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DEGENERATE STATIONARY PROBLEMS WITH
HOMOGENEOUS BOUNDARY CONDITIONS

KAOUTHER AMMAR, HICHAM REDWANE

Abstract. We are interested in the degenerate problem

b(v)− div a(v,∇g(v)) = f

with the homogeneous boundary condition g(v) = 0 on some part of the bound-

ary. The vector field a is supposed to satisfy the Leray-Lions conditions and

the functions b, g to be continuous, nondecreasing and to verify the normal-
ization condition b(0) = g(0) = 0 and the range condition R(b + g) = R.

Using monotonicity methods, we prove existence and comparison results for

renormalized entropy solutions in the L1 setting.

1. Introduction

Let Ω be a C1,1 bounded open subset of RN with regular boundary if N > 1.
We consider the problem, (Pb,g(f)),

b(v)− div a(v,∇g(v)) = f in Ω

g(v) = 0 on Γ := ∂Ω,
(1.1)

where b, g : R → R are nondecreasing, continuous such that b(0) = g(0) = 0,
R(b+ g) = R and that f ∈ L1(Ω).

The vector field a : R × RN → RN is supposed to be continuous, to satisfy the
growth condition

|a(r, ξ)− a(r, 0)| ≤ C(|r|)|ξ|p−1 for all (r, ξ) ∈ R× RN (1.2)

with C : R+ → R+ nondecreasing and the weak coerciveness condition

(a(r, ξ)− a(r, 0)) · ξ +M(|r|) ≥ λ(|r|)|ξ|p for all r ∈ R, ξ ∈ RN (1.3)

where M : R+ → R, λ : R+ →]0,∞[ are continuous functions satisfying, for all
k > 0, λk := inf{r; |b(r)|≤k} λ(r) > 0 and Mk := sup{r; |b(r)|≤k}M(r) <∞.

To prove the uniqueness result, we assume that a verifies the additional condition

(a(r, ξ)−a(s, η))·(ξ−η)+B(r, s)(1+|ξ|p+|η|p)|r−s| ≥ Γ1(r, s)·ξ+Γ2(r, s)·η, (1.4)
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for all r, s ∈ R, ξ, η ∈ RN , for some continuous function B : R × R → R and
continuous fields Γ1,Γ2 : R× R → RN .

It is well known that the above problem is ill-posed in the variational setting.
In the sense that there is no existence and uniqueness of a weak solution in the
distributional sense. In order to overcome this difficulty, we use the notion of
entropy solution introduced by Krushkov in [19] (see also [20]) and which coincides
which the “physical” solution. An other difficulty is related to the irregularity of
the data which is only supposed to be in L1(Ω). The suitable notion of solution
which guarantees existence and uniqueness results in this general frame-work is the
so called renormalized entropy solution (see [6, 10, 5]).

The outline of the paper is as follows: In Section 2, we define the renormalized
entropy solution and present our main results. Then, in section 3, we prove the
comparison principle for bounded solution. Finally, in Section 4, we prove the
existence of a renormalized entropy solution, the comparison result in the L1-setting
and give some possible extensions of our results.

2. Definitions, notation and main results

Definition 2.1. Let f ∈ L1(Ω). A measurable function v : Ω → R is said to be a
weak solution of (1.1) if b(v) ∈ L1(Ω), g(v) ∈W 1,p(Ω) and∫

Ω

b(v)ξ +
∫

Ω

a(v,∇g(v)) · ∇ξ =
∫

Ω

fξ

for all ξ ∈W 1,p
0 (Ω) ∩ L∞(Ω).

Definition 2.2. Let f ∈ L1(Ω). A measurable function v : Ω → R is said to be a
renormalized entropy solution of (1.1) if b(v) ∈ L1(Ω),

g(Tkv) ∈W 1,p
0 (Ω), ∀k > 0

and there exists some families of non-negative bounded measures µl := µl(v) and
νl = νl(v) on Ω such that

‖µl‖, ‖ν−l‖ → 0, l→∞,

and the following entropy inequalities are satisfied:
For all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(−g(k))ξ = 0 a.e.

on Γ, for all l ≥ k,

−
∫

Ω

b(v ∧ l)χ{v∧l>k}ξ −
∫

Ω

χ{v∧l>k}(a(v ∧ l,∇g(v ∧ l))− a(k, 0)) · ∇ξ

+
∫

Ω

χ{k>v∧l}fξ ≥ −〈µl, ξ〉 (2.1)

and for all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(g(k))ξ = 0 a.e.
on Γ, for l ≤ k,∫

Ω

b(v ∨ l)χ{k>v∨l}ξ +
∫

Ω

χ{k>v∨l}(a(v ∨ l,∇g(v ∨ l))− a(k, 0)) · ∇ξ

−
∫

Ω

χ{k>v∨l}fξ ≥ −〈νl, ξ〉. (2.2)
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Remark 2.3. (i) In the case where the data f ∈ L∞(Ω), it is easily verified that a
renormalized entropy solution v of (1.1) is such that b(v) ∈ L1(Ω), g(v) ∈W 1,p

0 (Ω)
and v satisfies the following entropy inequalities: For all k ∈ R, for all ξ ∈ C∞0 (RN )
such that ξ ≥ 0 and sign+(−g(k))ξ = 0 a.e. on Γ,

−
∫

Ω

χ{v>k}(a(v,∇g(v))− a(k, 0)) · ∇ξ +
∫

Ω

χ{v>k}fξ ≥
∫

Ω

b(v)χ{v>k}ξ (2.3)

and for all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(g(k))ξ = 0 a.e.
on Γ,∫

Ω

χ{k>v}(a(v,∇g(v))− a(k, 0)) · ∇ξ −
∫

Ω

χ{k>v}fξ ≥
∫

Ω

−b(v)χ{k>v}ξ. (2.4)

In this case, v is called weak entropy solution of (1.1).
If moreover, the function b is strictly increasing on R with R(b) = R, then the

weak entropy solution v is also in L∞(Ω).
(ii) If v is a renormalized entropy solution of (1.1), then −v is an entropy solution

of
b(v)− div a(v,∇g(v)) = f̃ in Ω

g(v) = 0 on Γ := ∂Ω,
(2.5)

where b(r) = −b(−r), g(r) = −g(−r) and a(r, ξ) = −a(−r, ξ).

The main result of this paper is the following.

Theorem 2.4. For any f ∈ L1(Ω), there exists a unique pair (b(v), g(v)) such that
v is a renormalized entropy solution of (1.1).

The uniqueness result follows as a consequence of an L1-comparison principle.

Some notation. Throughout this paper we use the operators

Hδ(s) := min(
s+

δ
, 1), H0(s) =

{
1 if s > 0
0 if s ≤ 0

and we denote

E := {r ∈ R(g)/(g−1)0 is discontinuous at r}. (2.6)

For k > 0, Tk is the truncation function defined on R by

Tk(r) = sign0(r)(|r| ∧ k)

and for r ∈ R, we define r+ = r ∨ 0, r− = r ∧ 0.

3. Proofs of comparison and uniqueness results

We first prove the comparison result in the L∞-setting.

Theorem 3.1. For i = 1, 2, let fi ∈ L∞(Ω) and vi ∈ L∞(Ω) be a weak entropy
solution of Pb,g(fi). Then there exist κ ∈ L∞(Ω) with κ ∈ sign+(v1 − v2) a.e. in Ω
such that, for any ξ ∈ D(RN ), ξ ≥ 0,∫

Ω

(b(v1)−b(v2))+ξ ≤
∫

Ω

κ(f1−f2)ξ−
∫

Ω

χ{v1>v2}(a(v1,∇g(v1))−a(v2,∇g(v2))·∇ξ.

(3.1)
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Lemma 3.2. Let f ∈ L∞(Ω) and v be a weak solution of (1.1). Then∫
Ω

χ{v>k}((a(v,∇g(v)))− a(k, 0)) · ∇ξ +
∫

Ω

χ{v>k}{b(v)ξ − fξ} dx

= − lim
δ→0

∫
Ω

(a(v,∇g(v))− a(v, 0)) · ∇g(v)H ′
δ(g(v)− g(k))ξ dx ,

(3.2)

for any (k, ξ) ∈ R×D+(Ω) such that g(k) /∈ E and (g(v)− g(k))+ξ = 0 a.e. on Γ.
Moreover,∫

Ω

χ{k>v}(a(v,∇g(v))− a(k, 0)) · ∇ξ +
∫

Ω

χ{k>v}{b(v)ξ − fξ} dx

= lim
δ→0

∫
Ω

(a(v,∇g(v))− a(v, 0)) · ∇g(v)H ′
δ(g(k)− g(v))ξ dx ,

(3.3)

for any (k, ξ) ∈ R×D+(Ω) such that g(k) /∈ E and (g(k))+ξ = 0 a.e. on Γ.

From now on, we denote ã(r, ξ) = a(r, ξ)− a(r, 0), r ∈ R, ξ ∈ RN . The proof of
the above lemma follows the same lines as the proof in [8, Lemma 2.5].

Proof of Theorem 3.1. Let (Bi)i=0...m be a covering of Ω satisfying B0∩∂Ω = ∅ and
such that, for each i ≥ 1, Bi is a ball contained in some larger ball Bi with Bi ∩∂Ω
is part of the graph of a Lipschitz function. Let (℘i)i=0...m denote a partition of
unity subordinate to the covering (Bi)i and denote by ξ an arbitrary function in
D(RN ), ξ ≥ 0.

We use Kruzhkov’s technique of doubling variables in order to prove the com-
parison result ( see [19, 20, 10], etc). We choose two variables x and y and con-
sider v1 as function of y and v2 as function of x ∈ Ω. Define the test function
ξi
n : (x, y) 7→ ℘i(x)ξ(x)%n(x−y), where (%n)n is a sequence of mollifiers in RN such

that x 7→ %n(x−y) ∈ D(Ω), for all y ∈ Bi, σn(x) =
∫
Ω
%n(x−y) d y is an increasing

sequence for all x ∈ Bi, and σn(x) = 1 for all x ∈ Bi with d(x,RN \ Ω) > c
N for

some c = c(i) depending on Bi. Then, for n sufficiently large,

y 7→ ξi
n(x, y) ∈ D(RN ), for any x ∈ Ω,

x 7→ ξi
n(x, y) ∈ D(Ω), for any y ∈ Ω

suppy(ξi
n(x, .)) ⊂ Bi, for any x ∈ supp(℘i).

For convenience, we sometimes omit the index i and simply set ℘ = ℘i, B = Bi

and ξi
n = ξn. Then ζ̂n(x) := ξ(x)℘(x)σn(x) satisfies ζ̂n ∈ D(Ω), 0 ≤ ζ̂n ≤ ξ, for all

n ∈ N. Let

Ω1 := {y ∈ Ω/v1(y) ∈ E}, Ω2 := {x ∈ Ω/v2(x) ∈ E}.

Then, ∇yg(v1) = 0 a.e in Ω1 and ∇xg(v2) = 0 a.e in Ω2. Moreover, H0(v1 − v2) =
H0(g(v1)− g(v2)) a.e in (Ω \ Ω1)× Ω ∪ Ω× (Ω \ Ω2).
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First inequality. We first prove the following inequality:∫
Ω

(b(v+
1 )− b(v+

2 ))ξ℘

≤
∫

Ω

κ1χ{v1>0}(f1 − χ{v2≥0}f2)ξ℘

−
∫

Ω

χ{v+
1 >v+

2 }
(a(v+

1 ,∇g(v
+
1 ))− a(v+

2 ,∇g(v
+
2 )) · ∇x(ξ℘) + lim

n→∞
L(ξ℘σn)

(3.4)
where κ1 ∈ L∞(Ω), κ1 ∈ sign+(v1 − v+

2 ) and L is a linear operator which will be
defined later.

As v1 satisfies (3.2) (with v = v1, f = f1 ), choosing k = v+
2 (x) and ξ(y) =

ζn(x, y) in (2.3), integrating in x over Ω, we find

lim
δ→0

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v1,∇yg(v1)) · ∇yg(v1)H ′
δ(g(v1)− g(v+

2 ))ζn

= lim
δ→0

∫
Ω×{Ω\Ω2}

ã(v1,∇yg(v1)) · ∇yg(v1)H ′
δ(g(v1)− g(v+

2 ))ζn

≤ −
∫

Ω×Ω

χ{v1>v+
2 }
{b(v1)ζn − f1ζn + ã(v+

1 ,∇yg(v+
1 )) · ∇yζn

+ (a(v+
1 , 0)− a(v+

2 , 0)) · ∇yζn}.

(3.5)

Now, since x 7→ ζn(x, y)Hδ(g(v+
1 )− g(v+

2 )) ∈ D(Ω) for a.e. y ∈ Ω, we have∫
Ω×Ω

ã(v+
1 ,∇yg(v+

1 )) · ∇x(Hδ(g(v+
1 )− g(v+

2 ))ζn) = 0. (3.6)

Therefore, going to the limit in δ, we get

lim
δ→0

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v+
1 ,∇yg(v+

1 )) · ∇xg(v+
2 )H ′

δ(g(v
+
1 )− g(v+

2 ))ζn

=
∫

Ω×Ω

H0(g(v+
1 )− g(v+

2 ))ã(v+
1 ,∇yg(v+

1 )) · ∇xζn

=
∫

Ω×Ω

H0(v+
1 − v+

2 )ã(v1,∇yg(v+
1 )) · ∇xζn.

(3.7)

Arguing as in [8], inequality (3.5) can be written as∫
Ω×Ω

{−ã(v+
1 ,∇yg(v+

1 )) · ∇x+yζn − b(v+
1 )ζn + f1ζn

− (a(v+
1 , 0)− a(v+

2 , 0)) · ∇yζn}H0(v+
1 − v+

2 )

≥ lim
δ→0

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v+
1 ,∇yg(v+

1 )) · ∇x+y(g(v+
1 )− g(v+

2 ))

×H ′
δ(g(v

+
1 )− g(v+

2 ))ζn

(3.8)

with ∇x+y(·) := ∇x(·) +∇y(·). Now, as v2 is a weak entropy solution of (1.1) with
f2 instead of f , choosing k = v+

1 (y), ξ(x) = ζn(x, y) in (3.3) (with v = v2, f = f2),
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integrating in y over Ω, we find

− lim
δ→0

∫
{Ω\Ω1}×Ω

ã(v2,∇xg(v2)) · ∇xg(v2)H ′
δ(g(v

+
1 )− g(v2))ζn

= − lim
δ→0

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v2,∇xg(v2)) · ∇xg(v2)H ′
δ(g(v

+
1 )− g(v2))ζn

≤
∫

Ω×Ω

χ{v+
1 >v2}{b(v2)ζn − f2ζn + ã(v2,∇xg(v2)) · ∇xζn + (a(v+

1 , 0)

− a(v2, 0)) · ∇xζn}

(3.9)

It is easily verified that

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v2,∇xg(v2)) · ∇xg(v2)H ′
δ(g(v

+
1 )− g(v2))ζn

=
∫
{Ω\Ω1}×{Ω\Ω2}

ã(v+
2 ,∇xg(v+

2 )) · ∇xg(v+
2 )H ′

δ(g(v
+
1 )− g(v+

2 ))ζn

+
∫
{Ω\Ω1}×{Ω\Ω2}

ã(v−2 ,∇xg(v−2 )) · ∇xg(v−2 )H ′
δ(g(v

+
1 )− g(v−2 ))ζn

(3.10)

and that the second term in the right hand side of (3.10) converges to 0 with δ → 0.
Moreover, the right hand side of (3.9) is equal to

∫
Ω×Ω

χ{v+
1 >v+

2 }
{b(v+

2 )ζn − χ{v2≥0}f2ζn + (ã(v+
2 ,∇xg(v+

2 ))− a(v+
1 , 0)

+ a(v+
2 , 0)) · ∇xζn}+

∫
Ω×Ω

χ{v2<0}{b(v2)ζn − f2ζn − a(v2,∇xg(v2)) · ∇xζn}.

(3.11)
Since y 7→ ζn(x, y)Hδ(g(v+

1 )− g(v+
2 )) ∈ D(Ω) for a.e. (x) ∈ Ω, we have

∫
Ω×Ω

ã(v+
2 ,∇xg(v+

2 )) · ∇y(Hδ(g(v+
1 )− g(v+

2 ))ζn) = 0. (3.12)

Therefore,

− lim
δ→0

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v+
2 ,∇xg(v+

2 )) · ∇yg(v+
1 )H ′

δ(g(v
+
1 )− g(v+

2 ))ζn

=
∫

Ω×Ω

H0(g(v+
1 )− g(v+

2 ))ã(v+
2 ,∇xg(v+

2 ))∇yζn.

(3.13)
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Then, the inequality (3.9) can be equivalently written as∫
Ω×Ω

b(v+
2 )H0(v+

1 − v+
2 )ζn −

∫
Ω×Ω

χ{v+
1 >v+

2 }
χ{v2≥0}f2ζn

+
∫

Ω×Ω

H0(v+
1 − v+

2 )ã(v+
2 ,∇xg(v+

2 )) · (∇yζn +∇xζn)

−
∫

Ω×Ω

H0(v+
1 − v+

2 )(a(v+
1 , 0)− a(v+

2 , 0)) · ∇xζn

+
∫

Ω×Ω

χ{v2<0}{b(v2)ζn − f2ζn − a(v2,∇xg(v2)) · ∇xζn}

≥ lim
δ→0

∫
{Ω\Ω1}×{Ω\Ω2}

ã(v+
2 ,∇xg(v+

2 )) · (∇xg(v+
2 )−∇yg(v+

1 ))

×H ′
δ(g(v

+
1 )− g(v+

2 ))ζn.

(3.14)

Summing up inequalities (3.8) and (3.14), we get

lim
δ→0

∫
(Ω\Ω1)×(Ω\Ω2)

(ã(v+
1 ,∇yg(v+

1 ))− ã(v+
2 ,∇xg(v+

2 ))) · (∇yg(v+
1 )−∇xg(v+

2 ))

×H ′
δ(g(v

+
1 )− g(v+

2 ))ζn

≤ −
∫

Ω×Ω

(b(v+
1 )− b(v+

2 ))+ξ℘%n −
∫

Ω×Ω

b(v2)χ{v2<0}ζn

+
∫

Ω×Ω

χ{v+
1 >v+

2 }
χ{v1>0}(f1 − χ{v2≥0}f2)ζn +

∫
Ω×Ω

χ{v2<0}f2ζn

−
∫

Ω×Ω

(a(v+
1 ,∇yg(v+

1 ))− a(v+
2 ,∇xg(v+

2 ))) · (∇x+yζn)H0(v+
1 − v+

2 )

−
∫

Ω×Ω

χ{0>v2}a(v2,∇xg(v2)) · ∇xζn.

(3.15)
Denote the integrals on the right hand side of (3.15) by I1, . . . , I6 successively.
Going to the limit with n, one get

lim
n→∞

I1 = −
∫

Ω

(b(v+
1 )− b(v+

2 ))+ξ℘,

lim sup
n→∞

I3 ≤
∫

Ω

κ1χ{v1>0}(f1 − χ{v2≥0}f2)ξ℘

for some
κ1 ∈ L∞(Ω) with κ1 ∈ sign+(v1 − v+

2 ) a.e. in Ω, (3.16)

lim sup
m,n→+∞

I5 = −
∫

Ω

H0(v+
1 − v+

2 )(a(v1,∇g(v+
1 ))− a(v2,∇g(v+

2 ))) · ∇(ξ℘),

It remains to estimate

I2 + I4 + I6 =
∫

Ω

χ{v2<0}{b(v2)ζ̂n − f2ζ̂n + a(v2,∇xg(v2)) · ∇xζ̂n}.

Define the functional L on D(Ω) by

L(ζ) =
∫

Ω

b(v2)χ{v2<0}ζ − χ{0>v2}f2ζ +
∫

Ω

χ{0>v2}a(v2,∇xg(v2)) · ∇xζ. (3.17)
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As v2 is an entropy solution, we have L(ζ) ≥ 0 for all ζ ∈ D(Ω), ζ ≥ 0, a.e. L is
a positive linear functional on D(Ω). Since (ζ̂)n = (ξσn)n⊂ D(Ω) is an increasing
sequence satisfying 0 ≤ ξσn℘ ≤ ξ℘, L(ζ̂n) is a bounded and increasing sequence
and thus converges. As a consequence, I2 +I4 +I6 = L(ξ℘σn) converges as n→∞.

To estimate the first term in the left hand side of (3.15), we use the additional
hypothesis (1.4) on the vector field a:∫

(Ω\Ω1)×(Ω\Ω2)

(a(v+
1 ,∇yg(v+

1 )− a(v+
2 ,∇xg(v+

2 ))) · (∇yg(v+
1 )−∇xg(v+

2 ))

×H ′
δ(g(v

+
1 )− g(v+

2 ))ζn

≥ −1
δ

∫
(Ω\Ω1)×(Ω\Ω2)

ζnB(v+
1 , v

+
2 )× (1 + |∇yg(v+

1 ))|p + |∇xg(v+
2 )|p)|v+

1 − v+
2 |

× χ{0≤g(v+
1 )−g(v+

2 )≤δ}

+
1
δ

∫
(Ω\Ω1)×(Ω\Ω2)

ζnΓ1(v+
1 , v

+
2 ) · ∇yg(v+

1 )χ{0≤g(v+
1 )−g(v+

2 )≤δ}

+
1
δ

∫
(Ω\Ω1)×(Ω\Ω2)

ζnΓ2(v+
1 , v

+
2 ) · ∇xg(v+

2 )χ{0≤g(v+
1 )−g(v+

2 )≤δ}.

(3.18)
The two last terms in the right hand side of (3.18) can be estimated as follows

1
δ

∫
(Ω\Ω1)×(Ω\Ω2)

ζnΓ1(v+
1 , v

+
2 ) · ∇yg(v+

1 )χ{0≤g(v+
1 )−g(v+

2 )≤δ}

=
∫

(Ω\Ω1)×(Ω\Ω2)

( ∫ γ(v1,v2)

0

Γ1((g−1)0(g(v+
2 ) + δr), (g−1)0((g(v+

2 )) dr
)
∇yζn

and
1
δ

∫
(Ω\Ω1)×(Ω\Ω2)

ζnΓ2(v+
1 , v

+
2 ) · ∇xg(v+

2 )χ{0≤g(v+
1 )−g(v+

2 )≤δ}

=
∫

(Ω\Ω1)×(Ω\Ω2)

( ∫ γ(v1,v2)

0

Γ2((g−1)0(g(v+
1 )), (g−1)0(g(v+

1 )− δr)) dr
)
∇xζn,

where
γ(v1, v2) := inf(g(v+

1 )− g(v+
2 ))+/δ, 1).

Due to the continuity of Γ((g−1)0(r), ξ) in r, g(r) /∈ E, it follows that the two terms
converge to 0 with δ. In order to estimate the remaining term, we use the estimation

|r − s| = |(g−1)0(g(r))− (g−1)0(g(r))| ≤ C|g(r)− g(s)|, g(r) /∈ E, g(s) 6∈ E

where C is the Lipschitz constant of (g−1)0 on {r ∈ R, b(r) /∈ E, |r| ≤ |g(v1) +
g(v2)|}. Then, we have

− lim
δ→0

1
δ

∫
(Ω\Ω1)×(Ω\Ω2)

ζnB(v+
1 , v

+
2 )× (1 + |∇yg(v+

1 )|p + |∇xg(v+
2 )|p)|v+

1 − v+
2 |

× χ{0≤g(v+
1 )−g(v+

2 ))}

≥ −C lim
δ→0

∫
(Ω\Ω1)×(Ω\Ω2)

ζnB(v+
1 , v

+
2 )× (1 + |∇yg(v+

1 )|p + |∇xg(v+
2 )|p)

× χ{0≤g(v+
1 )−g(v+

2 )} = 0.
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Using similar arguments, we prove that

− lim
δ→0

∫
(Ω\Ω1)×(Ω\Ω2)

(a(v+
1 , 0)− a(v+

2 , 0)) · (∇yg(v+
1 )−∇xg(v+

2 ))

×H ′
δ(g(v

+
1 )− g(v+

2 ))ζn = 0.

Combining the estimates of I1, . . . , I6, we get∫
Ω

(b(v+
1 )− b(v+

2 ))+ξ℘

≤
∫

Ω

κ1χ{v1>0}(f1 − χ{v2≥0}f2)ξ℘+ lim
n→∞

L(ξ℘σn)

−
∫

Ω

(a(v+
1 ,∇xg(v+

1 ))− a(v+
2 ,∇g(v

+
2 ))) · ∇x(ξ℘)χ{v+

1 >v+
2 }
.

(3.19)

This is “half” of the inequality to be proved.

Second inequality: In view of Remark 2.3, inequality (3.19) is still true when v1
is replaced by −v2, v2 is replaced by −v1, f1 by −f2, f2 by −f1, b by b, g by g and
a by a. Then we have∫

Ω

(b(v−1 )− b(v−2 ))+ξ℘i

≤
∫

Ω

κ2χ{v2<0}(χ{v1≤0}f1 − f2)ξ℘i

−
∫

Ω

χ{v−1 ≥v−2 }
(a(v−1 ,∇g(v

−
1 ))− a(v−2 ,∇g(v

−
2 ))) · ∇x(ξ℘i) + lim

n→∞
L(ξσn℘i),

(3.20)
where

L(ξ) :=
∫

Ω

(b(v1))+ζ +
∫

Ω

χ{v1>0}{a(v1,∇g(v1)) · ∇yζ + f1ζ}.

Using the same arguments as above, we can prove that (L(ξσn℘i)) converges (as
L(ξσn℘i)) with n.

Therefore, summation of (3.19) and (3.20) yields∫
Ω

(b(v1)− b(v2))+ξ℘i

≤
∫

Ω

κ(f1 − f2)ξ℘i −
∫

Ω

χ{v1≥v2}(a(v1,∇g(v1))− a(v2,∇g(v2))) · ∇x(ξ℘i)

+ lim
n→∞

L(ξ℘iσn) + lim
n→∞

L(ξ℘iσn),

(3.21)
for any ξ ∈ D(RN ), ξ ≥ 0, for all i ∈ {1, . . . ,m}.

Remark 3.3. The method of doubling variables allows to prove the following local
comparison result: for all ξ ∈ D(Ω), here exists κ ∈ L∞(Ω) with κ ∈ sign+(v1− v2)
a.e. in Ω such that, for any ζ ∈ D(Ω), ζ ≥ 0,∫

Ω

(b(v1)− b(v2))+ζ +
∫

Ω

χ{v1>v2}(a(v1,∇g(v1))− a(v2,∇g(v2)) · ∇ζ

≤
∫

Ω

κ(f1 − f2)ζ.
(3.22)
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The proof in this case is easier as the global comparison result. Indeed, as ξ = 0 on
Γ, we can choose k = v2(x) (resp k = v1(s, x)) in (2.3) (resp in 2.4) and we have
only to add the obtained inequalities, then to go to the limit on n in order to get
(3.22).

As ξ = ξ(1− σm) + ξσm and ξσm ∈ D(Ω) for m sufficiently large, applying the
local comparison principle (3.22) with ζ = ξσm, the global estimate (3.21) with
ξ(1− σm), we obtain

−
∫

Ω

(b(v1)− b(v2))+ξ℘i − χ{v1≥v2}(a(v1,∇g(v1))− a(v2,∇g(v2))) · ∇x(ξ℘i)

≥
∫

Ω

(b(v1)− b(v2))+(ξ(1− σm))℘i +
∫

Ω

κ(f1 − f2)ξ(1− σm)℘i

−
∫

Ω

χ{v1≥v2}(a(v1,∇g(v1))− a(v2,∇g(v2))) · ∇x(ξ(1− σm)℘i)

≥ − lim
n→∞

L(ξ℘i(1− σm)σn)− lim
n→∞

L(ξ℘i(1− σm)σn)

= − lim
n→∞

L(ξ℘i(σn − σmσn))− lim
n→∞

L(ξ℘i(σn − σmσn)).

Note that ℘iσnσm = ℘iσm for n sufficiently large. Therefore,

lim
m→∞

lim
n→∞

L(ξ℘i(σn − σmσn)) = lim
m→∞

lim
n→∞

L(ξ℘i(σn − σmσn)) = 0,

and thus, passing to the limit with m→∞ in the preceding inequality yields∫
Ω

(b(v1)− b(v2))+ξ℘i + χ{v1≥v2}(a(v1,∇g(v1))− a(v2,∇g(v2))) · ∇x(ξ℘i)

≤
∫

Ω

κ(f1 − f2)ξ℘i

After summation over i, we deduce (3.1). �

4. Existence of entropy solution

The proof of the existence result consists of two steps. In a first step, we prove
existence of a bounded entropy solution of the problem

bα(v)− div a(v,∇g(v)) = f in Ω

g(v) = 0 on Γ,
(4.1)

where f ∈ L1(Ω) and bα is an increasing Lipschitz continuous function on R such
that bα(0) = 0 and limα→0 bα(r) = b(r), for all r ∈ R.

This is done via approximation with the elliptic-parabolic problems with homo-
geneous boundary conditions:

bα(v)− div a(v,∇gε(v)) = f in Ω
v = 0 on Γ,

(4.2)

where gε(r) = g(r) + εr. In the second step, we pass to the limit with α to 0 and
prove the existence result for L1-data.
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4.1. First step.

Proposition 4.1. For all ε > 0 and f ∈ L∞(Ω), there exists a unique v ∈ L∞(Ω)
entropy solution of (4.2) i.e. v ∈ W 1,p

0 (Ω) and v satisfies the following entropy
inequalities: For all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(−k)ξ = 0
a.e. on Γ,∫

Ω

bα(v)χ{v>k}ξ ≤
∫

Ω

χ{v>k}(fξ − (a(v,∇gε(v))− a(k, 0)) · ∇ξ) (4.3)

and for all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(k)ξ = 0 a.e. on
Γ, ∫

Ω

−bα(v)χ{k>v}ξ ≤ −
∫

Ω

χ{k>v}(fξ − (a(v,∇gε(v))− a(k, 0)) · ∇ξ). (4.4)

Proof. The existence of a unique weak solution v of (4.2) is already proved in [4].
Indeed the Problem can be equivalently formulated as follows:

(bα ◦ g−1
ε )(v)− div a(g−1

ε (v),∇v) = f in Ω
v = 0 on Γ.

(4.5)

As (r, ξ) 7→ a(g−1
ε (v), ξ), r ∈ R, ξ ∈ RN satisfies the same hypothesis as the vector

field a thanks to the strict monotonicity of gε, it is sufficient to apply the results of
[18]. In order to prove that the week solution satisfies the entropy inequalities, we
proceed as in [8]. �

Proposition 4.2. For all f ∈ L∞(Ω), there exists a unique v ∈ L∞(Ω) weak
(and entropy ) solution of (4.1) i.e. g(v) ∈ W 1,p

0 (Ω) and v satisfies the following
entropy inequalities: For all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and
sign+(−g(k))ξ = 0 a.e. on Γ,∫

Ω

bα(v)χ{v>k}ξ ≤
∫

Ω

χ{v>k}(fξ − (a(v,∇g(v))− a(k, 0)) · ∇ξ) (4.6)

and for all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(g(k))ξ = 0 a.e.
on Γ,∫

Ω

−bα(v)χ{k>v}ξ ≤ −
∫

Ω

χ{k>v}(fξ − (a(v,∇g(v))− a(k, 0)) · ∇ξ). (4.7)

Proof. According to Proposition 4.1, for f ∈ L∞(Ω), there exists a unique vε ∈
L∞(Ω) entropy solution of (4.2). i.e. vε ∈ L∞(Ω), gε(vε) ∈ W 1,p

0 (Ω)) and vε

satisfies the entropy inequalities (4.3) and (4.4):
With a particular choice of test functions and thanks to the strict monotonicity

of bα, one can prove that (vε)ε and (|∇gε(vε)|)ε are uniformly bounded in L∞(Ω)
and Lp(Ω) respectively. Thanks to the growth condition (1.2) on a, it follows that
(a(vε,∇gε(vε)))ε is bounded in Lp′(Ω)N as well. Following classical arguments,
extracting a subsequence if necessary, we can prove that as ε→ 0,

g(vε) converges to some w ∈ L∞(Ω) ∩W 1,p
0 (Ω)

weakly in W 1,p
0 (Ω) and strongly in Lp(Ω). Moreover,

a(vε,∇gε(vε)) converges weakly in Lp′(Ω)N to some χ ∈ Lp′(Ω)N .

In order to prove the strong convergence of vε (in L1
Loc for example) to some v,

we can use the method of compensated compactness ( see [15] and [16]) but this
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requires some additional conditions on the flux function Φ. An other approach
consists in using the L∞ uniform bound on (vε) in order to deduce the weak-∗
convergence of (vε) to a function v. Then, going to the limit in the approximate
entropy inequalities, we prove that v is an entropy process solution of (4.1) (see
Definition 4.5 below). Finally using a “stronger” principle of uniqueness, we show
that v is the entropy solution of (4.1) and that the convergence holds strongly in
L1(Ω). �

Definition 4.3. Let Ω be an open subset of RN (N ≥ 1), (un) be a bounded
sequence of L∞(Ω) and u ∈ L∞(Ω× (0, 1)). The sequence (un) converges towards
u in the “nonlinear weak-∗ sense” if∫

Ω

g(un(x))ψ(x) dx→
∫ 1

0

∫
Ω

g(u(x, µ))ψ(x) dx dµ, as n→∞, (4.8)

for all ψ ∈ L1(Ω), for all g ∈ C(R,R).

Lemma 4.4. Let Ω be an open subset of RN (N ≥ 1) and (un) be a bounded
sequence of L∞(Ω). Then (un) admits a subsequence converging in the nonlinear
weak-∗ sense.

For the proof of the above lemma see [17, 11]. According to Lemma 4.4, the
sequence (vε) is convergent in the nonlinear weak-∗ sense to some v ∈ L∞(Ω×(0, 1)).
We will prove that v is a weak entropy process solution of (4.1) in the following
sense.

Definition 4.5. Let u ∈ L∞((0, 1) × Ω) with g(u) ∈ W 1,p
0 (Ω). The function u is

a weak entropy process solution of (4.1) if for all k ∈ R, for all ξ ∈ C∞0 (RN ) such
that ξ ≥ 0 and sign+(−g(k))ξ = 0 a.e. on ∂Ω,∫ 1

0

∫
Ω

bα(u)χ{u>k}ξ dµ ≤
∫ 1

0

∫
Ω

χ{u>k}(fξ−(a(u,∇g(u))−a(k, 0)) ·∇ξ) dµ (4.9)

and for all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(g(k))ξ = 0 a.e.
on Σ̃,

−
∫ 1

0

∫
Ω

bα(u)χ{k>u}ξ dµ ≤ −
∫ 1

0

∫
Ω

χ{k>u}(fξ− (a(u,∇g(u))− a(k, 0)) · ∇ξ) dµ).

(4.10)

Taking into account the above estimates, it follows that

g(vε) converges to g(v) ∈ L∞(Ω) ∩W 1,p
0 (Ω) (4.11)

strongly in Lp(Ω) and weakly in W 1,p(Ω). In particular, it follows that g(v) is
independent of µ.

To pass to the limit in (4.3) and (4.4), it remains to prove that∫
Ω

a(vε,∇gε(vε)) · ∇ξ →
∫ 1

0

(
∫

Ω

a(v,∇g(v)) · ∇ξ) dµ (4.12)

By the Minty Browder argument, we have only to prove that

lim
ε→0

∫
Ω

a(vε,∇g(vε)) · ∇(g(vε)− g(v)) = 0.
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As vε is also a weak solution of (4.2), we have

lim
ε→0

∫
Ω

a(vε,∇g(vε)) · ∇(g(vε)− g(v))

= − lim
ε→0

[ ∫
Ω

b(vε)(g(vε)− g(v)) +
∫

Ω

f(g(vε)− g(v))
]

= 0

where the last equality follows by the strong convergence in Lp(Ω) of g(vε) to
g(v) and the weak∗-convergence of vε to v. By the standard pseudo-monotonicity
argument it follows that∫

Ω

χ · ∇ξ =
∫ 1

0

∫
Ω

a(v,∇g(v)) · ∇ξ for all ξ ∈ D(Ω). (4.13)

Indeed, for ξ ∈ D(Ω), ξ ≥ 0, α ∈ R, we have

α

∫
Ω

χ∇ξ = lim
ε→0

∫
Ω

αa(vε,∇gε(vε)) · ∇ξ

≥ lim sup
ε→0

∫
Ω

a(vε,∇gε(vε)) · ∇(gε(vε)− g(v) + αξ)

≥ lim sup
ε→0

∫
Ω

a(vε,∇(g(v)− αξ)) · ∇(gε(vε)− g(v) + αξ)

≥
∫

Ω

αa(v,∇(g(v)− αξ)) · ∇ξ.

Dividing by α > 0 (resp. α < 0), passing to the limit with α → 0, we obtain
(4.13). We can now pass to the limit in (4.3) and (4.4) to get for all k ∈ R, for all
ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(−g(k))ξ = 0 a.e. on Γ,∫ 1

0

∫
Ω

bα(v)χ{v>k}ξ ≤
∫ 1

0

∫
Ω

χ{v>k}(fξ − (a(v,∇g(v))− a(k, 0)) · ∇ξ) (4.14)

and for all k ∈ R, for all ξ ∈ C∞0 (RN ) such that ξ ≥ 0 and sign+(g(k))ξ = 0 a.e.
on Γ,∫ 1

0

∫
Ω

−bα(v)χ{k>v}ξ ≤ −
∫ 1

0

∫
Ω

χ{k>v}(fξ+(a(v,∇g(v))−a(k, 0)) ·∇ξ). (4.15)

Hence we have shown that v is a weak entropy process solution of (4.1). Now, to
prove that v is the week entropy solution of (4.1), we use the following “reinforced”
comparison principle.

Proposition 4.6. Let fi ∈ L∞(Ω) and vi ∈ L∞(Ω×(0, 1) be a weak entropy process
of Pbα,g(fi) i = 1, 2. Then there exists κ ∈ L∞(Ω× (0, 1)) with κ ∈ sign+(v1 − v2)
a.e. in Ω× (0, 1) such that∫ 1

0

∫
Ω

(bα(v1(x, α))− bα(v2(x, µ)))+ξ dx dα dµ ≤
∫ 1

0

∫
Ω

κ(f1 − f2)ξ dx.

In particular, when f1 = f2, we have

v1(x, α) = v2(x, µ) for a.e. (x, α, µ) ∈ Ω× (0, 1)× (0, 1).

Defining the function w(x) =
∫ 1

0
v1(x, α) dα, we deduce that w(x) = v1(x, α) =

v2(x, β) for a.e. (x, α, β) ∈ Ω× (0, 1)× (0, 1).
The proof of Proposition 4.6 follows the same lines as those of Theorem 3.1 and

is omitted. The reader is referred among others to [21] and [11] in order to verify
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the technical tools which are necessary to deal with measure-valued functions. The
result of Proposition 4.6 implies that v is the unique weak entropy solution of (4.1)
and the first step of the proof is complete.

4.2. Second step. The comparison principle is again the main tool in this last
step: Let f ∈ L1(Ω). For m,n ∈ N, let fm,n = f ∧ m ∨ (−n) and define bm,n :
r 7→ b(r) + 1

mr
+ − 1

nr
−. Denote by vm,n the unique weak entropy solution of

Pbm,n,g(fm,n) (which exists by the result of the first step). Then,

0 ≤
∫

Ω

−χ{vm,n>k}{(a(vm,n,∇g(vm,n))−a(k, 0))·∇ξ+fm,nξ−bm,n(vm,n)ξ} (4.16)

for any ξ ∈ D(RN ), ξ ≥ 0, for all k ∈ R such that sign+(−g(k))ξ = 0 on Γ,

0 ≤
∫

Ω

χ{k>vm,n}{(a(vm,n,∇g(vm,n))−a(k, 0)) ·∇ξ−fm,nξ+bm,n(vm,n)ξ} (4.17)

for any ξ ∈ D(RN ), ξ ≥ 0, for all k ∈ R such that sign+(g(k))ξ = 0 on Γ.
By Theorem 3.1, there exists κm1,m2 ∈ L∞(Ω) and κn1,n2 ∈ L∞(Ω) with

κm1,m2 ∈ sign+(vm1,n − vm2,n), κn1,n2 ∈ sign+(vm,n1 − vm,n2) such that, for all
ξ ∈ D+(RN ), ξ ≥ 0,∫

Ω

(
1
m2

(v+
m1,n)− 1

m2
(v+

m2,n))+ξ +
1
n

(−v−m1,n + v−m2,n)+ξ

≤ −
∫

Ω

(b(vm1,n)− b(vm2,n))+ξ +
∫

Ω

κm1,m2(
1
m2

− 1
m1

)v+
m1,nξ

−
∫

Ω

χ{vm1,n>vm2,n}(a(vm1,n,∇g(vm1,n))− a(vm2,n,∇g(vm2,n))) · ∇ξ.

(4.18)

and∫
Ω

(
1
n2
v−m,n1

− 1
n2
v−m,n2

)+ξ +
1
m

(v+
m,n1

− v+
m,n2

)+ξ

≤
∫

Ω

−(b(vm,n1)− b(vm,n2))
+ξ −

∫
Ω

κn1,n2(
1
n2

− 1
n1

)v−m,n1
ξ

+
∫

Ω

χ{vm,n1>vm,n2}(a(vm,n1 ,∇g(vm,n1))− a(vm,n2 ,∇g(vm,n2))) · ∇ξ.

(4.19)

This yields that vm1,n ≤ vm2,n for m1 ≤ m2 and vm,n1 ≤ vm,n2 for n1 ≥ n2.
Therefore, vm,n ↑m vn a.e. on Ω where vn : Ω → R is a measurable function.
Here, we use the notation ↑n resp. ↓n to denote convergence of a sequence which
is monotone increasing, resp. decreasing in n. Moreover, from (4.18) and (4.19), it
follows that

b(vm,n)m → b(vn) in L1(Ω). (4.20)

Applying a diagonal argument, we may assume that for some subsequence (m(n))n

we have

vm(n),n → vn a.e. in Ω, b(vm(n),n) → b(vn) in L1(Ω). (4.21)

where vn is the weak entropy solution of Pbn,g(fn) with bn := bm(n),n, fn =
fm(n),n. Next, we prove that vn is finite a.e. in Ω: Suppose first that b(+∞) :=
limr→+∞ b(r) <∞. Then, by the Range condition, it follows that limr→+∞ g(r) =
∞.
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As vm,n is a week solution of Pbm,n,g(fm,n), choosing g(Tk(v+
m,n)) as test function,

taking into account the growth condition on a, we find

λb(+∞)

∫
Ω

|∇g(Tkv
+
m,n)|p ≤Mb(+∞) + g(k)

∫
Ω

|fm,n|

(see condition (1.2) on a ). Hence, by Poincaré’s inequality,

|{v+
m,n ≥ k}| ≤ C(1 + g(k))

g(k)p

for some constant C independent of m,n and k. Passing the limit with m→∞ and
then with k →∞ in the above inequality, we find that vn is finite a.e. on Ω. In the
case where b(+∞) = +∞, the last assertion follows from (4.20). Using Tkg(vm,n)
as test function in the weak formulation, by the coerciveness assumption on a, we
obtain ∫

Ω

|∇Tkg(vm,n)|p ≤ C(k),

for a constant C(k) depending only on k. Therefore, we can assume that the
sequence (Tkg(vm(n),n))n converges weakly in W 1,p

0 (Ω)) to Tkg(vn). Going to the
limit with n→∞, proceeding as above, we can extract a subsequence still denoted
(vn)n such that

vn → v a.e. in Ω, b(vn) → b(v) in L1(Ω)

where v is finite a.e. in Ω. Moreover, Tkg(v) ∈ W 1,p
0 (Ω) and (Tkg(vn))n converges

weakly in W 1,p
0 (Ω)) to Tkg(v). Applying again the argument of Minty Browder,

we can prove for our diagonal sequence that a(Tkvn,∇g(Tkvn)) → a(Tkv,∇g(Tkv))
weakly in (Lp′(Ω))N . It remains only to prove the inequalities (2.1) and (2.2). To
this end, let us first verify that vn satisfies (2.1) and (2.2) for all n ∈ N: For all
k ∈ R, for all l ≥ k, for any ξ ∈ D(RN ), ξ ≥ 0, we have∫

Ω

−bn(vn ∧ l)χ{vn∧l>k}ξ + χ{vn∧l>k}fnξ

− χ{vn∧l>k}(a(vn ∧ l,∇g(vn ∧ l))− a(k, 0)) · ∇ξ

=
∫

Ω

χ{vn>k}{−(bn(vn)− fn)ξ − (a(vn,∇g(vn))− a(k, 0) · ∇ξ}

+
∫

Ω

χ{vn>l}(bn(vn)− bn(l)− fn)ξ + (a(vn,∇g(vn))− a(l, 0)) · ∇ξ}+ f−n

≥
∫

Ω

χ{vn>l}{(bn(vn)− bn(l) + fn)ξ + (a(vn,∇g(vn))− a(l, 0)) · ∇ξ − f−n ξ},

Let

〈µn
l , ξ〉 := −

∫
Ω

χ{vn>l}{(bn(vn)−bn(l))ξ+fnξ+(a(vn,∇g(vn))−a(l, 0))·∇ξ−f−n ξ}.

Then, µn
l is a non-negative measure on Ω and µn

l ≡ 0 for l ≥ ‖vn‖L∞(Ω). Moreover,

‖µn
l ‖ ≤

∫
Ω

|fn|χ{vn>l}.
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Working on the second entropy inequality, we construct a family of bounded non-
negative measures (νn

l )l on Ω

〈νn
l , ξ〉 := −

∫
Ω

χ{l>vn}{(bn(l)−(bn(vn)))ξ−f+
n ξ−fnξ+(a(l, 0)−a(vn,∇g(vn)))·∇ξ}

such that∫
Ω

χ{k>vn∨l}{bn(vn ∨ l)ξ − fnξ + a(vn ∨ l,∇g(vn ∨ l)) · ∇ξ} ≥ −〈νn
l , ξ〉

for all ξ ∈ D+(Ω) and k ∈ R with (g(k))+ξ = 0 on Γ and ‖νn
l ‖ ≤

∫
Ω
|fn|χ{vn<l}.

It follows that (µn
l )n and (νn

l )n are uniformly bounded with respect to n. There-
fore, we can extract two subsequences still denoted by (µn

l )n and (νn
l )n which are

convergent with respect to the weak−∗ topology on C(Ω) to µl and νl respectively.
Now, combining all the estimates on the sequence (vn)n, we can pass the limit in
the above inequalities to (2.1) and (2.2). The measures µl and νl are defined as
follows:

〈µl, ξ〉 := −
∫

Ω

χ{v>l}{(b(v)− b(l))ξ − fξ + (a(v,Dg(v))− a(l, 0) · ∇ξ − f−ξ},

〈νl, ξ〉 := −
∫

Ω

χ{l>v}{(b(l)− b(v))ξ + (a(l, 0)− a(v,Dg(v))) · ∇ξ + fξ − f+ξ}.

Here, Dg(v) is defined by χ{−k<v<k}Dg(v) = ∇g(Tkv) for all k > 0.
The uniqueness result in the L1 setting follows from the following proposition.

Proposition 4.7. Let f1 ∈ L∞(Ω), f2 ∈ L1(Ω) and v1, v2 be an entropy solution
and a renormalized entropy solution of (1.1) with f1 instead of f , and (1.1) with f2
in stead of f , respectively. Then, there exists κ ∈ L∞(Ω) with κ ∈ sign+(v1−v2∨ l)
a.e. in Ω such that, for any ζ ∈ D+(RN ),

−〈νl, ζ〉 ≤ −
∫

Ω

χ{v1>v2∨l}(a(v1,∇g(v1))− a(v2 ∨ l,∇g(v2 ∨ l))) · ∇ζ

−
∫

Ω

(b(v1)− b(v2 ∨ l))+ζ +
∫

Ω

κ(f1 − f2)ζ.
(4.22)

For the proof of the above proposition can be found in [3]. Let us show how to
deduce uniqueness of the renormalized entropy solution: Let v be a renormalized
entropy solution of (1.1) and vn be the entropy solution of Pb,g(fn) constructed
above. Then by Proposition 4.7, there exists κn ∈ L∞(Ω) with κn ∈ sign+(vn −
v ∨ ln) a.e. in Ω such that, for any ζ ∈ D(RN ), ζ ≥ 0, for any ln ≥ n,

−〈ν−ln , ζ〉 ≤ −
∫

Ω

χ{vn>v∨(−ln)}(a(vn,∇g(vn))− a(v ∨ (−ln),∇g(v ∨ (−ln)))) · ∇ζ∫
Ω

−(bn(vn)− bn(v ∨ (−ln)))+ζ +
∫

Ω

κn(fn − f)ζ.

(4.23)
Similarly, we prove that there exists κ̃n ∈ L∞(Ω) with κ̃n ∈ sign+(v ∧ ln − v1) a.e.
in Ω such that, for any ζ ∈ D(RN ), ζ ≥ 0, for any ln ≥ n,

−〈µln , ζ〉 ≤
∫

Ω

−χ{vn<v∧ln}(a(v ∧ ln,∇g(v ∧ ln))− a(vn,∇g(vn))) · ∇ζ

−
∫

Ω

(bn(v ∧ ln)− bn(vn))+ζ +
∫

Ω

κ̃n(f − fn)ζ.
(4.24)
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Summing up (4.23) and (4.24), letting n→ +∞, we get b(v) = limn→+∞ b(vn).
Let us define the operator Ab,g in L∞(Ω)×L∞(Ω) ⊂ L1(Ω)×L1(Ω) by (u, f) ∈

Ab,g if and only if there exists v measurable such that b(v) = u and v is an entropy
solution of Pb,g(f + u).

Proposition 4.8. Let b be strictly increasing with b(0) = 0. Then
(i) The operator Ab,g is T − accretive in L1(Ω); i.e., for all (ui, fi) ∈ Ab,g,∫

Ω

κ(f1 − f2) ≥ 0 for some κ ∈ sign(v1 − v2).

(ii) For any α > 0, R(I + αAb,g) = L∞(Ω),
(iii) D(Ab,g)L1(Ω) = {u ∈ L1(Ω), u(x) ∈ R(b) a.e.x ∈ Ω}

Proof. (i) and (ii) are direct consequences of Theorem 3.1 and the existence result.
To prove (iii), let f ∈ L∞(Ω) be such that f ± ε ∈ R(b) and let vh be an entropy
solution of

b(v)− hdiv a(v,∇g(v)) = f in Ω

g(v) = 0 on Γ

with h > 0. Then
‖b(vh)‖Lq(Ω) ≤ ‖f‖Lq(Ω) (4.25)

for every 1 ≤ q ≤ +∞. In particular, ‖vh‖L∞(Ω) ≤ C(f) and by the growth
condition, it follows that h div a(vh,∇g(vh)) → 0 in D′(Ω). Therefore, b(vh) → f in
D′(Ω) and weakly in Lp(Ω). Whence, lim infh→0 ‖b(vh)‖Lp(Ω) ≥ ‖f‖Lp(Ω). Taking
into account (4.25), we deduce that b(vh) → f strongly in L1(Ω). The proof is
complete. �

Remark 4.9. Proposition 4.8 allows to study the Cauchy problem associated to
(1.1) from the point of view of semi-groups theory. The elliptic parabolic problem

b(v)t − div a(v,∇g(v)) = f ∈ (0, T )× Ω

with initial condition and general boundary condition will be treated by the first
author in a forthcoming paper.

Corollary 4.10. For every f ∈ L1((0, T )×Ω) and every v0 ∈ D(Ab,g), there exists
a unique integral solution of

ut +Ab,g(u) 3 f
v(0) = v0,

(4.26)

with u in C([0, T ), L1(Ω)). Moreover, a comparison principle holds.
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