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EXISTENCE RESULTS FOR IMPULSIVE EVOLUTION
DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT

DELAY

EDUARDO HERNÁNDEZ, RATHINASAMY SAKTHIVEL, SUELI TANAKA AKI

Abstract. We study the existence of mild solution for impulsive evolution
abstract differential equations with state-dependent delay. A concrete appli-

cation to partial delayed differential equations is considered.

1. Introduction

In this work we discuss the existence of mild solutions for impulsive functional
differential equations, with state-dependent delay, of the form

x′(t) = A(t)x(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (1.1)

x0 = ϕ ∈ B, (1.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (1.3)

where A(t) : D ⊂ X → X, t ∈ I, is a family of closed linear operators defined
on a common domain D which is dense in a Banach space (X, ‖ · ‖); the function
xs : (−∞, 0] → X, xs(θ) = x(s + θ), belongs to some abstract phase space B
described axiomatically; f : I × B → X, ρ : I × B → (−∞, a], Ii : B → X,
i = 1, 2, . . . , n, are appropriate functions; 0 < t1 < . . . . tn < a are prefixed points
and the symbol ∆ξ(t) represents the jump of the function ξ at t, which is defined
by ∆ξ(t) = ξ(t+)− ξ(t−).

Various evolutionary processes from fields as diverse as physics, population dy-
namics, aeronautics, economics and engineering are characterized by the fact that
they undergo abrupt changes of state at certain moments of time between intervals
of continuous evolution. Because the duration of these changes are often negligible
compared to the total duration of the process, such changes can be reasonably well-
approximated as being instantaneous changes of state, or in the form of impulses.
These process tend to more suitably modeled by impulsive differential equations,
which allow for discontinuities in the evolution of the state. For more details on this
theory and on its applications we refer to the monographs of Lakshmikantham et
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2 E. HERNÁNDEZ, R. SAKTHIVEL, S. TANAKA, EJDE-2008/28

al. [17], and Samoilenko and Perestyuk [25] for the case of ordinary impulsive sys-
tem and [18, 23, 24, 15, 16] for partial differential and partial functional differential
equations with impulses.

On the other hand, functional differential equations with state-dependent delay
appear frequently in applications as model of equations and for this reason the
study of this type of equations has received great attention in the last years. There
exists a extensive literature for ordinary state-dependent delay equations, see among
another works, [2, 1, 3, 4, 6, 7, 8]. The study of partial differential equations with
state dependent delay have been initiated recently, and concerning this matter we
cite the pioneer works Rezounenko et al. [21], Hernández el al. [11] and the papers
[10, 12, 13, 14, 22].

To the best of our knowledge, the study of the existence of solutions for systems
described in the abstract form (1.1)–(1.2) is a untreated problem, and this fact, is
the main motivation of this paper.

Throughout this paper, (X, ‖ · ‖) is a Banach space, {A(t) : t ∈ R} is a family of
closed linear operators defined on a common domain D which is dense in X, and
we assume that the linear non-autonomous system

u′(t) = A(t)u(t), s ≤ t ≤ a,

u(s) = x ∈ X,
(1.4)

has an associated evolution family of operators {U(t, s) : a ≥ t ≥ s ≥ 0}. In
the next definition, L(X) is the space of bounded linear operator from X into X
endowed with the uniform convergence topology.

Definition 1.1. A family of linear operators {U(t, s) : a ≥ t ≥ s ≥ 0} ⊂ L(X) is
called an evolution family of operators for (1.4) if the following conditions hold:

(a) U(t, s)U(s, r) = U(t, r) and U(r, r)x = x for every r ≤ s ≤ t and all x ∈ X;
(b) For each x ∈ X the function (t, s) → U(t, s)x is continuous and U(t, s) ∈

L(X) for every t ≥ s; and
(c) For s ≤ t ≤ a, the function (s, t] → L(X), t→ U(t, s) is differentiable with

∂
∂tU(t, s) = A(t)U(t, s).

In the sequel, M̃ is a positive constant such that ‖U(t, s)‖ ≤ M̃ for every t ≥ s,
and we always assume that U(t, s) is a compact operator for every t > s. We refer
the reader to [20] for additional details on evolution operator families.

To consider the impulsive condition (1.3), it is convenient to introduce some
additional concepts and notations. We say that a function u : [σ, τ ] → X is a
normalized piecewise continuous function on [σ, τ ] if u is piecewise continuous and
left continuous on (σ, τ ]. We denote by PC([σ, τ ];X) the space formed by the
normalized piecewise continuous functions from [σ, τ ] into X. In particular, we
introduce the space PC formed by all functions u : [0, a] → X such that u is
continuous at t 6= ti, u(t−i ) = u(ti) and u(t+i ) exists, for all i = 1, . . . , n. In this
paper we always assume that PC is endowed with the norm ‖u‖PC = sups∈I ‖u(s)‖.
It is clear that (PC, ‖ · ‖PC) is a Banach space.

To simplify the notations, we put t0 = 0, tn+1 = a and for u ∈ PC we denote by
ũi ∈ C([ti, ti+1];X), i = 0, 1, . . . , n, the function given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],
u(t+i ), for t = ti.

(1.5)
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Moreover, for B ⊆ PC we denote by B̃i, i = 0, 1, . . . , n, the set B̃i = {ũi : u ∈ B}.

Lemma 1.2. A set B ⊆ PC is relatively compact in PC if, and only if, the set B̃i
is relatively compact in C([ti, ti+1];X), for every i = 0, 1, . . . , n.

In this work we will employ an axiomatic definition for the phase space B which
is similar to those introduced in [9]. Specifically, B will be a linear space of functions
mapping (−∞, 0] into X endowed with a seminorm ‖·‖B, and satisfies the following
conditions:

(A) If x : (−∞, σ + b] → X, b > 0, is such that x|[σ,σ+b] ∈ PC([σ, σ + b] : X)
and xσ ∈ B, then for every t ∈ [σ, σ + b] the following conditions hold:
(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is
locally bounded, and H,K,M are independent of x(·).

(B) The space B is complete.

Example 1.3. Phase spaces PCh(X), PC0
g (X). As usual, we say that ψ :

(−∞, 0] → X is normalized piecewise continuous, if ψ is left continuous and the
restriction of ψ to any interval [−r, 0] is piecewise continuous.

Let g : (−∞, 0] → [1,∞) be a continuous, nondecreasing function with g(0) = 1,
which satisfies the conditions (g-1), (g-2) of [9]. This means that limθ→−∞ g(θ) = ∞
and that the function Λ(t) := sup−∞<θ≤−t

g(t+θ)
g(θ) is locally bounded for t ≥ 0. Next,

we modify slightly the definition of the spaces Cg, C0
g in [9]. We denote by PCg(X)

the space formed by the normalized piecewise continuous functions ψ such that
ψ
g is bounded on (−∞, 0] and by PC0

g (X) the subspace of PCg(X) formed by the

functions ψ such that ψ(θ)
g(θ) → 0 as θ → −∞. It is easy to see that PCg(X) and

PC0
g (X) endowed with the norm ‖ψ‖B := supθ≤0

‖ψ(θ)‖
g(θ) , are phase spaces in the

sense considered in this work. Moreover, in these cases K ≡ 1.

Example 1.4. Phase space PCr × L2(g ,X). Let 1 ≤ p < ∞, 0 ≤ r < ∞
and g(·) be a Borel nonnegative measurable function on (−∞, r) which satisfies
the conditions (g-5)-(g-6) in the terminology of [9]. Briefly, this means that g(·)
is locally integrable on (−∞,−r) and that there exists a nonnegative and locally
bounded function Λ on (−∞, 0] such that g(ξ + θ) ≤ Λ(ξ)g(θ) for all ξ ≤ 0 and
θ ∈ (−∞,−r) \Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure 0.

Let B := PCr × Lp(g;X), r ≥ 0, p > 1, be the space formed of all classes of
functions ψ : (−∞, 0] → X such that ψ|[−r,0] ∈ PC([−r, 0], X), ψ(·) is Lebesgue-
measurable on (−∞,−r] and g|ψ|p is Lebesgue integrable on (−∞,−r]. The semi-
norm in ‖ · ‖B is defined by

‖ψ‖B := sup
θ∈[−r,0]

‖ψ(θ)‖+
( ∫ −r

−∞
g(θ)‖ψ(θ)‖pdθ

)1/p

.

Proceeding as in the proof of [9, Theorem 1.3.8] it follows that B is a phase
space which satisfies the axioms A and B. Moreover, for r = 0 and p = 2 this
space coincides with C0 × L2(g, X), H = 1; M(t) = Λ(−t)1/2 and K(t) = 1 +( ∫ 0

−t g(τ)dτ
)1/2 for t ≥ 0.
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Remark 1.5. In retarded functional differential equations without impulses, the
axioms of the abstract phase space B include the continuity of the function t→ xt,
see for instance [9]. Due to the impulsive effect, this property is not satisfied in
impulsive delay systems and, for this reason, has been eliminated in our abstract
description of B.

The terminology and notations are those generally used in functional analysis.
In particular, for Banach a space (Z, ‖ · ‖Z), the notation Br(x, Z) stands for the
closed ball with center at x and radius r > 0 in Z.

To prove some of our results, we use a fixed point Theorem which is referred in
the Literature as Leray Schauder Alternative Theorem, see [5, Theorem 6.5.4].

Theorem 1.6. Let D be a convex subset of a Banach space X and assume that
0 ∈ D. Let G : D → D be a completely continuous map. Then the map G has a
fixed point in D or the set {x ∈ D : x = λG(x), 0 < λ < 1} is unbounded.

In the next section we study the existence of mild solutions for the abstract
system (1.1)–(1.2). In the last section an application is discussed.

2. Existence Results

To prove our results on the existence of mild solutions for the abstract Cauchy
problem (1.1)–(1.2), we always assume that ρ : I × B → (−∞, a] is continuous. In
addition, we introduce the following conditions.

(H0) Let BPC(ϕ) = {u : (−∞, a] → X;u0 = ϕ, u|I ∈ PC}. The function t→ ϕt
is continuous from R(ρ−) = {ρ(s, xs) : ρ(s, xs) ≤ 0, x ∈ BPC(ϕ), s ∈ [0, a]}
into B and there exists a continuous and bounded function Jϕ : R(ρ−) →
(0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ R(ρ−).

(H1) The function f : I × B → X satisfies the following properties.
(a) The function f(·, ψ) : I → X is strongly measurable for every ψ ∈ B.
(b) The function f(t, ·) : B → X is continuous for each t ∈ I.
(c) There exist an integrable function m : I → [0,∞) and a continuous

nondecreasing function W : [0,∞) → (0,∞) such that ‖f(t, ψ)‖ ≤
m(t)W (‖ψ‖B), for every (t, ψ) ∈ I × B.

(H2) The maps Ii are completely continuous and there are positive constants cji ,
j = 1, 2, such that ‖Ii(ψ)‖ ≤ c1i ‖ψ‖B + c2i , i = 1, 2, . . . , n, for every ψ ∈ B.

(H3) The function Ii : B → X is continuous and there are positive constants
Li, i = 1, 2, . . . , n, such that ‖Ii(ψ1) − Ii(ψ2)‖ ≤ Li‖ψ1 − ψ2‖B, for every
ψj ∈ B, j = 1, 2, i = 1, 2, . . . , n.

Remark 2.1. The condition (H0), is frequently verified by functions continuous
and bounded. If, for instance, the space B verifies axiom C2 in the nomenclature of
[9], then there exists a constant L > 0 such that ‖ϕ‖B ≤ L supθ≤0 ‖ϕ(θ)‖ for every
ϕ ∈ B continuous and bounded, see [9, Proposition 7.1.1] for details. Consequently,
‖ϕt‖B ≤ L

supθ≤0 ‖ϕ(θ)‖
‖ϕ‖B ‖ϕ‖B for every continuous and bounded function ϕ ∈ B\{0}

and every t ≤ 0. We note that the spaces Cr × Lp(g;X), C0
g (X) verify axiom C2,

see [9, p.10] and [9, p.16] for details.

Remark 2.2. Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function
defined by ϕt(θ) = ϕ(t+ θ). Consequently, if the function x(·) in axiom A is such
that x0 = ϕ, then xt = ϕt. We also note that, in general, ϕt /∈ B. Consider for
example the characteristic function X[−r,0], r > 0, in the space Cr × Lp(g;X).



EJDE-2008/28 EXISTENCE RESULTS 5

In this paper, we adopt the following concept of mild solution.

Definition 2.3. A function x : (−∞, a] → X is called a mild solution of the
abstract Cauchy problem (1.1)–(1.2) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I and

x(t) = U(t, 0)ϕ(0) +
∫ t

0

U(t, s)f(s, xρ(s,xs))ds+
∑

0<ti<t

U(t, ti)Ii(xti), t ∈ I.

The next result is a consequence of the phase space axioms.

Lemma 2.4. If x : (−∞, a] → X is a function such that x0 = ϕ and x|I ∈
PC(I : X), then

‖xs‖B ≤ (Ma + Jϕ)‖ϕ‖B +Ka sup{‖x(θ)‖; θ ∈ [0, max{0, s}]}, s ∈ R(ρ−) ∪ I,

where Jϕ = supt∈R(ρ−) J
ϕ(t), Ma = supt∈IM(t) and Ka = supt∈I K(t).

Remark 2.5. In the rest of this work, y : (−∞, a] → X is the function defined by
y0 = ϕ and y(t) = U(t, 0)ϕ(0) for t ∈ I.

Now, we can prove our first existence result.

Theorem 2.6. Let conditions (H0)–(H3) be satisfied and assume that

1 > KaM̃
(

lim inf
ξ→∞+

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

Li

)
. (2.1)

Then there exists a mild solution of (1.1)–(1.2).

Proof. On the space Y = {u ∈ PC : u(0) = ϕ(0)} endowed with the uniform
convergence norm (‖ · ‖∞), we define the operator Γ : Y → Y defined by

Γx(t) = U(t, 0)ϕ(0) +
∫ t

0

U(t, s)f(s, x̄ρ(s,x̄s))ds+
∑

0<ti<t

U(t, ti)Ii(x̄ti), t ∈ I,

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From our assumptions,
it is easy to see that Γx(·) ∈ Y .

Let ϕ̄ : (−∞, a] → X be the extension of ϕ to (−∞, a] such that ϕ̄(θ) = ϕ(0)
on I and J̃ϕ = sup{Jϕ(s) : s ∈ R(ρ−)}. By using Lemma 2.4, for r > 0 and
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xr ∈ Br(ϕ̄|I , Y ) we obtain

‖Γxr − ϕ(0)‖

≤ (M̃ + 1)H‖ϕ‖B + M̃

∫ a

0

m(s)W (‖xrρ(s,xr
s)‖B)ds

+ M̃
n∑
i=1

(Li‖xti‖B + ‖Ii(0)‖)

≤ (M̃ + 1)H‖ϕ‖B + M̃

∫ a

0

m(s)W
(
(Ma + J̃ϕ)‖ϕ‖B +Ka sup

θ∈[0,a]

‖xr(θ)‖
)
ds

+ M̃
n∑
i=1

Li (‖xti − ϕ‖B + ‖ϕ‖B + ‖Ii(0)‖)

≤ (M̃ + 1)H‖ϕ‖B + M̃W
(
(Ma + J̃ϕ)‖ϕ‖B +Ka(r + ‖ϕ(0)‖)

) ∫ a

0

m(s)ds,

+ M̃
n∑
i=1

Li (Kar + ‖ϕ‖B + ‖Ii(0)‖)

which from (2.1) implies that ‖Γxr − ϕ(0)‖∞ ≤ r for r large enough.
Let r > 0 be such that Γ(Br(ϕ̄|I , Y )) ⊂ Br(ϕ̄|I , Y ). Next, we will prove that

Γ(·) is completely continuous from Br(ϕ̄|I , Y ) into Br(ϕ̄|I , Y ). To this end, we
introduce the decomposition Γ = Γ1 + Γ2 where (Γ1x)0 = ϕ, (Γ2x)0 = 0, and

Γ1x(t) = U(t, 0)ϕ(0) +
∫ t

0

U(t, s)f(s, x̄ρ(s,x̄s))ds, t ∈ I

Γ2x(t) =
∑

0<ti<t

U(t, ti)Ii(x̄ti), t ∈ I.

To begin, we prove that the set Γ1(Br(ϕ̄|I , Y ))(t) = {Γ1x(t) : x ∈ Br(ϕ̄|I , Y )} is
relatively compact in X for every t ∈ I.

The case t = 0 is obvious. Let 0 < ε < t ≤ a. If x ∈ Br(ϕ̄|I , Y ), from Lemma
2.4 follows that ‖x̄ρ(t,x̄t)‖B ≤ r∗ := (Ma+ J̃ϕ)‖ϕ‖B+Ka(r+‖ϕ(0)‖) which implies

∥∥∫ τ

0

U(τ, s)f(s, x̄ρ(s,x̄s))ds
∥∥ ≤ r∗∗ := M̃W (r∗)

∫ a

0

m(s)ds, τ ∈ I. (2.2)

From the above inequality, we find that

Γ1x(t) = U(t, 0)ϕ(0) + U(t, t− ε)
∫ t−ε

0

U(t− ε, s)f(s, x̄ρ(s,x̄s))ds

+
∫ t

t−ε
U(t, s)f(s, x̄ρ(s,x̄s))ds

∈ {U(t, 0)ϕ(0)}+ U(t, t− ε)Br∗∗(0, X) + Cε,

where diam(Cε) ≤ 2M̃W (r∗)
∫ t
t−εm(s)ds→ 0 as ε→ 0, which allows us to conclude

that Γ1(Br(ϕ̄|I , Y ))(t) is relatively compact in X.
Now, we prove that Γ1(Br(ϕ̄|I , Y )) is equicontinuous on I. Let 0 < t < a and

ε > 0. Since the set Γ1(Br(ϕ̄|I , Y ))(t) is relatively compact compact in X, from
the properties of the evolution family U(t, s), there exists 0 < δ ≤ a − t such that
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‖U(t + h, t)x − x‖ < ε, for every x ∈ Γ1(Br(ϕ̄|I , Y ))(t) and all 0 < h < δ. Under
these conditions, for x ∈ Br(ϕ̄|I , Y ) and 0 < h < δ we obtain

‖Γ1x(t+ h)− Γ1x(t)‖ ≤ ‖U(t+ h, 0)ϕ(0)− U(t, 0)ϕ(0)‖

+ ‖(U(t+ h, t)− I)
∫ t

0

U(t, s)f(s, x̄ρ(s,x̄s))ds‖

+ M̃

∫ t+h

t

m(s)W (r∗)ds

≤ 2ε+ M̃W (r∗)
∫ t+h

t

m(s)ds,

which proves that Γ1(Br(ϕ̄|I , Y )) is right equicontinuous at t ∈ (0, a). A simi-
lar procedure shows that Γ1(Br(ϕ̄|I , Y )) is right equicontinuous at zero and left
equicontinuous at t ∈ (0, a]. Thus, the set Γ1(Br(ϕ̄|I , Y )) is equicontinuos on I.

Using the same arguments as in [11, Theorem 2.2], it follows that Γ1 is a con-
tinuous map, which complete the proof that Γ1 is completely continuous. On the
other hand, from the assumptions and the phase space axioms it follows that

‖Γ2x− Γ2y‖∞ ≤ KaM̃
n∑
i=1

Li‖x− y‖∞

which proves that Γ2 is a contraction on Br(ϕ̄|I , Y ) and that Γ is a condensing map
on Br(ϕ̄|I , Y ).

Finally, the existence of a mild solutions is a consequence of [19, Theorem 4.3.2].
The proof is complete. �

In the next result, BPC(ϕ) is the set introduced in assumption (H0).

Theorem 2.7. Let (H0)–(H2) be satisfied. If ρ(t, xt) ≤ t for every (t, x) ∈ I ×
BPC(ϕ), µ = 1−KaM̃

∑n
i=1 ci > 0 and

KaM̃

∫ a

0

m(s)ds <
∫ ∞

C

ds

W (s)
,

where

C = (Ma + Jϕ + M̃HKa)‖ϕ‖B +
M̃Ka

µ

n∑
i=1

[
c1i (Ma + M̃HKa)‖ϕ‖B + c2i

]
then there exists a mild solution of (1.1)–(1.2).

Proof. On the space BPC = {u : (−∞, a] → X;u0 = 0, u|I ∈ PC} provided with
the sup-norm ‖ · ‖∞, we define the operator Γ : BPC → BPC by (Γu)0 = 0 and

Γx(t) =
∫ t

0

U(t, s)f(s, x̄ρ(s,x̄s))ds+
∑

0<ti<t

U(t, ti)Ii(x̄ti), t ∈ I,

where x̄ = x + y on (−∞, a] and y(·) is the function defined in Remark 2.5. To
use Theorem 1.6, we establish a priori estimates for the solutions of the integral
equation z = λΓz, λ ∈ (0, 1). Let xλ be a solution of z = λΓz, λ ∈ (0, 1). By using
Lemma 2.4, the notation αλ(s) = supθ∈[0,s] ‖xλ(θ)‖, and the fact that ρ(s, (xλ)s) ≤
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s, for each s ∈ I, we find that

‖xλ(t)‖ ≤ M̃

∫ t

0

m(s)W
(
(Ma + Jϕ + M̃HKa)‖ϕ‖B +Kaα

λ(s)
)
ds

+ M̃
∑

0<ti≤t

c1i

[
(Ma + M̃HKa)‖ϕ‖B +Kaα

λ(t)
]

+ M̃
n∑
i=1

c2i ,

and so,

αλ(t) ≤ M̃
n∑
i=1

[
c1i (Ma + M̃HKa)‖ϕ‖B + c2i

]
+KaM̃

∑
0<ti≤t

c1iα
λ(t)

+ M̃

∫ t

0

m(s)W
(
(Ma + Jϕ + M̃HKa)‖ϕ‖B +Kaα

λ(s)
)
ds,

which implies

αλ(t) ≤ M̃

µ

n∑
i=1

[
c1i (Ma + M̃HKa)‖ϕ‖B + c2i

]
+
M̃

µ

∫ t

0

m(s)W ((Ma + Jϕ + M̃HKa)‖ϕ‖B +Kaα
λ(s))ds,

for every t ∈ [0, a]. By defining ξλ(t) = (Ma + Jϕ + M̃HKa)‖ϕ‖B +Kaα
λ(t), we

find that

ξλ(t) ≤ (Ma + Jϕ + M̃HKa)‖ϕ‖B +
M̃Ka

µ

n∑
i=1

[
c1i (Ma + M̃HKa)‖ϕ‖B + c2i

]
+
M̃Ka

µ

∫ t

0

m(s)W (ξλ(s))ds.

Denoting by βλ(t) the right hand side of the last inequality, if follows that

β′λ(t) ≤
M̃Ka

µ
m(t)W (βλ(t))

and hence ∫ βλ(t)

βλ(0)=C

ds

W (s)
≤ M̃Ka

µ

∫ a

0

m(s)ds <
∫ ∞

C

ds

W (s)
,

which implies that the set of functions {βλ(·) : λ ∈ (0, 1)} is bounded in C(I,R).
This show that the set {xλ(·) : λ ∈ (0, 1)} is bounded in BPC.

To prove that the map Γ is completely continuous, we consider the decomposition
Γ = Γ1 + Γ2 where (Γix)0 = 0, i = 1, 2, and

Γ1x(t) =
∫ t

0

U(t, s)f(s, x̄ρ(s,x̄s))ds, t ∈ I,

Γ2x(t) =
∑

0<ti<t

U(t, ti)Ii(x̄ti), t ∈ I.

Proceeding as in the proof of Theorem 2.6 we can prove that Γ1 is completely
continuous. The continuity of Γ2 can be proven using the phase space axioms.
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To prove that Γ2 is also completely continuous, we use Lemma 1.2. For r > 0,
t ∈ [ti, ti+1] ∩ (0, a], i ≥ 1, and u ∈ Br = Br(0,BPC) we find that

Γ̃2u(t) ∈


∑i
j=1 U(t, tj)Ij(Br∗(0, X)), t ∈ (ti, ti+1),∑i
j=0 U(ti+1, tj)Ij(Br∗(0, X)), t = ti+1,∑i−1
j=1 U(ti, tj)Ij(Br∗(0, X)) + Ii(Br∗(0;X)), t = ti,

where r∗ := (Ma+M̃HKa)‖ϕ‖B+Kar, which proves that [Γ̃2(Br)]i(t) is relatively
compact in X for every t ∈ [ti, ti+1], since the maps Ij are completely continuous.
Moreover, using the compactness of the operators Ii and properties of the evolution
family U(·), we can prove that ˜[Γ2(Br)]i(t) is equicontinuous at t, for every t ∈
[ti, ti+1] and each i = 1, 2, . . . , n, which complete the proof that Γ2 is completely
continuous.

The existence of a mild solution is now a consequence of Theorem 1.6. The proof
is complete. �

3. Applications

In this section we consider an application of our abstract results. Consider the
partial differential equation

∂u(t, ξ)
∂t

=
∂2u(t, ξ)
∂ξ2

+ a0(t, ξ)u(t, ξ)

+
∫ t

−∞
a1(s− t)u(s− ρ1(t)ρ2(

∫ π

0

a2(θ)|u(t, θ)|2dθ), ξ)ds
(3.1)

for t ∈ I = [0, a], ξ ∈ [0, π]. The above equation is subject to the conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (3.2)

u(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π. (3.3)

∆u(tj , ξ) =
∫ tj

−∞
γj(s− tj)u(s, ξ)ds, j = 1, 2, . . . , n. (3.4)

To study this system, we consider the space X = L2([0, π]) and the opera-
tor A : D(A) ⊂ X → X given by Ax = x′′ with D(A) := {x ∈ X : x′′ ∈
X, x(0) = x(π) = 0}. It is well known that A is the infinitesimal generator of an
analytic semigroup (T (t))t≥0 on X. Furthermore, A has discrete spectrum with
eigenvalues −n2, n ∈ N, and corresponding normalized eigenfunctions given by
zn(ξ) = ( 2

π )1/2 sin(nξ). In addition, {zn : n ∈ N} is an orthonormal basis of X
and T (t)x =

∑∞
n=1 e

−n2t〈x, zn〉zn for x ∈ X and t ≥ 0. It follows from this rep-
resentation that T (t) is compact for every t > 0 and that ‖T (t)‖ ≤ e−t for every
t ≥ 0.

On the domain D(A), we define the operators A(t) : D(A) ⊂ X → X by
A(t)x(ξ) = Ax(ξ) + a0(t, ξ)x(ξ). By assuming that a0(·) is continuous and that
a0(t, ξ) ≤ −δ0 (δ0 > 0) for every t ∈ R, ξ ∈ [0, π], it follows that the system

u′(t) = A(t)u(t) t ≥ s,

u(s) = x ∈ X,
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has an associated evolution family given by U(t, s)x(ξ) = [T (t− s)e
R t

s
a0(τ,ξ)dτx](ξ).

From this expression, it follows that U(t, s) is a compact linear operator and that
‖U(t, s)‖ ≤ e−(1+δ0)(t−s) for every t, s ∈ I with t > s.

Proposition 3.1. Let B = PC0 × L2(g,X) and ϕ ∈ B. Assume that condition
(H0) holds, ρi : [0,∞) → [0,∞), i = 1, 2, are continuous and that the following
conditions are verified.

(a) The functions ai : R → R are continuous and Lf = (
∫ 0

−∞
(a1(s))

2

g(s) ds)1/2 is
finite.

(b) The functions γi : R → R, i = 1, 2, . . . , n, are continuous, bounded and

Li :=
( ∫ 0

−∞
(γi(s))

2

g(s) ds
)1/2

<∞ for every i = 1, 2, . . . , n.

Then there exists a mild solution of (3.1)–(3.3).

Proof. From the assumptions, we have that

f(t, ψ)(ξ) =
∫ 0

−∞
a1(s)ψ(s, ξ)ds,

ρ(s, ψ) = s− ρ1(s)ρ2

( ∫ π

0

a2(θ)|ψ(0, ξ)|2dθ
)
,

Ii(ψ)(ξ) =
∫ 0

−∞
γi(s)ψ(s, ξ)ds, i = 1, 2, . . . , n,

are well defined functions, which permit to transform system (3.1)–(3.3) into the
abstract system (1.1)–(1.2). Moreover, the functions f , Ii are bounded linear oper-
ator, ‖f‖ ≤ L1 and ‖Ii‖ ≤ Li for every i = 1, 2, . . . n. Now, the existence of a mild
solutions can be deduced from a direct application of Theorem 2.7. The proof is
complete. �

From Remark 2.1 we have the following result..

Corollary 3.2. Let ϕ ∈ B be continuous and bounded. Then there exists a mild
solution of (3.1)–(3.3) on I.
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