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GROWTH RATE AND EXISTENCE OF SOLUTIONS TO
DIRICHLET PROBLEMS FOR PRESCRIBED MEAN

CURVATURE EQUATIONS ON UNBOUNDED DOMAINS

ZHIREN JIN

Abstract. We prove growth rate estimates and existence of solutions to
Dirichlet problems for prescribed mean curvature equation on unbounded do-

mains inside the complement of a cone or a parabola like region in Rn (n ≥ 2).

The existence results are proved using a modified Perron’s method by which a
subsolution is a solution to the minimal surface equation, while the role played

by a supersolution is replaced by estimates on the uniform C0 bounds on the

liftings of subfunctions on compact sets.

1. Introduction and main results

Let Ω be an unbounded domain with C2,γ (0 < γ < 1) boundary in Rn (n ≥ 2),
φ be a C0 function on ∂Ω, and Λ be a C1 function on Ω, we consider the Dirichlet
problem for the prescribed mean curvature equation on Ω (here the summation
convention is used):

((1 + |Du|2)δij −DiuDju)Diju = nΛ(1 + |Du|2)3/2 on Ω; (1.1)

u = φ on ∂Ω. (1.2)

In this paper, we investigate the conditions from which we can derive growth
estimates and existence of solutions u for (1.1)-(1.2).

When Ω is a bounded domain, Serrin proved in [13] that (1.1)-(1.2) has a solution
in C0(Ω) ∩ C2(Ω) as long as one can get C0 estimates and the mean curvature H ′

on the boundary ∂Ω with respect to the inner normal satisfying H ′ ≥ n
n−1 |Λ| on

∂Ω. Furthermore, a counterexample is given [13, page 480] to show that for some
functions Λ, (1.1)-(1.2) do not have a C2 solution (the only thing that did not work
out in the example is the C0 estimate).

When n = 2, Ω is a strip and Λ is a constant H, there have been a lot of interest
in investigating the solutions of (1.1)-(1.2). Finn [4] showed that the solvability of
(1.1) in Ω implies that the width of Ω will be less than 1

|H| . When the width of a
strip Ω is 1/|H|, the half cylinder of radius 1/(2|H|) is a graph with constant mean
curvature H in the strip. Collin [2] and Wang [14] showed independently that there
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are graphs with constant mean curvature H on the strip Ω with width 1/|H| other
than the half cylinder. When Λ = H and Ω is an unbounded convex domain on
a plane, Lopez [10] proved that the necessary and sufficient condition for (1.1) to
have solutions with zero boundary value is that Ω is inside a strip of width 1/|H|.

When Ω is a strip on the plane, the existence of constant mean curvature graphs
with prescribed boundary was considered by Lopez in [11]. The approach used in
[11] is a modified version of the classical Perron’s method of super- sub- solutions.
The subsolution used in [11] is a solution to the minimal surface equation (i.e. a
solution to (1.1)-(1.2) with Λ = 0), while the role played by a supersolution is
replaced by a family of turned to side nodoids (the use of turned to side nodiods
was adopted from an idea used by Finn [5]) that were used to prove that liftings
from subfunctions will be bounded uniformly on any compact subset of Ω.

When Ω is an unbounded domain inside a cone or cylinder, we proved in [9] the
existence of solutions to (1.1)-(1.2) for certain class of functions Λ. The approach
used in [9] is also a modified version of the classical Perron’s method. There are
new difficulties in carrying out the Perron’s method when Λ is not a constant and Ω
is not a slab. The main difficulty is that the family of turned to side nodiods cannot
be used anymore. The difficulty was overcome in [9] by constructing a family of
auxiliary functions that were used to prove that liftings from subfunctions will be
bounded uniformly on any compact subset of Ω. However when Ω is outside a cone
(in the compliment of a cone) or inside a parabola-shaped region, the family of
auxiliary functions used in [9] can no longer be used.In this paper, we construct a
new family of auxiliary functions so that we can use the Perron’s method to prove
the existence of solutions to (1.1)-(1.2). As a by product, we can also derive the
growth estimates for solutions u to (1.1)-(1.2).

For more historical notes and references on prescribed mean curvature equations,
we refer readers to [2], [4], [5], [6], [10], [11], [14].

We will consider only those domains that are inside some special regions. The
first kind of regions is the compliment of a cone in Rn (n ≥ 2) defined by (we use
the notation x∗ = (x1, x2, · · ·, xn−1))

P (n) = {x ∈ Rn : |xn| <
1

240n
|x∗|}.

The second kind of regions is a parabola-shaped region defined by

P (n, α, b) = {x ∈ Rn : |xn| < b|x∗|α}.
for some fixed positive constants α, b, 0 < α < 1.

For a general domain Ω inside P (n), we can estimate the growth rate of a solu-
tion.

Theorem 1.1. Let Ω be a domain inside P (n), |Λ(x)| satisfy

|Λ(x)| ≤ 15(n− 1)
14(n + 1)

1
|x∗|

on Ω, (1.3)

then any C2(Ω) ∩ C0(Ω) solution u to (1.1)-(1.2) satisfies that on Ω,

|u(x)| ≤ 1
240n

|x∗|+ sup{|φ(p, q)| : (p, q) ∈ ∂Ω,
1
2
|x∗| ≤ |p| ≤ 2|x∗|}. (1.4)

When Ω satisfies more geometric conditions, the existence of solutions to (1.1)-
(1.2) can be proved. First we list a set of conditions that will guarantee a solution
to the minimal surface equation with the same boundary data on the same domain:
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(A1) There is a sequence of subdomains Ωj such that Ωj ⊂ Ωj+1 ⊂ Ω for all
j ≥ 1, ∪Ωj = Ω;

(A2) Each Ωj is a C2,γ bounded domain and has positive mean curvature on
∂Ωj with respect to the inner normal on ∂Ωj ;

(A3) dist(0,Ω \ Ωj) →∞ as j →∞.
The next condition on Ω will be used to prove the solution obtained by Perron’s

method takes boundary data φ continuously.
Serrin’s condition: The mean curvature function H ′ on ∂Ω with respect to the inner
normal satisfies

H ′ >
n

n− 1
|Λ(x)| on ∂Ω. (1.5)

Remark 1.2. Conditions (A1)-(A3) and Serrin’s condition (1.5) are the same as
those used in [9].

Here is the first existence result.

Theorem 1.3. Assume (A1)–(A3), Serrin’s condition (1.5) and Ω is inside P (n).
If Λ(x) satisfies (1.3), then (1.1)–(1.2) has a solution u ∈ C2(Ω) ∩ C0(Ω).

When the domains are inside P (n, α, b), we assume Ω is not very close to the
origin:

|x∗| ≥ (120nb(
3
2
)α)

1
1−α for any x ∈ Ω. (1.6)

Remark 1.4. Condition (1.6) is not absolutely necessary, we use it here so that
we can state results more clearly. Without (1.6), the following results are still true
as long as Λ(x) is bounded appropriately where (1.6) does not hold.

The growth estimate now is as follows.

Theorem 1.5. Let Ω be a domain inside P (n, α, b). If Ω satisfies (1.6) and

|Λ(x)| ≤ (n− 1)
56n(n + 1)

(
1
3
)α 1

b|x∗|α
on Ω, (1.7)

then any C2(Ω) ∩ C0(Ω) solution u to (1.1)-(1.2) satisfies that on Ω

|u(x)| ≤ 1
2
(
3
2
)α|x∗|α + sup{|φ(p, q)| : (p, q) ∈ ∂Ω,

1
2
|x∗| ≤ |p| ≤ 2|x∗|}. (1.8)

Here is the existence results for domains in P (n, α, b).

Theorem 1.6. Assume (A1)–(A3), Serrin’s condition (1.5) and Ω is inside P (n, α, b)
satisfying (1.6). Then if |Λ(x)| satisfies (1.7), (1.1)-(1.2) has a solution u ∈
C2(Ω) ∩ C0(Ω).

2. A family of auxiliary functions and growth estimates

In this section, we construct a family of auxiliary functions and derive growth
estimates for solutions of (1.1)-(1.2). The construction is adapted from that in [7]
and [8] to fit our needs here (in turn, the constructions in [7] and [8] were inspired
by [5] and [13]). Set

Qz ≡ ((1 + |Dz|2)δij −DizDjz)
n + (n− 1)|Dz|2

Dijz (2.1)

We first prove the existence of a family auxiliary functions that will suit our needs
later.
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Lemma 2.1. For any numbers M > 0, H ≥ 2, and any point x∗0 ∈ Rn−1, there
are positive decreasing functions χ(t) (depending on n only), ha(t) (with the inverse
h−1

a ) and a positive increasing function A(t) (depending on n, H and M only) such
that for any constant γ, the function

z = z(x) = γ + A(H)eχ(H) − {(h−1
a (xn + M))2 − |x∗ − x∗0|2}1/2 (2.2)

satisfies

Qz ≤ − n− 1
28(n + 1)MH

· (1 + |Dz|2)3/2

n + (n− 1)|Dz|2
in Ωx∗0 ,H,M (2.3)

where
Ωx∗0 ,H,M = {x : |xn| < M, |x∗ − x∗0| < h−1

a (xn + M)}. (2.4)
Furthermore

z(x∗0, xn) ≤ γ +
M

H
for −M ≤ xn ≤ M. (2.5)

Proof. Set E = 1
n−1 , G = 1

2n−1 , c2 = 2+E
G = 4n + 1

n−1 , and Φ1(ρ) = ρ−2 if
0 < ρ < 1, Φ1(ρ) = c2 if ρ ≥ 1. We define a function χ by

χ(α) =
∫ ∞

α

dρ

ρ3Φ1(ρ)
for α > 0.

It is clear that χ(α) is a decreasing function with range (0,∞). Let η be the inverse
of χ. Then η is a positive, decreasing function with range (0,∞).

For α > 1, we have

χ(α) =
∫ ∞

α

dρ

ρ3Φ1(ρ)
=

∫ ∞

α

dρ

c2ρ3
=

1
2c2

α−2 < 1. (2.6)

Thus
η(β) = (2c2β)−1/2 for 0 < β < (2c2)−1. (2.7)

For H ≥ 2, since η(χ(H)) = H and η is decreasing, we have η(β) > H and
η(β) = (2c2β)−1/2 for 0 < β < χ(H). We define a function A(H) = A(H,M) by

A(H) = 2M(
∫ eχ(H)

1

η(ln t)dt)−1. (2.8)

For the rest of this article, we set a = A(H) and define

ha(r) =
∫ aeχ(H)

r

η(ln
t

a
)dt for a ≤ r ≤ aeχ(H). (2.9)

Then
ha(aeχ(H)) = 0, ha(a) = hA(H)(A(H)) = 2M. (2.10)

For a < r ≤ aeχ(H),

h′a(r) = −η(ln
r

a
) < 0, |h′a(r)| > H, h′′a(r) =

1
r
(η(ln

r

a
))3Φ1(η(ln

r

a
)). (2.11)

Thus for a < r ≤ aeχ(H),
h′′a(r)

(h′a(r))2
= −h′a(r)

r
Φ1(−h′a(r)). (2.12)

Let h−1
a be the inverse of ha. Then h−1

a is decreasing and

h−1
a (0) = A(H)eχ(H), h−1

a (2M) = A(H). (2.13)
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Further for −M ≤ xn ≤ M ,

(h−1
a )′(xn + M) =

1
h′a(h−1

a (xn + M))
,

(h−1
a )′′(xn + M) = (

1
h′a(h−1

a (xn + M))
)′

= −h′′a(h−1
a (xn + M))(h−1

a )′(y + M)
(h′a(h−1

a (xn + M)))2

= − h′′a(h−1
a (xn + M))

(h′a(h−1
a (xn + M)))3

=
1

h−1
a (xn + M)

Φ1(−h′a(h−1
a (xn + M))).

Thus for −M < xn < M ,

(h−1
a )′′(y + M)h−1

a (xn + M) = Φ1(−h′a(h−1
a (xn + M))). (2.14)

For H ≥ 2, by (2.6), (2.7), we have

A(H)−1 = (2M)−1

∫ eχ(H)

1

η(ln t) dt

= (2M)−1

∫ χ(H)

0

η(m)em dm

= (2M)−1

∫ χ(H)

0

em

√
2c2m

dm.

From ∫ χ(H)

0

1√
2c2m

dm ≤
∫ χ(H)

0

em

√
2c2m

dm ≤ eχ(H)

√
2c2

∫ χ(H)

0

m−1/2dm,

we have

1
c2H

=
2
√

χ(H)√
2c2

≤
∫ χ(H)

0

em

√
2c2m

dm ≤
2eχ(H)

√
χ(H)√

2c2
=

e
1

2c2H2

c2H
.

Thus
2Mc2H ≥ A(H) ≥ 2Mc2He−χ(H) = 2Mc2He

− 1
2c2H2 . (2.15)

For x0 ∈ Rn−1, H ≥ 2 and M > 0, we define a domain Ωx∗0 ,H,M in x space by
(2.4) and define a function z = zx∗0 ,H,M (x) by (2.2). It is clear that the function z
is well defined on Ωx∗0 ,H,M . Let

S = ((h−1
a (xn + M))2 − |x∗ − x∗0|2)1/2. (2.16)

then for 1 ≤ i ≤ n− 1, we have
∂z

∂xi
=

1
S

(xi − x0i),
∂z

∂xn
= − 1

S
h−1

a (h−1
a )′. (2.17)

Since h−1
a (r) and η are decreasing functions, for H ≥ 2, |y| ≤ M , we have

0 < −(h−1
a )′ =

−1
h′a(h−1

a (xn + M))
=

1
η(ln( 1

ah−1
a (xn + M)))

≤ 1
η(ln eχ(H))

=
1

η(χ(H))
=

1
H

for|xn| ≤ −M.

(2.18)
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Then (2.5) follows from the facts that z(x∗0,−M) = γ + A(H)eχ(H) − h−1
a (0) = γ

and
∂z

∂xn
(x∗0, xn) = − 1

S
h−1

a (h−1
a )′ = −(h−1

a )′ ≤ 1
H

.

Now if |x∗ − x∗0| ≥ 1
2h−1

a (xn + M)) and H ≥ 2,

(
∂z

∂xn
)2 =

1
S2

(h−1
a )2((h−1

a )′)2 ≤ 1
S2

(
1
2
h−1

a )2
4

H2
≤

n−1∑
i=1

(
∂z

∂xi
)2. (2.19)

If |x∗ − x∗0| ≤ 1
2h−1

a (xn + M)) and H ≥ 2, then

S2 = (h−1
a (xn + M)))2 − |x∗ − x∗0|2 ≥

3
4
(h−1

a (xn + M)))2,

and

(
∂z

∂xn
)2 =

1
S2

(h−1
a )2((h−1

a )′)2 ≤ 1
S2

(h−1
a )2

1
H2

≤ 4
3H2

≤ 1. (2.20)

Therefore,

(
∂z

∂xn
)2 ≤

n−1∑
i=1

(
∂z

∂xi
)2 + 1.

We set the notation

aij =
(1 + |p|2)δij − pipj

n + (n− 1)|p|2
, pi =

∂z

∂xi
1 ≤ i, j ≤ n.

Then |pn|2 ≤
∑n−1

i=1 p2
i + 1 and

ann =
1 +

∑n−1
i=1 p2

i

n + (n− 1)|p|2
≥

1 +
∑i=n−1

i=1 p2
i

2n− 1 + 2(n− 1)
∑i=n−1

i=1 p2
i

≥ 1
2n− 1

= G (2.21)

and
n∑

i,j=1

aij
∂z

∂xi

∂z

∂xj
=

|p|2

n + (n− 1)|p|2
≤ 1

n− 1
= E. (2.22)

Thus on Ωx∗0 ,H,M , we have

Qz =
n∑

i,j=1

aijDijz

=
1
S

n−1∑
i=1

aii +
1
S3

n−1∑
i,j=1

aij(xi − x0
i )(xj − x0

j )−
1
S3

n−1∑
i=1

ain(xi − x0
i )h

−1
a (h−1

a )′

− 1
S

ann((h−1
a )2 + h−1

a (h−1
a )′′) +

1
S3

ann(h−1
a )2((h−1

a )′)2

=
1
S

{
1− ann +

n∑
i,j=1

aij
∂z

∂xi

∂z

∂xj
− ann((h−1

a )2 + h−1
a (h−1

a )′′)
}

≤ 1
S

{
1 +

n∑
i,j=1

aij
∂z

∂xi

∂z

∂xj
− annh−1

a (h−1
a )′′

}
≤ 1

S
{1 + E −Gh−1

a (h−1
a )′′} =

−1
S
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(by (2.14)), (2.21), (2.22) and the definition of Φ). Then (2.3) follows from the
following inequality

n− 1
28(n + 1)MH

· (1 + |Dz|2)3/2

n + (n− 1)|Dz|2
≤ 1

S
. (2.23)

To prove (2.23), since χ(H) < 1 for H ≥ 2, we have

(1 + |Dz|2)3/2

n + (n− 1)|Dz|2

≤ 1
n− 1

(1 + |Dz|2)1/2

=
1

n− 1
(1 +

1
S2

(|x∗ − x∗0|2 + (h−1
a )2((h−1

a )′)2))1/2 by (2.17)

=
1

(n− 1)S
(S2 + |x∗ − x∗0|2 + (h−1

a )2((h−1
a )′)2)1/2

=
1

(n− 1)S
((h−1

a )2 + (h−1
a )2((h−1

a )′)2)1/2 by (2.16)

=
1

(n− 1)S
(h−1

a )(1 + ((h−1
a )′)2)1/2

≤ 1
(n− 1)S

(h−1
a )(1 +

1
H2

)1/2 ≤ 1
(n− 1)S

A(H)eχ(H)(1 +
1
4
)1/2 by (2.13), (2.18)

≤ 1
(n− 1)S

(
5
4
)1/22c2e

χ(H)MH ≤ 1
(n− 1)S

c251/2eMH by (2.15)

=
1

(n− 1)S
(4n +

1
n− 1

)51/2eMH ≤ 28(n + 1)
n− 1

MH
1
S

by the definition of c2.

�

Lemma 2.2. Let φ be a continuous function defined on ∂Ω. For any x∗0 ∈ Rn−1,
we set

γ = γ(x∗0) = sup{|φ(x)| : x ∈ ∂Ω,
1
2
|x∗0| ≤ |x∗| ≤ 3

2
|x∗0|}. (2.24)

For any x∗0 ∈ Rn−1 such that (x∗0, xn) ∈ Ω for some xn, in the function z = zx∗0
defined in (2.2), we set

γ = γ(x∗0), H = 2, M =
1

120n
|x∗0|. (2.25)

Then z = zx∗0
satisfies

Qz ≤ −nΛ0(x)
(1 + |Dz|2)3/2

n + (n− 1)|Dz|2
in Ωx0,H,M ∩ P (n) (2.26)

where

Λ0(x) =
15(n− 1)

14(n + 1)|x∗|
. (2.27)

Furthermore

(i) z(x∗0, xn) ≤ 1
240n |x

∗
0|+ γ(x∗0) for |xn| < M ;

(ii) ∂Ωx∗0 ,M,H ∩ P (n) ⊂ {x : |xn| < M};
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(iii) For the unit outer normal n on ∂Ωx∗0 ,M,H ∩ P (n),

∂z

∂n
= +∞ on ∂Ωx∗0 ,M,H ∩ P (n).

Proof. From the choices of H and M and the definition of Ωx∗0 ,H,M , we have that
for any x ∈ Ωx∗0 ,H,M , by (2.15),

|x∗ − x∗0| ≤ h−1
a (xn + M) ≤ A(H)eχ(H) ≤ 2c2eHM ≤ 60nM =

1
2
|x∗0|.

Thus for any x ∈ Ωx∗0 ,H,M , 1
2 |x

∗
0| ≤ |x∗| ≤ 3

2 |x
∗
0|. Again from the choices of M and

H, we have
n− 1

28(n + 1)MH
=

n− 1
56(n + 1)M

=
15n(n− 1)
7(n + 1)|x∗0|

.

Then if we set

Λ0(x) =
15(n− 1)

14(n + 1)|x∗|
,

we have that on Ωx∗0 ,H,M

nΛ0(x) =
15n(n− 1)

14(n + 1)|x∗|
≤ 15n(n− 1)

7(n + 1)|x∗0|
=

n− 1
28(n + 1)MH

.

Now (2.26) follows from Lemma 2.1.
(i) is clear from (2.5) and the definitions of M and H.
(ii) follows from |x∗| ≤ 3

2 |x
∗
0| and |xn| ≤ 1

240n |x
∗| for all x ∈ Ωx∗0 ,M,H ∩ P (n):

|xn| ≤
1

240n
|x∗| ≤ 3

480n
|x∗0| <

1
120n

|x∗0| = M for x ∈ Ωx∗0 ,M,H ∩ P (n).

(iii) is obvious since |x∗ − x∗0| = h−1
a (xn + M) on ∂Ωx∗0 ,M,H ∩ P (n).

�

Lemma 2.3. Let φ be a continuous function defined on ∂Ω. For any x∗0 ∈ Rn−1

such that |x∗0| ≥ (120bn( 3
2 )α)

1
1−α and (x∗0, xn) ∈ Ω for some xn, in the function

z = zx∗0
defined in (2.2), we set (γ(x∗0) is defined in (2.24))

γ = γ(x∗0), H = 2, M = (
3
2
)αb|x∗0|α. (2.28)

Then z = zx∗0
satisfies

Qz ≤ −nΛ1(x)
(1 + |Dz|2)3/2

n + (n− 1)|Dz|2
in Ωx0,H,M ∩ P (n, α, b) (2.29)

where

Λ1(x) =
(n− 1)

56n(n + 1)b
(
2
3
)α 1
|x∗0|α

. (2.30)

Furthermore
(i) z(x∗0, xn) ≤ 1

2 ( 3
2 )αb|x∗0|α + γ(x∗0) for |xn| < M ;

(ii) ∂Ωx∗0 ,M,H ∩ P (n, α, b) ⊂ {x : |xn| < M};
(iii) For the unit outer normal n on ∂Ωx∗0 ,M,H ∩ P (n, α, b),

∂z

∂n
= +∞ on ∂Ωx∗0 ,M,H ∩ P (n, α, b).
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Proof. From the choices of H and M and the definition of Ωx∗0 ,H,M , we have that
for any x ∈ Ωx∗0 ,H,M , by (2.15),

|x∗ − x∗0| ≤ h−1
a (xn + M) ≤ A(H)eχ(H) ≤ 2c2eHM ≤ 60nM < 60nb(

3
2
)α|x∗0|α.

Thus when |x∗0| ≥ (120nb( 3
2 )α)

1
1−α , for any x ∈ Ωx∗0 ,H,M , 1

2 |x
∗
0| ≤ |x∗| ≤ 3

2 |x
∗
0|.

Again from the choices of M and H, we have

n− 1
28(n + 1)MH

=
n− 1

56(n + 1)M
=

(n− 1)
56(n + 1)

(
2
3
)α 1

b|x∗0|α
.

Then if we set

Λ1(x) =
(n− 1)

56n(n + 1)
(
1
3
)α 1

b|x∗|α
,

we have that on Ωx∗0 ,H,M

nΛ1(x) ≤ n− 1
28(n + 1)MH

.

Now (2.29) follows from Lemma 2.1. (i) and (iii) are proved in the same way as
in that of Lemma 2.2. (ii) follows from |x∗| < 3

2 |x
∗
0| and |xn| ≤ b|x∗|α for all

x ∈ Ωx∗0 ,M,H ∩ P (n, α, b):

|xn| ≤ b|x∗|α ≤ (
3
2
)αb|x∗0|α = Mforx ∈ Ωx∗0 ,M,H ∩ P (n, α, b).

�

Now we are ready to prove growth estimates for solutions.

Lemma 2.4. Let Ω be a domain inside P (n) and Λ(x) satisfy (1.3), then any
C2(Ω) ∩ C0(Ω) solution v to (1.1)-(1.2) satisfies

|v| ≤ zx∗0
on Ωx∗0 ,M,H ∩ Ω (2.31)

where zx∗0
is defined in Lemma 2.2.

Proof. Since Λ0 defined in (1.3) is positive, (2.26) implies that zx∗0
is also a super-

solution to (1.1) on Ωx∗0 ,M,H ∩ Ω. Furthermore, the definition of zx∗0
implies that

zx∗0
≥ |φ| on Ωx∗0 ,M,H ∩ ∂Ω. Now v − zx∗0

cannot achieve its maximum value in
Ωx∗0 ,M,H ∩ Ω on ∂Ωx∗0 ,M,H ∩Ω since the directional derivative of zx∗0

with respect to
outer normal is +∞ on ∂Ωx∗0 ,M,H∩Ω by (iii) in Lemma 2.2. A comparison argument
also concludes that v − zx∗0

cannot achieve a local maximum inside Ωx∗0 ,M,H ∩ Ω.
Thus v − zx∗0

achieves its maximum value in Ωx∗0 ,M,H ∩ Ω on Ωx∗0 ,M,H ∩ ∂Ω. Then
zx∗0

≥ |φ| on Ωx∗0 ,M,H ∩ ∂Ω. implies v − zx∗0
≤ 0 on Ωx∗0 ,M,H ∩ Ω. Now we apply

the same argument with zx∗0
and −v (−v satisfies (1.1) with Λ replaced by −Λ and

boundary data −φ), we can conclude that −v ≤ zx∗0
. �

Lemma 2.5. Let Ω be a domain inside P (n, α, b) satisfying (1.6) and Λ(x) satisfy
(1.7), then any C2(Ω) ∩ C0(Ω) solution v to (1.1)-(1.2) satisfies

|v| ≤ zx∗0
on Ωx∗0 ,M,H ∩ Ω (2.32)

where zx∗0
is defined in Lemma 2.3.

The proof of the above lemma is completely parallel to that of Lemma 2.4 with
Lemma 2.2 replaced by 2.3.
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Proof of Theorem 1.1. From Lemma 2.4, for any (x∗0, xn) ∈ Ω,

|v(x)| ≤ zx∗0
(x) on Ωx∗0 ,M,H ∩ Ω.

In particular,
|v(x∗0, xn)| ≤ zx∗0

(x∗0, xn) on Ωx∗0 ,M,H ∩ Ω.

Then Theorem 1.1 follows from (i) in Lemma 2.2, the definition of γ(x∗0) and the
fact that (x∗0, xn) can be an arbitrary point in Ω. �

Proof of Theorem 1.5. The proof is completely parallel to that of Theorem 1.1 with
Lemma 2.4 replaced by Lemma 2.5. �

3. Proofs of Theorems 1.3 and 1.6

We will give only the proof for Theorem 1.3. The proof of Theorem 1.6 is
completely parallel to that of Theorem 1.3 with Lemma 2.2 replaced by Lemma 2.3
and Lemma 2.4 replaced by Lemma 2.5.

Once we have proved the lemmas in the previous section, the proof of Theorem
1.3 is very similar to the [9, Theorems 1.2 and 1.3] that in turn is similar that of
[11, Theorem 1]. For reader’s convenience, we still carry out the details here.

We define Π, a family of open subsets of Ω, as follows: If x1 ∈ Ω, we choose a
small ball O centered x1 such that O ⊂ Ω and the mean curvature function H ′ on
∂O with respect to inner normal satisfies

H ′ ≥ n− 1
n

|Λ(x)|. (3.1)

If x1 ∈ ∂Ω, we choose a domain O such that O ⊂ Ω, O has C2,µ boundary and
∂O∩∂Ω is a neighborhood of x1 in ∂Ω. Furthermore, the mean curvature function
H ′ on ∂O with respect to inner normal satisfies (3.1). The existence of such domains
can be proved under the assumption that Ω satisfies Serrin’s condition (1.5), for
details of a proof, one may see [9, Lemma A.3].

Let v > 0 be a continuous function on Ω, for each open set O ∈ Π, we define a
new function MO(v), called the lifting of v over O as follows:

MO(v)(x) = v(x) if x ∈ Ω \O, MO(v)(x, y) = w(x) if x ∈ O

where w(x) is the solution of the boundary-value problem

((1 + |Dw|2)δij −DiwDjw)Dijw = nΛ(x)(1 + |Dw|2)3/2 in O, (3.2)

w = v on ∂O . (3.3)

Remark 3.1. By (3.1), Lemma 2.4 and [13] or [6, Theorem 16.9], there is a unique
solution w ∈ C2(O) ∩ C0(Ω) to (3.2)-(3.3). Thus MO(v) is well defined.

We define a class Ξ of functions v, called subfunctions, such that:
(1) v ∈ C0(Ω) and v ≤ φ on ∂Ω;
(2) For any O ∈ Π, v ≤ MO(v);
(3) v ≤ zx∗0

on Ω∩Ωx∗0 ,M,H for any x∗0 ∈ Rn−1 such that (x∗0, xn) ∈ Ω for some
xn, where zx∗0

are those functions defined in Lemma 2.2.
Now we prove some properties for subfunctions in the class Ξ.

Lemma 3.2. If v1 ≤ v2, then MO(v1) ≤ MO(v2) for any O ∈ Π.
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Proof. Let w1, w2 be the solutions of the following two problems, respectively:

((1 + |Dwk|2)δij −DiwkDjwk)Dijwk = nΛ(x)(1 + |Dwk|2)3/2inO,

wk = vk on ∂O, k = 1, 2.

Since w1 = v1 ≤ v2 = w2 on ∂O, by a comparison principle for quasilinear elliptic
equations (e.g. see [6, Theorem 10.1]), we have w1 ≤ w2 on O. On Ω\O, MO(v1) =
v1, MO(v2) = v2. Thus MO(v1) ≤ MO(v2). �

Lemma 3.3. If v1 ∈ Ξ, v2 ∈ Ξ, then max{v1, v2} ∈ Ξ.

Proof. If v1 ∈ Ξ, v2 ∈ Ξ, then max{v1, v2} ∈ C0(Ω), and max{v1, v2} ≤ φ on ∂Ω.
It is also clear that max{v1, v2} ≤ zx∗0

on Ωx∗0 ,M,H ∩ Ω.
Since v1 ≤ max{v1, v2}, v2 ≤ max{v1, v2}, we have (by Lemma 3.2) that for any

O ∈ Π,

MO(v1) ≤ MO(max{v1, v2}), MO(v2) ≤ MO(max{v1, v2}).

Since v1 ∈ Ξ and v2 ∈ Ξ imply v1 ≤ MO(v1), v2 ≤ MO(v2), we have max{v1, v2} ≤
MO(max{v1, v2}). Thus max{v1, v2} ∈ Ξ. �

Lemma 3.4. If v ∈ Ξ, then MO(v) ∈ Ξ for any O ∈ Π.

Proof. By the definition of MO(v), it is clear that MO(v) ∈ C0(Ω) and MO(v) ≤ φ
on ∂Ω. First we show that for any O1 ∈ Π,

MO(v)(x) ≤ MO1(MO(v))(x). (3.4)

We need to prove only that (3.4) is true for x ∈ O1. Since v ≤ MO(v) on Ω, we
have (by Lemma 3.2) MO1(v) ≤ MO1(MO(v)). Combining this with v ≤ MO1(v),
we have v ≤ MO1(MO(v)). Thus for x ∈ O1 \O,

MO(v)(x) = v(x) ≤ MO1(MO(v))(x). (3.5)

That is, (3.4) is true on O1 \O, Now for Ω1 = O1 ∩O, if we set

MO(v) = w1, MO1(MO(v)) = w2,

we have that on Ω1, k = 1, 2,

((1 + |Dwk|2)δij −DiwkDjwk)Dijwk = nΛ(x)(1 + |Dwk|2)3/2.

On ∂Ω1, w1 ≤ w2 on O1 ∩ ∂O by (3.5) and w1 ≤ w2 on ∂O1 ∩O since (3.4) is true
on Ω\O1. Then a comparison argument implies w1 ≤ w2 on Ω1. Thus (3.4) is true
on O1 ∩O and on O1. �

Now we prove that MO(v) ≤ zx∗0
on Ωx∗0 ,M,H ∩ Ω. Since v ∈ Ξ, v ≤ zx∗0

on
Ωx∗0 ,M,H ∩Ω. Thus by the definition of MO(v), we only need to show MO(v) ≤ zx∗0
on Ωx∗0 ,M,H ∩ O. If O does not intersect with Ωx∗0 ,M,H , the conclusion is trivial.
In the case that O is at least partly covered by Ωx∗0 ,M,H . MO(v) − zx∗0

cannot
achieve its maximum value in Ωx∗0 ,M,H ∩O on ∂Ωx∗0 ,M,H ∩ O since the directional
derivative of zx∗0

with respect to outer normal is +∞ on ∂Ωx∗0 ,M,H ∩ O by (iii) in
Lemma 2.2. Furthermore since zx∗0

satisfies (2.26) and |Λ(x)| ≤ Λ0(x) by (1.3) and
(2.27), a comparison argument concludes that MO(v)− zx∗0

cannot achieve a local
maximum inside Ωx∗0 ,M,H ∩ O. Thus MO(v) − zx∗0

achieves its maximum value in
Ωx∗0 ,M,H ∩O on Ωx∗0 ,M,H ∩ ∂O. Then MO(v) − zx∗0

≤ 0 on Ωx∗0 ,M,H ∩ O follows
from MO(v)− zx∗0

= v − zx∗0
≤ 0 on Ωx∗0 ,M,H ∩ ∂O.
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Now we will show that Ξ is not empty by proving the existence of a solution
to the minimal surface equation with the same boundary-value and on the same
domain.

Lemma 3.5. If v ∈ C2(Ω) ∩ C0(Ω) is a solution of the problem

((1 + |Dv|2)δij −DivDjv)Dijv = 0inΩ, v = φon∂Ω. (3.6)

Then for any (x∗0, xn) ∈ Ω,

|v| ≤ zx∗0
on Ωx∗0 ,M,H ∩ Ω (3.7)

The proof of the above lemma is just a special case of Lemma 2.4 with Λ(x) = 0.

Lemma 3.6. Assume (A1)–(A3). Then the boundary-value problem

((1 + |Dv|2)δij −DivDjv)Dijv = 0 in Ω, v = φ on ∂Ω. (3.8)

has a solution u ∈ C2(Ω) ∩ C0(Ω).

Proof. This is [9, Lemma 4.5 ] (Though a slight difference should be noted there.
That is, the bound for solutions of the minimal surface equation is given by (3.7)
which will play the same role as the Lemma 4.4 in [9] (By the way, the Lemma 3.1
quoted in the proof of Lemma 4.5 in [9] should be Lemma 4.4 in [9]). �

Now we prove the Theorem 1.3. We set

u(x) = sup{v(x) : v ∈ Ξ},x ∈ Ω.

We first consider the case that Λ(x) ≤ 0 on Ω. For such a choice of Λ(x), we
will show that u is in C0(Ω) ∩ C2(Ω) satisfying (1.1)-(1.2). It is well known and
standard (for example, see [3]) that by Perron’s method, we can prove that u is in
C2(Ω) and satisfies (1.1). Indeed, let x1 ∈ Ω. By the definition of u(x1), there is a
sequence of functions vi in Ξ such that

u(x1) = lim
i→∞

vi(x1).

Let v0 be a solution of (3.8). Since Λ(x) ≤ 0 on Ω, by Lemma 3.5, it is easy to
check that v0 ∈ Ξ. By Lemma 3.3 and replacing vi by max{vi, v0}, we may assume
that vi ≥ v0 on Ω. Let O be an open set in Π such that x1 ∈ O. We replace vi by
MO(vi). Then we have a sequence of functions zi defined on O satisfying

u(x1) = lim
i→∞

zi(x1),

((1 + |Dzi|2)δpq −DpziDqzi)Dpqzi = nΛ(x)(1 + |Dzi|2)3/2 on O,

zi = vi on ∂O.

Since for all i, if O ∩ Ωx∗0 ,M,H is not empty,

v0 ≤ vi ≤ zi ≤ zx∗0
on O ∩ Ωx∗0 ,M,H ,

and we can cover O by finitely many such domains Ωx∗0 ,M,H , thus there is a number
K3 independent of i, such that for all i,

v0 ≤ zi ≤ K3 in O.

By [6, Corollarys 16.6, 16.7], there is a subsequence of zi, for convenience still
denoted by zi, converges to a C2(O) function z(x) in C2(O). Thus z(x) satisfies

((1 + |Dz|2)δpq −DpzDqz)Dpqz = nΛ(x)(1 + |Dz|2)3/2 on O.
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Note that u(x1) = z(x1) and u(x) ≥ z(x) on O. We claim that u = z on O. Indeed,
if there is another point x2 ∈ O such that u(x2) is not equal to z(x2), we must
have u(x2) > z(x2). Then there is a function u0 ∈ Ξ, such that

z(x2) < u0(x2) ≤ u(x2).

Now the sequence max{u0,MO(vi)} satisfying

vi ≤ max{u0,MO(vi)} ≤ u.

Then similar to the way we obtain z, MO(max{u0,MO(vi)}) will produce a C2

function z1 satisfying

((1 + |Dz1|2)δpq −Dpz1Dqz1)Dpqz1 = nΛ(x)(1 + |Dz1|2)3/2 on O,

z ≤ z1 on O, z(x2) < u0(x2) ≤ z1(x2),

z(x1) = z1(x1) = u(x1).

That is, z1(x) − z(x) is non-negative, not identically zero on O and achieves its
minimum value zero inside O. However, from the equations satisfied by z and z1,
we have that on O,

((1 + |Dz1|2)δpq −Dpz1Dqz1)Dpq(z1 − z)

= E(x, z1, z, Dz,Dz1, D
2z,D2z1)(Dz1 −Dz) on O

for some continuous function E. Then by the standard maximum principle (for
example, see [6, Theorem 3.5]), we get a contradiction. Thus u = z on O. Therefore
u ∈ C2(Ω) and

((1 + |Du|2)δij −DiuDju)Diju = nΛ(x)(1 + |Du|2)3/2 on Ω.

Since v0 = φ on ∂Ω, from the definition of u we see that u = φ on ∂Ω. We still
need to prove that u ∈ C0(Ω).

Since Ω satisfies Serrin’s condition (1.5), we can find a C2,γ domain Ω1 ⊂ Ω,
Ω1 ∈ Π, (for the existence of Ω1, see Lemma A.3 in Appendix in [9]), such that
∂Ω1 ∩ ∂Ω is an open neighborhood of x1 in ∂Ω and on ∂Ω1, the mean curvature
H ′ with respect to inner normal of ∂Ω1 satisfies

H ′ >
n

n− 1
|Λ(x)| on ∂Ω1. (3.9)

Since Ω1 can be covered by finitely many Ωx∗0 ,M,H , there is a number K4 > 0, such
that for all v ∈ Ξ,

v ≤ K4 on Ω1. (3.10)
Now on ∂Ω1, we choose a smooth function φ∗ as follows. φ∗ = K4 on ∂Ω1 ∩ Ω.
φ∗ = φ in a neighborhood of x1 in ∂Ω1 and φ∗ ≥ φ on the rest of ∂Ω1 (since (3.10)
implies φ ≤ K4 on ∂Ω1∩∂Ω, this is possible). Now we consider the boundary-value
problem

((1 + |Du|2)δij −DiuDju)Diju = nΛ(x)(1 + |Du|2)3/2 on Ω1, (3.11)

u = φ∗ on ∂Ω1. (3.12)
From (3.9), Lemma 2.4 and [13] or [6, Theorem 16.9], (3.11)-(3.12) has a solution
u1 ∈ C2(Ω1) ∩ C0(Ω1). From the definition of u1, (3.10) and the fact that v = φ
on ∂Ω for any v ∈ Ξ, a comparison argument shows that for any v ∈ Ξ,

MΩ1(v) ≤ u1 on Ω1 for any v ∈ Ξ.
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Therefore,
u ≤ u1 on Ω1. (3.13)

Since we always have
u ≥ v0 on Ω

for the solution v0 of (3.8), we have

v0 ≤ u ≤ u1 on Ω1. (3.14)

Then the continuity of u at x1 follows from the fact that v0 = u1 = φ on a
neighborhood of x1 in ∂Ω and both v0 and u1 are continuous in a neighborhood
of x1 in Ω. Since x1 ∈ ∂Ω can be arbitrary, we have u ∈ C0(Ω). Thus under the
additional assumption that Λ(x) ≤ 0 on Ω, we have proved Theorem 1.3.

In the case that Λ(x) ≥ 0 on Ω, repeating above proof, we can find a function
u ∈ C2(Ω) ∩ C0(Ω) satisfying

((1 + |Du|2)δij −DiuDju)Diju = −nΛ(x)(1 + |Du|2)3/2 on Ω,

u = −φ on ∂Ω.

Then −u will satisfy (1.1)-(1.2).
In the general case of Λ(x), we first find a function u0 ∈ C1(Ω)∩C0(Ω) satisfying

((1 + |Du|2)δij −DiuDju)Diju = n|Λ(x)|(1 + |Du|2)3/2 on Ω,

u = φ on ∂Ω.

In the proof for the case that Λ ≤ 0, we replace v0 (the solution of (3.8)) by
u0, without changing the rest of the proof, now we will obtain a function u ∈
C1(Ω) ∩ C0(Ω) satisfies (1.1)-(1.2). This completes the proof for Theorems 1.3.
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