= 0, then [19, Theorem 2.1]
guarantees that Q(α, r) is a retract of E.

The following theorem, which establishes the existence and uniqueness of the
fixed point index, is from [11, pp. 82-86]; an elementary proof can be found in [8,
pp. 58 & 238]. The proof of our main result in the next section will invoke the
properties of the fixed point index.

Theorem 2.7. Let X be a retract of a real Banach space E. Then, for every
bounded relatively open subset U of X and every completely continuous operator
A : U → X which has no fixed points on ∂U (relative to X), there exists an integer
i(A,U,X) satisfying the following conditions:

(G1) Normality: i(A,U,X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;
(G2) Additivity: i(A,U,X) = i(A,U1, X) + i(A,U2, X) whenever U1 and U2 are

disjoint open subsets of U such that A has no fixed points on U − (U1∪U2);
(G3) Homotopy Invariance: i(H(t, ·), U,X) is independent of t ∈ [0, 1] whenever

H : [0, 1] × U → X is completely continuous and H(t, x) 6= x for any
(t, x) ∈ [0, 1]× ∂U ;

(G4) Permanence: i(A,U,X) = i(A,U ∩Y, Y ) if Y is a retract of X and A(U) ⊂
Y ;

(G5) Excision: i(A,U,X) = i(A,U0, X) whenever U0 is an open subset of U such
that A has no fixed points in U − U0;

(G6) Solution: If i(A,U,X) 6= 0, then A has at least one fixed point in U .
Moreover, i(A,U,X) is uniquely defined.

3. Fixed Point Theorems

The proof of the following fixed point results can be found in [11, pp. 88-89].

Lemma 3.1. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E with 0 ∈ Ω, and A : P ∩Ω → P a completely continuous operator. If Ax 6= µx
for all x ∈ P ∩ ∂Ω and µ ≥ 1, then

i(A,P ∩ Ω, P ) = 1.

Lemma 3.2. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E, and A : P ∩ Ω → P a completely continuous operator. If

(i) infx∈P∩∂Ω ‖Ax‖ > 0; and
(ii) Ax 6= νx for all x ∈ P ∩ ∂Ω and ν ∈ (0, 1],

then i(A,P ∩ Ω, P ) = 0.

Lemma 3.3. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E with 0 ∈ Ω, and A : P ∩ Ω → P a completely continuous operator. If the
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continuous functional α satisfies Property A1 and α(Ax) ≥ α(x) for all x ∈ P ∩∂Ω,
with Ax 6= x, for all x ∈ P ∩ ∂Ω, then

i(A,P ∩ Ω, P ) = 0.

Proof. Suppose α satisfies Property A1. Then at least one of the conditions (i), (ii)
or (iii) of Property A1 is satisfied. We proceed in cases.
Case 1: Condition (i) of Property A1 is satisfied. The result follows from the proof
of the following case since if condition (i) of Property A1 is satisfied then condition
(ii) of Property A1 is satisfied.
Case 2: Condition (ii) of Property A1 is satisfied. Suppose that α is sublinear and
α(0) = 0, α(x) 6= 0 if x 6= 0, and infx∈P∩∂Ω α(x) > 0.
Claim: Ax 6= νx for all x ∈ P ∩ ∂Ω and ν ∈ (0, 1].
Suppose to the contrary that there exists an x0 ∈ P ∩ ∂Ω and ν0 ∈ (0, 1] such that

Ax0 = ν0x0

(since Ax 6= x for x ∈ P ∩ ∂Ω we have that ν0 6= 1). Then since α(x0) > 0 we have

α(Ax0) = α(ν0x0) ≤ ν0α(x0) < α(x0),

which is a contradiction. Also,

inf
x∈P∩∂Ω

α(Ax) ≥ inf
x∈P∩∂Ω

α(x) > 0.

Now since A is completely continuous infx∈P∩∂Ω ‖Ax‖ ≥ 0. If infx∈P∩∂Ω ‖Ax‖ = 0
then there exists a sequence xn ∈ P ∩∂Ω with ‖Axn‖ → 0, i.e. Axn → 0, as n→∞
and so α continuous with infx∈P∩∂Ω α(Ax) > 0 implies

0 = α(0) = α( lim
n→∞

Axn) = lim
n→∞

α(Axn) > 0.

Therefore, infx∈P∩∂Ω ‖Ax‖ > 0 and hence by Lemma 3.2

i(A,P ∩ Ω, P ) = 0.

Case 3: Condition (iii) of Property A1 is satisfied. Let

R1 = sup
x∈P∩Ω

α(Ax) and R2 = sup
x∈P∩Ω

α(x)

and then define R = max{R1, R2} + 1. Let x∗ ∈ P (α,R) = {x ∈ P : α(x) ≥ R}
(which is nonempty since α satisfies condition (iii) of Property A1), and

H(t, x) = tAx+ (1− t)x∗.

Obviously, H : [0, 1]× (P ∩ ∂Ω) → P (note that P ∩ ∂Ω = ∂(P ∩Ω)) is completely
continuous.
Claim: H(t, x) 6= x for all (t, x) ∈ [0, 1]× (P ∩ ∂Ω).
Suppose to the contrary, that is there is a (t0, x0) ∈ [0, 1] × (P ∩ ∂Ω) such that
H(t0, x0) = x0. Note t0 6= 0 since α(x∗) ≥ R and α(x0) ≤ R2 < R. Also since
Ax0 6= x0 we have that t0 6= 1. For t0 ∈ (0, 1), we have

α(x0) = α(t0Ax0 + (1− t0)x∗)

≥ t0α(Ax0) + (1− t0)α(x∗)

> t0α(Ax0) + (1− t0)α(Ax0)

= α(Ax0)
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which is a contradiction. Thus by the homotopy invariance property

i(A,P ∩ Ω, P ) = i(x∗, P ∩ Ω, P )

and i(x∗, P∩Ω, P ) = 0 since if i(x∗, P∩Ω, P ) 6= 0, then there would be an x1 ∈ P∩Ω
such that x∗ = x1 which is a contradiction since α(x∗) ≥ R > α(x1). Thus

i(A,P ∩ Ω, P ) = 0.

Therefore, regardless which of the three conditions of Property A1 is satisfied we
have that i(A,P ∩ Ω, P ) = 0. �

Lemma 3.4. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E with 0 ∈ Ω, and A : P ∩ Ω → P a completely continuous operator. If the
continuous functional α satisfies Property A2 and α(Ax) ≤ α(x) for all x ∈ P ∩∂Ω
with Ax 6= x for all x ∈ P ∩ ∂Ω, then

i(A,P ∩ Ω, P ) = 1.

Proof. Suppose α satisfies Property A2. Then at least one of the conditions (i), (ii)
or (iii) of Property A2 is satisfied. We proceed in cases.
Case 1: Condition (i) of Property A2 is satisfied. The result follows from the proof
of the following case since if condition (i) of Property A2 is satisfied then condition
(ii) of Property A2 is satisfied.
Case 2: Condition (ii) of Property A2 is satisfied. Suppose that α is sublinear,
α(0) = 0 and α(x) 6= 0 if x 6= 0.
Claim: Ax 6= λx for all x ∈ P ∩ ∂Ω and λ ≥ 1.
Suppose to the contrary; that is, there exists an x0 ∈ ∂Ω and λ0 ≥ 1 (since Ax 6= x
for all x ∈ P ∩ ∂Ω, we have that λ0 6= 1), such that

Ax0 = λ0x0.

Note, α(x0) 6= 0 and since λ0 > 1, we have 0 < 1
λ0

< 1, and x0 = Ax0/λ0. Thus,
by the sublinearity of α

α(x0) = α(
Ax0

λ0
) ≤ α(Ax0)

λ0
,

and thus
α(x0) < λ0α(x0) ≤ α(Ax0),

which is a contradiction. Note that 0 ∈ Ω by assumption. Hence by Lemma 3.1

i(A,P ∩ Ω, P ) = 1.

Case 3: Condition (iii) of Property A2 is satisfied. Let H(t, x) = tAx. Obviously,
H : [0, 1]× (P ∩ Ω) → P is completely continuous.
Claim: H(t, x) 6= x for all (t, x) ∈ [0, 1]× (P ∩ ∂Ω).
Suppose to the contrary; that is, there is a (t0, x0) ∈ [0, 1] × (P ∩ ∂Ω) such that
H(t0, x0) = x0. Note, t0 6= 0. Also, since Ax0 6= x0 we have that t0 6= 1, and we
have

Ax0 = t0Ax0 + (1− t0)Ax0 = x0 + (1− t0)Ax0.

Thus for t0 ∈ (0, 1)

α(Ax0) = α(x0 + (1− t0)Ax0)

≥ α(x0) + α((1− t0)Ax0)

> α(x0),
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since (1 − t0)Ax0 6= 0 (note, if (1 − t0)Ax0 = 0 then Ax0 = x0 which contradicts
Ax0 6= x0), which is a contradiction. Hence, for all (t, x) ∈ [0, 1] × (P ∩ ∂Ω),
H(t, x) 6= x, and so by the homotopy invariance property of the fixed point index

i(A,P ∩ Ω, P ) = i(0, P ∩ Ω, P ),

and i(0, P ∩Ω, P ) = 1 by the solution property of the fixed point index. Therefore

i(A,P ∩ Ω, P ) = 1.

�

Theorem 3.5. Let Ω1 and Ω2 be two bounded open sets in a Banach Space E such
that 0 ∈ Ω1 and Ω1 ⊆ Ω2 and P is a cone in E. Suppose A : P ∩ (Ω2−Ω1) → P is
completely continuous, α and ψ are nonnegative continuous functionals on P , and
one of the two conditions:

(K1) α satisfies Property A1 with α(Ax) ≥ α(x), for all x ∈ P ∩ ∂Ω1, and ψ
satisfies property (A2) with ψ(Ax) ≤ ψ(x), for all x ∈ P ∩ ∂Ω2; or

(K2) α satisfies Property A2 with α(Ax) ≤ α(x), for all x ∈ P ∩ ∂Ω1, and ψ
satisfies Property A1 with ψ(Ax) ≥ ψ(x), for all x ∈ P ∩ ∂Ω2,

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 − Ω1).

Proof. If there exists an x ∈ P ∩ ∂(Ω2 − Ω1) such that Ax = x, then there is
nothing to prove; thus suppose that Ax 6= x for all x on the boundary of Ω2 − Ω1.
By Dugundji’s Theorem (Theorem 2.5), A has a completely continuous extension
(which we will also denote by A)

A : P ∩ Ω2 → P.

Suppose condition (K1) is satisfied; the proof when (K2) is satisfied is nearly iden-
tical and will be omitted.

From Lemma 3.3 we have that i(A,P ∩Ω1, P ) = 0, and from Lemma 3.4 we have
that i(A,P ∩Ω2, P ) = 1, and since A has no fixed points on Ω2− (Ω1 ∪ (Ω2−Ω1)),
by the additivity property of the fixed point index, we have

i(A,P ∩ Ω2, P ) = i(A,P ∩ (Ω2 − Ω1), P ) + i(A,P ∩ Ω1, P ),

and hence i(A,P ∩ (Ω2 − Ω1), P ) = 1. By the solution property of the fixed point
index, we have that A has a fixed point in Ω2 − Ω1. �

4. Application

In this section, as an application of our main result, Theorem 3.5, we are con-
cerned with the existence of at least one positive solution for the second order
boundary value problem,

x′′ + f(x) = 0, 0 ≤ t ≤ 1, (4.1)

x(0) = 0 = x(1), (4.2)

where f : R → [0, ∞) is continuous. We look for solutions x ∈ C(2)[0, 1] of
(4.1), (4.2) which are both nonnegative and concave on [0, 1]. We will impose
growth conditions on f which ensure the existence of at least one symmetric positive
solution of (4.1), (4.2) by applying Theorem 3.5. We will apply Theorem 3.5 to a
completely continuous operator whose kernel G(t, s) is the Green’s function for

−x′′ = 0, (4.3)
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satisfying (4.2). In particular,

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

(4.4)

We will make use of various properties of G(t, s) which include∫ 1

0

G(t, s)ds =
t(1− t)

2
, 0 ≤ t ≤ 1; (4.5)∫ 1−t

t

G(t, s)ds =
t(1− 2t)

2
, 0 ≤ t ≤ 1

2
; (4.6)

max
0≤r≤1

G( 1
2 , r)

G(t, r)
=

1
2t
, 0 < t ≤ 1

2
. (4.7)

Let E = C[0, 1] be endowed with the maximum norm,

‖x‖ = max
0≤t≤1

|x(t)|,

and define the cone P ⊂ E by

P =
{
x ∈ E : x is concave, symmetric, nonnegative valued on [0, 1], and

min
t∈[z,1−z]

x(t) ≥ 2z‖x‖ for all z ∈ [0, 1/2]
}
.

Finally, let the nonnegative continuous functionals α and ψ be defined on the cone
P by

α(x) = min
t∈[1/4,3/4]

x(t) = x(1/4), (4.8)

ψ(x) = max
t∈[0,1]

x(t) = x(1/2). (4.9)

We observe here that, for each x ∈ P ,

‖x‖ = x(
1
2
) ≤ 2x(

1
4
) = 2α(x) (4.10)

and that x ∈ P is a solution of (4.1), (4.2) if and only if

x(t) =
∫ 1

0

G(t, s)f(x(s))ds, 0 ≤ t ≤ 1. (4.11)

We now present an application of our main result.

Theorem 4.1. Suppose there exists positive numbers r and R such that 0 < r < R,
and suppose f satisfies the following conditions:

(i) f(x) ≥ 16R for all x ∈ [R, 2R],
(ii) f(x) ≤ 8r for all x ∈ [0, r].

Then, the second order conjugate boundary value problem (4.1), (4.2) has at least
one symmetric positive solution x∗ such that

r ≤ max
t∈[0,1]

x∗(t) and min
t∈[1/2,3/4]

x∗(t) ≤ R.

Proof. Define the completely continuous operator A by

Ax(t) =
∫ 1

0

G(t, s)f(x(s))ds.
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We seek a fixed point of A which satisfies the conclusion of the theorem. We note
first, if x ∈ P , then from properties ofG(t, s), Ax(t) ≥ 0 and (Ax)′′(t) = −f(x(t)) ≤
0 for 0 ≤ t ≤ 1, Ax(t) ≥ 2tAx( 1

2 ), for 0 ≤ t ≤ 1
2 , Ax(t) = Ax(1− t) for 0 ≤ t ≤ 1

2 ,
and consequently, Ax ∈ P ; that is, A : P → P .

Also for all x ∈ P we have α(x) ≤ ψ(x). Thus if we let

Ω1 = {x : ψ(x) < r} and Ω2 = {x : α(x) < R},
we have that 0 ∈ Ω1 and Ω1 ⊆ Ω2, with Ω1 and Ω2 being bounded open subsets of
P , since for all x ∈ P , we have ‖x‖ ≤ 2α(x).
Claim 1: If x ∈ P ∩ ∂Ω1, then ψ(Ax) ≤ ψ(x).
To see this, note that

ψ(Ax) = Ax(
1
2
)

=
∫ 1

0

G(
1
2
, s)f(x(s))ds

≤ 8r
∫ 1

0

G(
1
2
, s)ds

= r = ψ(x).

Claim 2: If x ∈ P ∩ ∂Ω2, then α(Ax) ≥ α(x).
To see this, note that

α(Ax) = Ax(
1
4
)

=
∫ 1

0

G(
1
4
, s)f(x(s))ds

≥ 16R
∫ 1

0

G(
1
4
, s)ds

= R = α(x).

Clearly ψ satisfies Property A2(i) and α satisfies Property A1(iii) (note α is not
convex so does not satisfy the hypothesis of the Sun-Zhang Fixed point theorem)
thus the hypothesis (K2) of Theorem 3.5 is satisfied, and therefore A has a fixed
point in Ω2 − Ω1. �

Remark: Similar results can be found applying the Sun-Zhang fixed point theorem
(as well as many others), however the arguments in the above result are extremely
straightforward and are the result of mapping minimums outward from a boundary
and maximums inward from a boundary. Hence, our main result not only provides
additional freedom in choosing functionals, but the choice of those functionals can
also make for simpler existence arguments.

As an example, we have f(x) = 8x2 which satisfies the hypothesis of Theorem
4.1 with r = 1 and R = 2.

5. Multi-Valued Generalization

In this section, we extend our main result to multi-valued maps. Let X be a
closed, convex subset of some Banach space E = (E, ‖·‖). We will consider maps F :
X → CK(E); here CK(E) denotes the family of nonempty convex compact subsets
of E. In this section a map F : X → CK(E) is called completely continuous if it
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is upper semicontinuous and maps bounded sets to bounded sets. There is a well-
defined index for such maps that is unique and satisfies the key properties (all those
listed in Theorem 2.7) that we require for our generalization; see Petryshyn [17] for
a thorough treatment. The main result of this section compliments the multiple
fixed point theorems of Leggett-Williams type that employ functionals [1, 2]. See
[15, 16, 18] for examples and techniques of finding fixed points of multivalued maps.
The proofs of the following fixed point results can be found in [17].

Lemma 5.1 ([17, p. 505]). Let P be a cone in a real Banach space E, Ω a bounded
open subset of E with 0 ∈ Ω, and A : P ∩ Ω → CK(E) a completely continuous
operator. If µx 6∈ Ax for all x ∈ P ∩ ∂Ω and µ ≥ 1, then

i(A,P ∩ Ω, P ) = 1.

Lemma 5.2 ([17, pp. 506-507]). Let P be a cone in a real Banach space E, Ω
a bounded open subset of E, and A : P ∩ Ω → CK(E) a completely continuous
operator. If

(i) infy∈{Ax:x∈P∩∂Ω} ‖y‖ > 0; and
(ii) νx 6∈ Ax for all x ∈ P ∩ ∂Ω and ν ∈ (0, 1],

then i(A,P ∩ Ω, P ) = 0.

Lemma 5.3. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E with 0 ∈ Ω, and A : P ∩Ω → CK(E) a completely continuous operator. If the
continuous functional α satisfies Property A1,

α(y) ≥ α(x)

for all x ∈ P ∩ ∂Ω and for all y ∈ Ax, and

x 6∈ Ax

for all x ∈ P ∩ ∂Ω, then
i(A,P ∩ Ω, P ) = 0.

Proof. Suppose α satisfies Property A1. Then at least one of the conditions (i),
(ii) or (iii) of Property A1 is satisfied. The proofs when conditions (ii) and (iii)
of Property A1 are satisfied are nearly identical to the arguments in the proof of
Lemma 3.3 and will therefore be omitted. For completeness we provide the proof
when condition (i) of Property A1 is satisfied.
Claim: νx 6∈ Ax for all x ∈ P ∩ ∂Ω and ν ∈ (0, 1].
Suppose to the contrary, that is there is an x0 ∈ P ∩ ∂Ω and ν ∈ (0, 1) such that
νx0 = y0 ∈ Ax0 (note we know that ν 6= 1 since x0 6∈ Ax0). Therefore, since α is
convex,

α(y0) = α(νx0)

= α(νx0 + (1− ν)0)

≤ να(x0)

< α(x0)

which is a contradiction. Also, since α(y) ≥ α(x) for all x ∈ P ∩ ∂Ω and for all
y ∈ Ax, we have that

inf
y∈{Ax :x∈P∩∂Ω}

α(y) ≥ inf
x∈P∩∂Ω

α(x) > 0,
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and following the argument in Lemma 3.3, we have that

inf
y∈{Ax:x∈P∩∂Ω}

‖y‖ > 0.

Hence, by Lemma 5.1 we have i(A,P ∩ Ω, P ) = 0. �

Lemma 5.4. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E with 0 ∈ Ω, and A : P ∩Ω → CK(E) a completely continuous operator. If the
continuous functional α satisfies Property A2,

α(y) ≤ α(x)

for all x ∈ P ∩ ∂Ω and for all y ∈ Ax, and x 6∈ Ax for all x ∈ P ∩ ∂Ω, then

i(A,P ∩ Ω, P ) = 1.

Proof. Suppose α satisfies Property A2. Then at least one of the conditions (i),
(ii) or (iii) of Property A2 is satisfied. The proofs when conditions (ii) and (iii)
of Property A2 are satisfied are nearly identical to the arguments in the proof of
Lemma 3.4 and will therefore be omitted. For completeness we provide the proof
when condition (i) of Property A2 is satisfied.
Claim: µx 6∈ Ax for all x ∈ P ∩ ∂Ω and µ ≥ 1.
Suppose to the contrary, that is there is an x0 ∈ P ∩ ∂Ω and µ > 1 such that
µx0 = y0 ∈ Ax0 (note we know that µ 6= 1 by assumption). Therefore, since α is
convex,

α(x0) = α(
y0
µ

)

= α(
y0
µ

+ (1− 1
µ

)0)

≤ α(y0)
µ

< α(y0),

which is a contradiction. Hence, by Lemma 5.2 we have i(A,P ∩ Ω, P ) = 1. �

Theorem 5.5. Let Ω1 and Ω2 be two bounded open sets in a Banach Space E such
that 0 ∈ Ω1 and Ω1 ⊆ Ω2 and P is a cone in E. Suppose A : P∩(Ω2−Ω1) → CK(E)
is completely continuous, α and ψ are nonnegative continuous functionals on P , and
one of the two conditions:

(K1) α satisfies Property A1 with α(y) ≥ α(x) for all x ∈ P ∩ ∂Ω1 and for all
y ∈ Ax and ψ satisfies Property A2 with ψ(y) ≤ ψ(x) for all x ∈ P ∩ ∂Ω2

and for all y ∈ Ax; or
(K2) α satisfies Property A2 with α(y) ≤ α(x) for all x ∈ P ∩ ∂Ω1 and for all

y ∈ Ax and ψ satisfies Property A1 with ψ(y) ≥ ψ(x) for all x ∈ P ∩ ∂Ω2

and for all y ∈ Ax
is satisfied. Then A has at least one fixed point in P ∩ (Ω2 − Ω1).

Proof. If there exists an x ∈ P ∩∂(Ω2−Ω1) such that x ∈ Ax, then there is nothing
to prove; thus suppose that x 6∈ Ax for all x on the boundary of Ω2 −Ω1. By Ma’s
extension of Dugundji’s Theorem [14], A has a completely continuous extension
(which we will also denote by A)

A : P ∩ Ω2 → CK(E).
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Suppose condition (K1) is satisfied; the proof when (K2) is satisfied is nearly
identical and will be omitted.

From Lemma 5.3 we have that i(A,P ∩Ω1, P ) = 0, and from Lemma 5.4 we have
that i(A,P ∩Ω2, P ) = 1, and since A has no fixed points on Ω2 − (Ω1 ∪ (Ω2 −Ω1))
by the additivity property of the fixed point index, we have

i(A,P ∩ Ω2, P ) = i(A,P ∩ (Ω2 − Ω1), P ) + i(A,P ∩ Ω1, P ).

Hence i(A,P ∩ (Ω2 − Ω1), P ) = 1, and by the solution property of the fixed point
index, we have that A has a fixed point in Ω2 − Ω1. �

References

[1] R. P. Agarwal and D. O’Regan; A generalization of the Petryshyn Leggett Williams fixed point
theorem with applications to integral inclusions, Applied Mathematics and Computation, 123

(2001), 263–274.

[2] R. P. Agarwal, R. I. Avery, J. Henderson and D. O’Regan; The five functionals fixed point
theorem generalized to multivalued maps, Journal of Nonlinear and Convex Analysis, 4

(2003), 455–462.

[3] D. R. Anderson and R. I. Avery; Fixed point theorem of cone expansion and compression of
functional type, J. Difference Equations Appl., 8 (2002), 1073–1083.

[4] R. I. Avery; A generalization of the Leggett-Williams fixed point theorem, MSR Hot-Line, 3

(1999), 9-14.
[5] R. I. Avery and J. Henderson; An extension of the five functionals fixed point theorem,

International Journal of Differential Equations and Applications, 1 (2000), 275–290.
[6] R. I. Avery and J. Henderson; Two positive fixed points of nonlinear operators on ordered

Banach spaces, Communications on Applied Nonlinear Analysis, 8 (2001), 27–36.

[7] R. I. Avery and A. C. Peterson; Three Positive Fixed Points of Nonlinear Operators on
Ordered Banach Spaces, Computers & Mathematics with Applications, 42 (2001), 313–322.

[8] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.

[9] D. Guo; A new fixed point theorem, Acta Math. Sinica, 24 (1981), 444–450.
[10] D. Guo; Some fixed point theorems on cone maps, Kexeu Tongbao 29 (1984), 575–578.

[11] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press,

San Diego, 1988.
[12] M. A. Krasnosel’skii; Positive Solutions of Operator Equations, P. Noordhoff, Groningen,

The Netherlands, 1964.

[13] R. W. Leggett and L. R. Williams; Multiple positive fixed points of nonlinear operators on
ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673–688.

[14] T. W. Ma; Topological degree of set-valued compact fields in locally convex spaces, Dissert.
Math. 79 (1972).

[15] D. O’Regan; Integral inclusions of upper semicontinuous or lower semicontinuous type, Proc.

Amer. Math. Soc., 124 (1996), 2391–2399.
[16] W. V. Petryshyn; Multiple positive solutions of multivalued condensing mappings with some

applications, J. Math. Anal. Appl., 124 (1987), 237–253.

[17] W. V. Petryshyn; Existence of fixed points of positive k-set-contractive maps as consequences
of suitable boundary conditions, J. London Math Soc., 38 (1988), 503–512.

[18] G. V. Smirnov; Introduction to the Theory of Differential Inclusions, Graduate Studies in

Mathematics, Vol. 41, American Mathematical Society, Providence, 2002.
[19] J. Sun and G. Zhang; A generalization of the cone expansion and compression fixed point

theorem and applications, Nonlinear Analysis, 67 (2007), 579-586.

Richard Avery

College of Arts and Sciences, Dakota State University, Madison, South Dakota 57042,

USA
E-mail address: rich.avery@dsu.edu



12 R. AVERY, J. HENDERSON, D. O’REGAN EJDE-2008/22

Johnny Henderson

Department of Mathematics, Baylor University, Waco, Texas 76798, USA

E-mail address: Johnny Henderson@baylor.edu

Donal O’regan

Department of Mathematics, National University of Ireland, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie


	1. Introduction
	2. Preliminaries
	Property A1
	Property A2

	3. Fixed Point Theorems
	4. Application
	5. Multi-Valued Generalization
	References

