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CONVERGENCE TO EQUILIBRIA FOR A
THREE-DIMENSIONAL CONSERVED PHASE-FIELD SYSTEM

WITH MEMORY

GIANLUCA MOLA

Abstract. We consider a conserved phase-field system with thermal mem-

ory on a tridimensional bounded domain. Assuming that the nonlinearity is

real analytic, we use a Lojasiewicz-Simon type inequality to study the conver-
gence to steady states of single trajectories. We also give an estimate of the

convergence rate.

1. Introduction

We consider a phase-field system of conserved type with thermal memory on
a bounded tridimensional set Ω with smooth boundary ∂Ω. Denoting by ϑ is
the relative temperature variation field, by χ the order parameter (or phase-field)
and setting some physical constants equal to one, the boundary-initial integro-
differential problem we want to study reads as follows

∂t(ϑ+ χ)−
∫ ∞

0

k(s)∆ϑ(t− s)ds = 0, in Ω× (0,∞),

∂tχ−∆(−∆χ+ α∂tχ+ φ(χ)− ϑ) = 0 in Ω× (0,∞),

∂nϑ = ∂nχ = ∂n(−∆χ+ α∂tχ+ φ(χ)− ϑ) = 0 on ∂Ω× (0,∞),

ϑ(0) = ϑ0, χ(0) = χ0, ϑ(−s) = ϑ1(s) (s > 0) in Ω.

(1.1)

We recall that the first equation of (1.1), according to the Gurtin-Pipkin heat
conduction law [20], accounts for the memory effects due to the heat propagation.
Here k : (0,∞) → (0,∞) is the (smooth, decreasing and summable) heat conduction
relaxation kernel. Note that all the thermal diffusion is carried out by the memory
term solely and ϑ propagates at finite speed. The second equation governs the
evolution of χ and it is characterized by the presence of the nonlinearity φ and
by a viscosity term −α∆∂tχ, where α ≥ 0 is the viscosity parameter. Finally, the
initial conditions ϑ0, χ0 : Ω → R and ϑ1 : Ω × (0,∞) → R are given functions,
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whose properties will be discussed later on. We point out that the knowledge of the
unknown variable ϑ for negative times is necessary to ensure the well-posedness.

Note that the homogeneous Neumann boundary conditions we require imply that
the system is thermally isolated. Moreover, thanks to such conditions, a formal
application of the Green formula yields immediately the following identities∫

Ω

(ϑ(t) + χ(t))dΩ =
∫

Ω

(ϑ0 + χ0)dΩ and
∫

Ω

χ(t)dΩ =
∫

Ω

χ0dΩ,

for any t ∈ (0,∞). The conservation of the quantities above is a structural feature
of our system, which explains the reason why it is called conserved.

For a detailed phenomenological description of the mathematical model with the
usual Fourier heat conduction law, as well as the related literature, we address the
reader to [4, 5] (see also references therein). The case of heat conduction law with
memory effects was studied in a number of papers (see [7, 8, 9, 13, 14, 17, 31]). In
[25, 26], problem (1.1) has been considered in the framework of infinite-dimensional
dynamical systems. In particular, results of well-posedness and large-time behavior
for its solutions (e.g., the existence of global and exponential attractors) have been
established.

The aim of this contribution is to analyze the convergence to equilibrium of single
trajectories. Such a task is nontrivial, since the set of steady states of systems like
(1.1) can be a continuum when the spatial dimension is greater than one (see,
e.g., [21, Remark 2.3.13]). However, when the nonlinearity φ is real analytic, it is
possible to take advantage of a Lojasiewicz-Simon type inequality originated from
the theory of functions of several complex variables [23, 24, 29]. This tool allows
us to prove that each trajectory converges to a single stationary point. We recall
that this technique has been recently exploited in many cases (see, for instance,
[1, 2, 3, 11, 12, 18, 19] and references therein). It is worth observing that the fact
that φ is real analytic is essential. Indeed, even though the nonlinearities are C∞,
it can be shown that, for some semilinear equations, there are trajectories whose
ω-limit sets are continua (see [27, 28]).

Convergence results for phase-transition systems featuring the heat conduction
laws of Fourier and Coleman-Gurtin have already been achieved in [2] and [11],
respectively. In particular, concerning the latter model, we point out that the
contributions to the convolution integrals due to the past history of the temperature
up to t = 0 is considered as given data, and therefore regarded as external sources.
Notice that such a formulation forces the system to become non autonomous, even if
the original system is autonomous. Thus, regarding the past history as a source, is
not convenient to study the problem in the framework of dynamical systems. Here
we will follow the dynamical system approach to take advantage of our previous
results in [25]. This will be particularly helpful to overcome the lack of smoothing
effects due to the Gurtin-Pipkin law.

1.1. The past history formulation. To prove that our problem generates a dy-
namical system, we follow an approach based on an idea contained in [10], and then
developed by several of authors in the context of dynamical systems (see, e.g., the
review papers [15, 16]). This idea consists in introducing an additional variable,
usually called the summed past history, which in our case is

ηt(s) = −
∫ s

0

∆(e(t− y)− χ(t− y))dy in Ω, (t, s) ∈ [0,∞)× (0,∞),
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where we e = ϑ+χ is the enthalpy density. It is immediate to check that ηt formally
satisfies the first order hyperbolic equation

∂tη = −∂sη −∆(e− χ) in Ω, (t, s) ∈ (0,∞)× (0,∞).

Concerning the boundary and initial conditions to associate with the equation
above, on account of (1.1), we deduce

ηt(0) = 0 and η0(s) = η0(s) = −
∫ s

0

∆ϑ1(y)dy

in Ω, for all t, s ∈ (0,∞).
Considering then the convolution term in the first equation, and making physi-

cally reasonable assumptions on the past history and the memory kernel, we observe
that a formal integration by parts yields

−
∫ ∞

0

k(s)∆(e(t− s)− χ(t− s))ds =
∫ ∞

0

µ(s)ηt(s)ds in Ω, s ∈ (0,∞),

where we have set µ = −k′. Thus we can reformulate the original boundary and
initial value problem as the following integro-partial differential system in terms of
the variables (e, χ, η).

Problem P. Find a solution (e, χ, η) to the system

∂te+
∫ ∞

0

µ(s)η(s)ds = 0,

∂tχ−∆(−∆χ+ α∂tχ+ φ(χ)− e+ χ) = 0,

∂tη = −∂sη −∆(e− χ),

in Ω× (0,∞), subjected to the boundary and initial conditions

∂ne = ∂nχ = 0, on ∂Ω× (0,∞),

∂n(−∆χ+ α∂tχ+ φ(χ)− e+ χ) = 0, on ∂Ω× (0,∞),

e(0) = e0 = ϑ0 + χ0, in Ω,

χ(0) = χ0 in Ω,

η0 = η0, in Ω× (0,∞).

The global dynamic of problem P has been widely analyzed in [25] and [26],
where results concerning well-posedness and asymptotic behavior for large times
have been provided. In particular, in [25], the existence of the global attractor has
been showed, as well as its regularity and the finiteness of its fractal dimension in
the viscous case (α > 0). On the other hand, in [26] the existence of a family of
exponential attractors (stable with respect to perturbation of the relaxation time)
has been established.

2. Preliminary tools

This section is devoted to describe the functional setting which will be used to
formulate problem P rigorously and to recall many results that will be useful in the
sequel. Since most of the tools that we need are known, we shall omit the proofs,
providing appropriate references when necessary.
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2.1. Function spaces and operators. Let H be the real Hilbert space L2(Ω) of
the measurable functions which are square summable on Ω, endowed with the usual
scalar product 〈·, ·〉 and the induced norm ‖ · ‖.

Given any ω ∈ H, we define the spatial mean value of ω on Ω

mω = |Ω|−1〈ω, 1〉.

We then introduce
H0 = {ω ∈ H : mω = 0}.

Denoting, as usual, by ∆ the spatial Laplacian, we now define the (unbounded)
operators

B : D(B) → H0 and B0 : D(B0) → H0

by setting

B = −∆, D(B) = {ω ∈ H2(Ω) : ∂nω = 0 a.e. on ∂Ω},
B0 = −∆, D(B0) = D(B) ∩H0.

Here the symbol ∂n denotes the outward normal derivative. Since B0 is a strictly
positive operator, we can set

V r
0 = D(Br/2

0 ), ∀r ∈ R,

as well as the shorthand V0 = V 1
0 and W0 = V 2

0 . For further use, we also
introduce the Hilbert spaces

V = H1(Ω) and W = D(B),

endowed with the norms

‖ω‖2V = ‖ω‖2 + ‖Pω‖2V0
and ‖ω‖2W = ‖ω‖2V + ‖Pω‖2W0

,

being Pω = ω−mω the natural projection from H to H0. It is easy to realize that
the norms defined above are equivalent, respectively, to the usual norms in H1(Ω)
and H2(Ω).

Making the identification H ≡ H∗ (here and by X∗ denotes the topological dual
of a Banach space X), we have the compact and dense embeddings

W ↪→ V ↪→ H ↪→ V ∗ ↪→W ∗, (2.1)

W0 ↪→ V0 ↪→ H0 ↪→ V ∗0 ↪→W ∗
0 . (2.2)

Note that, according to the notation introduced above, we have

V ∗0 = V −1
0 and W ∗

0 = V −2
0 .

Moreover, there holds

V ↪→ Lp(Ω), ∀p ∈ [2, 6], W ↪→ C(Ω), V0 ↪→ V, W0 ↪→W. (2.3)

2.2. Assumptions on φ and µ. To state our results, we need to make some struc-
tural assumptions on the nonlinearity as well as on the memory kernel. Concerning
the former one, the assumptions that we consider include (and generalize) the case
of the derivative of a double-well potential. Concerning the latter, the key property
to ensure the dissipativity of our system (cf. Section 3) is the exponential decay of
the kernel µ.
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Conditions on φ. Let φ ∈ C2(R) and assume that there exist c0 > 0 and c1, c2 ≥ 0
such that

(H1) rφ(r) ≥ c0r
4 − c1, for all r ∈ R

(H2) |φ′′(r)| ≤ c2(1 + |r|), for all r ∈ R
(H3) φ′(r) ≥ −`, for all r ∈ R
(H4) φ is real analytic.

Conditions on µ. Let µ : (0,∞) → (0,∞) be a summable function such that
(K1) µ ∈ C1((0,∞)) ∩ L1(0,∞),
(K2) µ(s) ≥ 0, µ′(s) ≤ 0, for all s ∈ (0,∞),
(K3) k0 =

∫∞
0
µ(s)ds > 0,

(K4) µ′(s) + λµ(s) ≤ 0, for all s ∈ (0,∞), for some λ > 0.

Remark 2.1. Note that µ is decreasing and Gronwall Lemma entails the expo-
nential decay

µ(s) ≤ µ(s0)e−λ(s−s0), ∀s ≥ s0 > 0. (2.4)
Note also that µ is allowed to be unbounded in a right neighborhood of 0.

2.3. The past history function space. The presence of memory effects in our
phase-field system requires the introduction of suitable past history spaces [15, 16].

Let r ∈ R. On account of assumptions (K1)-(K2), we consider the family of
weighted Hilbert spaces

Mr = L2
µ(0,∞;V r−1

0 ),
endowed with the inner product

〈η1, η2〉Mr =
∫ ∞

0

µ(s)〈η1(s), η2(s)〉V r−1
0

ds, ∀ η1, η2 ∈Mr.

For the sake of clarity, from now on we will use the shorthand M in place of M0,
and N in place of M1. In these cases, the norms become, respectively,

‖η‖2M =
∫ ∞

0

µ(s)‖η(s)‖2V ∗0 ds and ‖η‖2N =
∫ ∞

0

µ(s)‖η(s)‖2ds.

We also define the linear operator T on M with domain D(T ) = {η ∈ M : ∂sη ∈
M, η(0) = 0}, as

Tη = −∂sη,

where ∂sη is the distributional derivative of η with respect to the internal variable
s.

2.4. The phase-space. We are now in a position to define the phase-space for our
dynamical system. We set

H = H × V ×M and V = V ×W ×N .

Proposition 2.2. There holds
(i) H is a Hilbert space, if endowed with the inner product

〈(e1, χ1, η1), (e2, χ2, η2)〉H = 〈e1, e2〉+ 〈χ1, χ2〉V + 〈η1, η2〉M,

for all (e1, χ1, η1), (e2, χ2, η2) ∈ H.
(ii) V is a Hilbert space, if endowed with the inner product

〈(e1, χ1, η1), (e2, χ2, η2)〉V = 〈e1, e2〉V + 〈χ1, χ2〉W + 〈η1, η2〉N ,
for all (e1, χ1, η1), (e2, χ2, η2) ∈ V.



6 G. MOLA EJDE-2008/23

(iii) The embedding V ↪→ H is continuous.

On account of the fact that the spatial means e and χ are constant in time, we
also consider the function spaces

Hβ,γ = {(e, χ, η) ∈ H :
∣∣me

∣∣ ≤ β and
∣∣mχ

∣∣ ≤ γ} and Vβ,γ = V ∩Hβ,γ

for some fixed β, γ ≥ 0. Notice that, if β, γ > 0, Hβ,γ and Vβ,γ are not linear
spaces. Nevertheless, they have a metric structure, as stated in the next result.

Proposition 2.3. Let β, γ ≥ 0. Then
(i) Hβ,γ is a complete metric space with respect to the topology induced by the

norm of H,
(ii) Vβ,γ is a is a complete metric space with respect to the topology induced by

the norm of Z.
(iii) The embedding Vβ,γ ↪→ Hβ,γ is continuous.

2.5. The Lojasiewicz-Simon inequality. We now recall the main tool in order
to reach our goal, namely, the well-known Lojasiewicz-Simon inequality, in a conve-
nient form for our investigation, i.e., in the space of zero-mean functions. In order
to work in such a space, we set, for any fixed χ ∈ V ,

φ(Pχ) = φ(Pχ+mχ) = φ(χ),

and, consequently,

F(x) =
∫ x

0

φ(y)dy, ∀x ∈ R.

It is immediate to check that φ fulfills assumptions (H1)-(H4) as well.
If we consider the standard definition of analyticity (see [32, Vol. I, Definition

8.8] for details), then we state [1, Theorem 4.2].

Lemma 2.4. Under assumption (H4), the functional E : V0 → R defined by

E(χ) =
1
2
‖χ‖2V0

+ 〈F(χ), 1〉, ∀ χ ∈ V0,

is real analytic. Moreover, if we denote by E
′
its Fréchet derivative, the following

equality holds

E
′
(χ)v = 〈B1/2

0 χ,B
1/2
0 v〉+ 〈φ(χ), v〉, ∀ v ∈ V0.

We are now in a position to recall the Lojasiewicz-Simon inequality we need (see
[19, Lemma 4.1]).

Lemma 2.5. Let assumptions (H4) hold and let ϕ ∈W be such that

B0(B0Pϕ+ Pφ(ϕ)) = 0 in W ∗
0 .

Then there exist constants ρ ∈ (0, 1/2), r > 0 and λ > 0, depending on ϕ, such that∣∣E(Pχ)− E(Pϕ)
∣∣1−ρ ≤ λ‖B0Pχ+ Pφ(χ)‖V ∗0

(2.5)
for all χ ∈ V such that ‖χ− ϕ‖V ≤ r.

3. Well-posedness and dissipativity

On account of the previous section, we can now introduce the operator formula-
tion of our problem; namely,
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Problem P. Given (e0, χ0, η0) ∈ H, find z = (e, χ, η) ∈ C([0, T ];H) satisfying the
equations

∂te+
∫ ∞

0

µ(s)η(s)ds = 0, (3.1)

∂tχ+B0(B0Pχ+ α∂tχ+ Pφ(χ)− P (e− χ)) = 0, (3.2)

∂tη = Tη +B0P (e− χ), (3.3)

(e(0), χ(0), η(0)) = (e0, χ0, η0), (3.4)

where equation (3.3) has to be interpreted in a distributional sense.

3.1. Semigroup generation. By constructing a suitable approximating Faedo-
Galerkin scheme, it is possible to prove the well-posedness theorem stated below.
Details go exactly like in [31] (see also [17]).

Theorem 3.1. Let assumptions (H1)–(H2) and (K1)–(K3) hold. Then problem
P generates a strongly continuous (nonlinear) semigroup S(t), both on the phase-
space H and on the phase-space Hβ,γ , for any fixed β, γ ≥ 0. Moreover, the further
regularity properties hold

∂te ∈ C([0, T ];V ∗0 ),

χ ∈ L2(0, T ;W ) ∩H1(0, T ;V ∗),

α ∂tχ ∈ L2(0, T ;H0).

3.2. Dissipativity. As showed in [25, Theorem 4.1], S(t) is dissipative on the
bounded average phase-space Hβ,γ . We recall that the crucial assumption to prove
such a statement is (K4). More precisely, we have

Theorem 3.2. Let assumptions (H1)–(H2) and (K1)-(K4) hold. Then there exists
a bounded set B0 = B0(β, γ) of Hβ,γ such that

S(t)B ⊂ B0, ∀t ≥ tB.

for all bounded set B ⊂ Hβ,γ , being tB the positive entering time (depending on B).

Such a set B0 is a bounded absorbing set for the semigroup S(t).

Remark 3.3. Besides the uniform attracting property stated in Theorem 3.2, it is
possible to prove that the following energy inequality holds (see [25, Section 4])

d

dt

[
‖P (e− χ)‖2 + ‖η‖2M + 2E(Pχ) + 2νL(t)

]
+ c

[
‖P (e− χ)‖2 + ‖η‖2M + ‖∂tχ‖2V ∗0 + α‖∂tχ‖2

]
≤ 0,

(3.5)

for some positive constant c and for some ν ∈ (0, 1) to be chosen small enough.
Here L(t) is defined by

L(t) = −
∫ ∞

0

ψ(s)〈B−1/2
0 η(s), B−1/2

0 P (e− χ)〉ds,

where for any fixed s0 ∈ [0,∞), the function ψ = ψs0 : [0,∞) → [0,∞) we set

ψ(s) = µ(s0)I(0,s0](s) + µ(s)I[s0,∞)(s),

being II the indicator function of an interval I ⊂ [0,∞). Notice that it is immediate
to derive the inequality

|L(t)| ≤ c[‖P (e− χ)‖2 + ‖η‖2M]. (3.6)
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3.3. Global attractor. We briefly remind that it is also possible to prove the
existence of the global attractor A for S(t) on Hβ,γ . More precisely, the next
statement subsumes [25, Theorems 5.1 and 7.1], which provide existence of A as
well as its regularity in the viscous case.

Theorem 3.4. Let the assumptions of Theorem 3.2 hold. Then the strongly con-
tinuous semigroup S(t) possesses a global attractor A = A(β, γ). Moreover, assume
also assumption (H3) to hold. Then, for any fixed α > 0, A is a bounded subset of
the higher order phase space Vβ,γ .

We point out that Theorem 3.4, as outlined in [25, Sections 5 and 7], can be
proven by means of the asymptotic compactness condition (cf., for instance, [22]).
As a consequence, we immediately infer the following property, which will be crucial
in the sequel

Corollary 3.5. For all z0 ∈ Hβ,γ , setting z(t) = (e(t), χ(t), ηt) = S(t)z0, we have
that ∪t∈[0,∞)z(t) is precompact in Hβ,γ .

4. Convergence to equilibria

Here we can now state the main results of this paper. First, we need to review
some preliminary result concerning the structure of equilibrium points and ω-limit
sets.

4.1. Lyapunov function and equilibrium points. We now introduce a further
invariant set, which will play a fundamental role in our investigation, namely the
set of equilibrium points (or steady states)

S =
{
z ∈ Hβ,γ : S(t)z = z ∀t ∈ [0,∞)

}
.

It is immediate to deduce that S ⊂ A. Moreover, we have

S =
{

(e, χ, 0) : e ∈ V and χ ∈W, such that B0P (e− χ) = 0 in V ∗0

and B0(B0Pχ+ Pφ(χ)) = 0 in W ∗
0

}
.

We remind that a convergence result to a single equilibrium is nontrivial, since

Sχ =
{
χ ∈W : B0(B0Pχ+ Pφ(χ)) = 0 in W ∗

0

}
,

might be a continuum (see [21]). Nevertheless, we can easily realize that Sχ is
bounded in W .

We recall that a function L ∈ C(Hβ,γ ; R) is called a (strict) Lyapunov function
for S(t) if

(i) L(S(t)z) ≤ L(z) for all z ∈ Hβ,γ and t ∈ [0,∞);
(ii) L(S(t)z) = L(z) for all t ∈ (0,∞) implies that z ∈ S.

In our case, on account of Remark 3.3, it is natural to construct a Lyapunov
function for S(t) on Hβ,γ . Indeed, for all z = (e, χ, η) ∈ Hβ,γ , we define

L(z) = ‖P (e− χ)‖2 + ‖η‖2M + 2E(Pχ) + 2νL.

Proposition 4.1. The function L ∈ C(Hβ,γ ; R) is a Lyapunov function for S(t)
on Hβ,γ .

Proof. The continuity of L follows Theorem 3.1. Both assumptions (i) and (ii)
follow from (3.5). �
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As a consequence, our dynamical system (Hβ,γ , S(t)) is a gradient system, so
that A coincides with the unstable manifold of S (see, e.g., [30]).

4.2. Preliminary results on the ω-limit sets. Before proving the main result,
it is necessary to point out some features of the ω−limit sets in Hβ,γ .

Remark 4.2. If (e0, χ0, η0) ∈ Hβ,γ and (e∞, χ∞, η∞) ∈ ω(e0, χ0, η0), then it is
immediate to check that

me∞ = me0 and mχ∞ = mχ0 .

Thanks to the existence of the Lyapunov function stated in Theorem 4.1, we can
provide a further description of the ω−limit sets, which is a consequence of abstract
results [6, Theorems 9.2.3 and 9.2.7].

Lemma 4.3. For any (e0, χ0, η0) ∈ Hβ,γ , the set ω(e0, χ0, η0) is nonempty, com-
pact, invariant and connected in Hβ,γ and the following inclusion holds

ω(e0, χ0, η0) ⊂
{

(me0−χ0 + χ∞, χ∞, 0) : χ∞ ∈W, such that

B0(B0Pχ∞ + Pφ(χ∞)) = 0 in W ∗
0

}
.

(4.1)

In addition, we have

distH
(
S(t)(e0, χ0, η0), ω(e0, χ0, η0)

)
→ 0

as t → ∞, where distH denotes the usual Hausdorff semidistance. Moreover, L is
constant on ω(e0, χ0, η0).

4.3. Main results. The first theorem concerns the convergence to a single equi-
librium.

Theorem 4.4. Let assumptions (H1)–(H2), (H4), (K1)–(K4) hold. Then, for any
fixed (e0, χ0, η0) ∈ Hβ,γ there exists a solution χ∞ to the equation

B0(B0Pχ∞ + Pφ(χ∞)) = 0 in W ∗
0 , (4.2)

such that

e(t) → me0−χ0 + χ∞ in H , (4.3)

χ(t) → χ∞ in V , (4.4)

ηt → 0 in M, (4.5)

as t→∞. Moreover, there exist t1 > 0 and a positive constant c such that

‖χ(t)− χ∞‖V ∗ ≤ c(1 + t)−
ρ

2(1−2ρ) , ∀ t ≥ t1, (4.6)

ρ ∈ (0, 1/2) being the same constant as in the Lojasiewicz-Simon inequality (see
Lemma 2.5).

In the viscous case, supposing further (H3), a stronger convergence result holds:

Theorem 4.5. Let assumptions (H1)–(H4), (K1)–(K4) hold and let α > 0. Then
there exist t2 ≥ t1 and a positive constant cα (which may singularly depend on α)
such that

‖z(t)− z∞‖H ≤ cα(1 + t)−
ρ

4(1−2ρ) , ∀ t ≥ t2, (4.7)
having set

z∞ = (me0−χ0 + χ∞, χ∞, 0),
being t1, χ∞ and ρ as in Theorem 4.4.
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We shall provide a complete proof of Theorems 4.4 and 4.5 in Sections 5 and 6,
respectively.

Remark 4.6. Since ϑ = e− χ, from (4.3) we deduce

ϑ(t) → me0−χ0 = mϑ0 in H,

where mϑ0 denotes the temperature mean value. This is to be expected, since the
material occupying the domain Ω is assumed to be thermally isolated.

Remark 4.7. We point out that inequality (4.7) provided by Theorem 4.5 displays
a convergence rate for χ to χ∞ in V which is actually faster than the one obtained
by means of interpolation inequalities.

5. Proof of Theorem 4.4

5.1. Proof of (4.3) and (4.5). Integrating both members of (3.5) on the interval
(0, t), thanks to Theorem 3.2 and bound (3.6), we immediately infer the dissipation
integral ∫ ∞

0

[‖P (e(t)− χ(t))‖2 + ‖ηt‖2M + ‖∂tχ‖2V ∗0 + α‖∂tχ‖2]dt ≤ c. (5.1)

Since ‖P (e(·)−χ(·))‖ and ‖η·‖M are continuous functions with bounded derivatives
(cf. (3.5)), then (5.1) yields (4.3) and (4.5).

5.2. Proof of (4.4). In the course of the proof, the following result (see [12, Lemma
7.1]) will play a fundamental role.

Lemma 5.1. Let Φ ∈ L2(0,∞), with ‖Φ‖L2(0,∞) ≤ b, and suppose that there exist
a ∈ (1, 2), c > 0 and an open set P ⊂ (0,∞) such that( ∫ ∞

t

Φ2(τ)dτ
)a

≤ cΦ2(t) for a.e. t ∈ P.

Then Φ ∈ L1(P) and there exists a constant C = C(a, b, c), independent of P, such
that ∫

P
Φ(τ)dτ ≤ C.

We define the positive functional

Φ(t) =
[
‖P (e(t)− χ(t))‖2 + ‖ηt‖2M + ‖∂tχ(t)‖2V ∗0 + α‖∂tχ(t)‖2

]1/2
, ∀t ∈ [0,∞).

Integrating inequality (3.5) from t to ∞, Lemma 4.3 and inequality (3.6) yield
immediately∫ ∞

t

Φ2(τ)dτ ≤ c[‖P (e(t)− χ(t))‖2 + ‖ηt‖2M +
∣∣E(Pχ(t))− E(Pχ∞)

∣∣], (5.2)

for some χ∞, solution to equation (4.2). Setting now

P = {t ∈ (0,∞) : ‖χ(t)− χ∞‖V < r} ,
we can apply Lemma 2.5 by choosing ϕ = χ∞, to get∣∣E(χ(t))− E(χ∞)

∣∣1−ρ ≤ λ
∥∥B0Pχ(t) + Pφ(Pχ(t))

∥∥
V ∗0
, (5.3)

for all t ∈ P, where ρ ∈ (0, 1/2), r > 0 and λ > 0 are the same as in Lemma 2.5.
By means of the identity

(B0 + αI)−1∂tχ− P (e− χ) = −B0Pχ− Pφ(χ) in W ∗
0 ,
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which holds for all α ≥ 0, inequality (5.3) turns into∣∣E(Pχ(t))− E(Pχ∞)
∣∣1−ρ

≤ λ
∥∥(B0 + αI)−1∂tχ(t)− P (e(t)− χ(t))

∥∥
V ∗0

≤ λ[
∥∥∂tχ(t)‖2W∗

0
+ α‖∂tχ(t)‖2 + ‖P (e(t)− χ(t))

∥∥2],

(5.4)

for all t ∈ P. Using (5.4) and the Poincaré inequality, inequality (5.2) yields∫ ∞

t

Φ2(τ)dτ ≤ c[‖P (e(t)− χ(t))‖2 + ‖ηt‖2M]

+ c[‖∂tχ(t)‖2W∗
0

+ α‖∂tχ(t)‖2 + ‖P (e(t)− χ(t))
∥∥2]1/(2−2ρ)

≤ c[‖P (e(t)− χ(t))‖2 + ‖ηt‖2M]1/(2−2ρ)

+ c[‖∂tχ(t)‖2V ∗0 + α‖∂tχ(t)‖2 + ‖P (e(t)− χ(t))
∥∥2]1/(2−2ρ)

≤ c[Φ2(t)]1/(2−2ρ),

for all t ∈ P, provided that r is small enough. Notice that in the second inequality
we have used (4.3) and (4.5). Since 2 − 2ρ ∈ (1, 2), we can apply Lemma 5.1 to
conclude that ∫

P
‖∂tχ(t)‖V ∗0

dt <∞,

so that, for any t1, t2 ∈ P, with t1 < t2, we have

‖χ(t2)− χ(t1)‖V ∗ ≤
∫ t2

t1

‖∂tχ(t)‖V ∗0
dt < r/4, (5.5)

provided that t1 is large enough and the whole interval (t1, t2) lies in P. Since χ∞
is a solution to equation (4.2), and since the trajectory is precompact in Hβ,γ , then
we can choose t0 > 0 such that

‖χ(t0)− χ∞‖V ∗ < r/4. (5.6)

Now set

T0 = inf
{
t > t0 : ‖χ(t)− χ∞‖V ∗ ≥ r

}
;

clearly we have T0 > t0. If we assume that T0 <∞, we also infer

‖χ(T0)− χ∞‖V ∗ = r.

On the other hand, as a consequence of (5.5) and (5.6),

‖χ(t)− χ∞‖V ∗ ≤ ‖χ(t)− χ(t0)‖V ∗ + ‖χ(t0)− χ∞‖V ∗ < r/2,

for all t ∈ [t0, T0), which, by contradiction, implies T0 = ∞ and, consequently,
[t0,∞) ⊂ P. Therefore, we have

χ(t) → χ∞ in V ∗,

as t→∞. Convergence (4.4) follows by the precompactness of trajectories provided
by Corollary 3.5.



12 G. MOLA EJDE-2008/23

5.3. Proof of inequality (4.6). We set, for all t ∈ [0,∞)

Λ0(t) =
1
2
‖P (e(t)− χ(t))‖2 +

1
2
‖ηt‖2M + E(Pχ(t)) + νL(t)− E(Pχ∞).

By inequality (3.5), we immediately deduce that Λ0 is a positive monotone nonin-
creasing function and

d

dt
Λ0(t) + c(N (e(t), χ(t), ηt))2 ≤ 0, ∀ t ∈ [0,∞),

with
N (e, χ, η) = ‖P (e− χ)‖+ ‖η‖M + ‖∂tχ‖V ∗0

+ α‖∂tχ‖.
On account of the convergence results (4.3), (4.4) and (4.5), there exists t1 > 0
such that

d

dt
Λ0(t) + c[Λ0(t)]1−ρ ≤ 0, ∀ t ≥ t1,

ρ ∈ (0, 1/2) being as in Theorem 2.5. This yields

Λ0(t) ≤ c(1 + t)−
1

2(1−2ρ) , ∀ t ≥ t1. (5.7)

On the other hand, we observe that

[Λ0(t)]1−ρ ≤ cN (e(t), χ(t), ηt), ∀ t ≥ t1,

and
d

dt
[Λ0(t)]ρ = ρ[Λ0(t)]−1+ρ d

dt
Λ0(t) ≤ 0, ∀ t ≥ t1.

Therefore, for any t ≥ t1, we get

N (e(t), χ(t), ηt) ≤ −c d

dt
[Λ0(t)]ρ.

Thus, integrating the above inequality from t to ∞, we obtain∫ ∞

t

N (e(τ), χ(τ), ητ )dτ ≤ c[Λ0(t)]ρ, ∀ t ≥ t1.

Hence, on account of (5.7), we immediately infer∫ ∞

t

‖∂tχ(τ)‖V ∗0
dτ ≤ c(1 + t)−

ρ
2(1−2ρ) , ∀ t ≥ t1.

Finally, using

χ(t)− χ∞ = −
∫ ∞

t

∂tχ(τ)dτ in V ∗0 ,

we deduce (4.6). The proof is thus complete.

6. Proof of Theorem 4.5

We first recall the decomposition already exploited in [25, Section 7]. That is

z(t) = zd(t) + zc(t),

where
zd(t) = (ed(t), χd(t), ηd,t) and zc(t) = (ec(t), χc(t), ηc,t)
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are the solutions at time t ∈ [0,∞) to the following problems, respectively,

∂te
d +

∫ ∞

0

µ(s)ηd(s)ds = 0, (6.1)

∂tχ
d +B0

(
B0χ

d + α∂tχ
d + P (ψ(χ)− ψ(χc))− (ed − χd)

)
= 0, (6.2)

∂tη
d = Tηd +B0(ed − χd), (6.3)

zd(0) = (Pe0, Pχ0, η0), (6.4)

and

∂te
c +

∫ ∞

0

µ(s)ηc(s)ds = 0, (6.5)

∂tχ
c +B0

(
B0Pχ

c + α∂tχ
c + Pψ(χc)− P (ec − χc)

)
= θB0Pχ, (6.6)

∂tη
c = Tηc +B0P (ec − χc), (6.7)

zc(0) = (me0 ,mχ0 , 0), (6.8)

having set
ψ(r) = φ(r) + θr, ∀r ∈ R.

for some θ ≥ ` (cf. (H3)). From [25, Lemmas 7.3 and 7.4], we know that

‖zd(t)‖H ≤ cαe
−κdt and ‖zc(t)‖V ≤ cα, ∀t ∈ [0,∞), (6.9)

for some positive κd and cα, independent of t ∈ [0,∞), uniformly in B0.
We now introduce the function

zc(t) = (ec(t), χc(t), ηc,t) = zc(t)− z∞ ∈ V0,0,

being z∞ as in the statement of Theorem 4.5. Notice that, as z∞ is a stationary
solution, then ∂tz

c = ∂tz
c, and, by (6.9) we also deduce ‖zc(t)‖V ≤ cα for all

t ∈ [0,∞).
Arguing as in [25, Section 4], it is possible to prove the following two inequalities:

d

dt
L(zc) +

k0

4
‖ec − χc‖2 ≤ 2‖ηc‖2M + c‖∂tχ

c‖2V ∗0 − c

∫ ∞

0

µ′(s)‖ηc(s)‖2V ∗0 ds, (6.10)

and
d

dt
[‖ec − χc‖2 + ‖ηc‖2M] + λ‖ηc‖2M

−
∫ ∞

0

µ′(s)‖ηc(s)‖2V ∗0 ds+ 2〈∂tχ
c, ec − χc〉 ≤ 0,

(6.11)

L being the functional defined in Remark 3.3.
We now perform the following products of equation (6.6) by suitable test func-

tions.
• By B−1

0 ∂tχ
c , to get
1
2
d

dt
‖χc‖2V + ‖∂tχ

c‖2V ∗0 + α‖∂tχ
c‖2 − 〈ec − χc, ∂tχ

c〉

= −〈ψ(χc), ∂tχ
c〉+ θ〈χ− χ∞, ∂tχ

c〉+ (θ − 1)〈χ∞, ∂tχ
c〉.

(6.12)

Since

− 〈ψ(χc), ∂tχ
c〉+ θ〈χ− χ∞, ∂tχ

c〉+ (θ − 1)〈χ∞, ∂tχ
c〉

=
d

dt

[
− 〈ψ(χc), χc〉+ (θ − 1)〈χ∞, χc〉

]
+ 〈ψ′(χc)∂tχ

c, χc〉+ θ〈χ− χ∞, ∂tχ
c〉,
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by means of control (6.9) and interpolation inequalities, it is immediate that

〈ψ′(χc)∂tχ
c, χc〉+ θ〈χ− χ∞, ∂tχ

c〉
≤ c(1 + ‖χc‖2W )‖∂tχ

c‖‖χc‖+ c‖χ− χ∞‖‖∂tχ
c‖

≤ α‖∂tχ
c‖2 + cα‖χc‖2 + cα‖χ− χ∞‖2

≤ α‖∂tχ
c‖2 + cα‖χc‖V ∗ + cα‖χ− χ∞‖V ∗ ,

so that, back to inequality above, we infer
d

dt
[‖χc‖2V + 2〈ψ(χc), χc〉 − 2(θ − 1)〈χ∞, χc〉] + 2‖∂tχ

c‖2V ∗0 − 2〈ec − χc, ∂tχ
c〉

≤ cα‖χc‖V ∗ + cα‖χ− χ∞‖V ∗ .

(6.13)
• By B−1

0 χc , to get
1
2
d

dt
[‖χc‖2V ∗ + α‖χc‖2] + ‖χc‖2V

= −〈ψ(χc), χc〉+ 〈ec − χc, χc〉+ θ〈χ, χc〉 − 〈χ∞, χc〉.
Once again, using (6.9), we have

− 〈ψ(χc), χc〉+ 〈ec − χc, χc〉+ θ〈χ, χc〉 − 〈χ∞, χc〉
≤ ‖ψ(χc)‖V ‖χc‖V ∗ + ‖ec − χc‖V ‖χc‖V ∗ + θ‖χ‖V ‖χc‖V ∗ + ‖χ∞‖V ‖χc‖V ∗

≤ c‖χc‖2W ‖χc‖V ∗ + cα‖χc‖V ∗ ≤ cα‖χc‖V ∗ .

Thus, we deduce
d

dt
[‖χc‖2V ∗ + α‖χc‖2] + 2‖χc‖2V ≤ cα‖χc‖V ∗ . (6.14)

Adding (6.11), (6.13), (6.14) and ν times (6.10), we have
d

dt
Θ(t) +

k0

4
‖ec − χc‖2 + 2‖χc‖2V + λ‖ηc‖2M + (2− νc)‖∂tχ

c‖2V ∗0

− (1− νc)
∫ ∞

0

µ′(s)‖ηc(s)‖2V ∗0 ds

≤ cα‖χc‖V ∗ + cα‖χ− χ∞‖V ∗ ,

(6.15)

where, for all t ∈ [0,∞), we have set

Θ(t) = ‖ec(t)− χc(t)‖2 + ‖χc(t)‖2V ∗ + α‖χc(t)‖2 + ‖χc(t)‖2V + ‖ηc,t‖2M
+ 2〈ψ(χc(t)), χc(t)〉 − 2(θ − 1)〈χ∞, χc〉+ νL(zc(t)).

Since, as previously shown,

〈ψ(χc), χc〉 − 2(θ − 1)〈χ∞, χc〉 ≤ cα‖χc‖V ∗ ,

recalling also (3.6), then there exist constants 0 < c1 < c2 such that

c1‖zc(t)‖2H − cα‖χc(t)‖V ∗ ≤ Θ(t) ≤ c2‖zc(t)‖2H + cα‖χc(t)‖V ∗ , ∀t ∈ [0,∞).
(6.16)

Note that, as a consequence of inequalities (4.6) and (6.9), we have

cα‖χc‖V ∗ + cα‖χ− χ∞‖V ∗ ≤ cα‖χd‖V ∗ + cα‖χ− χ∞‖V ∗

≤ cαe
−κdt + cα(1 + t)−

ρ
2(1−2ρ)

≤ cα(1 + t)−
ρ

2(1−2ρ) , ∀ t ≥ t∗,
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for some t∗ ≥ t1, being t1 as in (4.6). Therefore, by (6.15), provided that we choose
ν small enough, we get the inequality

d

dt
Θ(t) + κΘ(t) ≤ cα(1 + t)−

ρ
2(1−2ρ) .

By means of the Gronwall lemma and (6.16), we then derive, for all t ≥ 2t∗

Θ(t) ≤ 2Θ(t∗)e−κ(t−t∗) + cα

∫ t

t∗

(1 + τ)−
ρ

2(1−2ρ) e−κ(t−τ)dτ

= 2Θ(t∗)e−κ(t−t∗) + cα

∫ t/2

t∗

(1 + τ)−
ρ

2(1−2ρ) e−κ(t−τ)dτ

+ cα

∫ t

t/2

(1 + τ)−
ρ

2(1−2ρ) e−κ(t−τ)dτ

≤ 2Θ(t∗)e−κ(t−t∗) + cα(1 + t∗)
− ρ

2(1−2ρ) e−κ/2t + cα(1 + t/2)−
ρ

2(1−2ρ)

≤ cα(1 + t/2)−
ρ

2(1−2ρ) ,

so that, keeping (6.16) into account, from inequality above we deduce

‖zc(t)‖2H ≤ cαe
−κt + cα(1 + t)e−κ/2t + cα(1 + t/2)−

ρ
2(1−2ρ) ≤ cα(1 + t)−

ρ
2(1−2ρ) ,

for all t ≥ t2, for some t2 ≥ t∗. Inequality (4.7) is then achieved by noticing that

z(t)− z∞ = zd(t) + zc(t),

and recalling (6.9).

Note. This paper originated from a part of the author’s PhD thesis “Global and
exponential attractors for a conserved phase-field system with Gurtin-Pipkin heat
conduction law”, Politecnico di Milano, Milano, 2006.
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