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EXISTENCE AND SMOOTHNESS OF SOLUTIONS TO SECOND
INITIAL BOUNDARY VALUE PROBLEMS FOR SCHRÖDINGER

SYSTEMS IN CYLINDERS WITH NON-SMOOTH BASES

NGUYEN MANH HUNG, NGUYEN THI KIM SON

Abstract. In this paper, we consider the second initial boundary value prob-

lem for strongly general Schrödinger systems in both the finite and the infinite
cylinders QT , 0 < T ≤ +∞, with non-smooth base Ω. Some results on the ex-

istence, uniqueness and smoothness with respect to time variable of generalized
solution of this problem are given.

1. Introduction

Boundary value problems for Schrödinger equations have been considered in the
books by Lions and Magenes [7] in finite cylinders QT = Ω × (0, T ), (T < +∞),
with base Ω, where ∂Ω is smooth. Their results are restricted to Schrödinger
type equations, where coefficients apq of equations are functions independent of
t (except a00). The first initial boundary value problem for general Schrödinger
systems, where the coefficients apq(x, t) are matrices of functions of two variables x
and t for all p, q, was considered in [2, 3], in cases the finite cylinder QT , T < +∞
or in cases the infinite cylinder Q∞ = Ω × (0,+∞) as in [3, 4]. In this paper, we
consider the second initial boundary value problem for these systems in both the
finite and the infinite cylinder QT = Ω × (0, T ), where 0 < T ≤ +∞ and Ω is a
domain with non-smooth boundary. Our main purpose is to study the existence,
uniqueness and smoothness with respect to time variable of generalized solution of
the mentioned problem. Such results are investigated in a scale of weighted spaces
Hm,0

γ (QT ) for some γ > 0.
As we have known, in the first problem, the qualitative properties of solution

were indicated by basing on the properties of functions u ∈
o

H m,0
γ (QT ), which let

us to the Garding inequality (see [2, 3, 4, 6]). But in the second problem, when the
solution space is H m,0

γ (QT ) and the second boundary condition is hidden in the
integral equality in the definition of generalized solution, the Garding inequality is
not valid, so it becomes more complicated to establish the unique solvability of the
problem. This difficulty is solved in this paper in section 2, Lemma 2.1. Then based
on it, we receive our results on the existence and uniqueness of generalized solution
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in section 3 and the smoothness with respect to time variable of solutions in the
last section. Moreover, the problem becomes more complicated in technics when
we consider with non homogeneously initial condition u(x, 0) = ϕ(x) in section
3, and the results that we received are more general than those in [2, 3, 4, 6], in
which the authors just considered the problem with homogeneously initial condition
u(x, 0) = 0.

2. Preliminaries

Suppose that Ω is a bounded domain in Rn, and Ω, ∂Ω denote the closure and
the boundary of Ω in Rn. We suppose that Γ = ∂Ω\{0} is a smooth manifold
and Ω coincides with the cone K = {x : x

|x| ∈ G} in a neighborhood of the origin
point 0, where G is a smooth domain on the unit sphere Sn−1 in Rn. We begin
by introducing some notations and functional spaces which are used fluently in the
rest.

Denote QT = Ω × (0, T ), ST = Γ × (0, T ), for some 0 < T ≤ +∞; x =
(x1, . . . , xn) ∈ Ω, u(x, t) = (u1(x, t), . . . , us(x, t)) is a vector complex function;
α = (α1, . . . , αn) (αi ∈ N, i = 1, . . . , n) is a multi-index; |α| = α1 + · · · + αn,
Dα = ∂|α|/∂xα1

1 . . . ∂xαn
n , |Dαu|2 =

∑s
i=1|Dαui|2, utj = (∂ju1/∂tj , . . . , ∂jus/∂tj),

Cs
k = k!

s!(k−s)! (0 ≤ s ≤ k).
In this paper we use the usual functional spaces: C∞(Ω), L2(Ω),Hm(Ω), L2(QT ),

H l,k(QT ) when T < +∞ and m, l, k ∈ N (see [3, 4] for the precise definitions).
Moreover, when 0 < T ≤ +∞ we define Hm,0

γ (QT ) (γ > 0) as the space of all
measurable complex functions u(x, t) that have generalized derivatives up to order
m with respect to x with the norm

‖u‖Hm,0
γ (QT ) = (

∑
|α|≤m

∫
QT

|Dαu|2e−2γt dx dt)
1
2 .

The space L∞(0, T ;L2(Ω)) consists of all measurable functions u : (0, T ) → L2(Ω),
t 7→ u(t) with the norm ‖u‖∞ = ess sup0<t<T ‖u(t)‖L2(Ω) < +∞.

For convenience, in the rest of this paper we say that u(x, t) belongs to some
spaces if all of its components belong to that space. We now introduce a 2mth-order
differential operator

L(x, t,D) =
m∑

|p|,|q|=0

Dp(apq(x, t)Dq), (2.1)

where apq are s × s matrices of bounded measurable complex functions defined
on QT , apq = (−1)|p|+|q|a∗qp (a∗qp denotes the transposed conjugate matric of aqp).
Moreover, we assume that the operator L satisfies a hypothesis that given as follows
(see for example [5, 8, 9]).

For all (x, t) ∈ QT and (ηp)|p|=m ∈ Cs.m∗
1 \ {0}, we have∑

|p|=|q|=m

apq(x, t)ηqηp ≥ C0

∑
|p|=m

|ηp|2, (2.2)

where C0 is a positive real number, independent of (ηp)|p|=m; m∗
1 =

∑
|p|=m 1.

Setting ηp = ξpη with ξ ∈ Rn \ {0}, ξp = ξp1
1 . . . ξpn

n and η ∈ Cs \ {0}, it
follows from condition (2.2) that

∑
|p|=|q|=m apq(x, t)ξpξqηη ≥ C0|ξ|2m|η|2, for all

(x, t) ∈ QT , which is equivalent to the strong ellipticity of the operator L. However,
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one can see easily that the condition of strong ellipticity of the operator L does not
imply the condition (2.2).

In the cylinder QT we consider the second initial boundary problem for the
Schrödinger system

i(−1)m−1L(x, t,D)u− ut = f(x, t), (x, t) ∈ QT , (2.3)

with initial condition
u(x, 0) = ϕ(x), x ∈ Ω, (2.4)

where L(x, t,D) is the operator in (2.1), satisfies the condition (2.2) and u, f, ϕ are
vector functions.

The function u(x, t) is called generalized solution in the space Hm,0
γ (QT ) of the

second initial boundary problem for the Schrödinger system (2.3) and initial con-
dition (2.4) if and only if u(x, t) ∈ Hm,0

γ (QT ), satisfying

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

apq(x, t)Dqu(x, t)Dpη(x, t) dx dt

+
∫

Qτ

u(x, t)ηt(x, t) dx dt

= −
∫

Ω

ϕ(x)η(x, 0)dx +
∫

Qτ

f(x, t)η(x, t) dx dt

(2.5)

for each 0 < τ < T and all test functions η(x, t) ∈ Hm,1(Qτ ), η(x, τ) = 0. Set

B[u, v](t) =
m∑

|p|,|q|=0

(−1)|p|
∫

Ω

apq(x, t)Dqu(x, t)Dpv(x, t)dx.

To consider the problem we need to prove the important following lemma.

Lemma 2.1. There exist two constants µ0 > 0 and λ0 such that the inequality

(−1)mB[u, u](t) ≥ µ0‖u‖2
Hm(Ω) − λ0‖u‖2

L2(Ω)

is valid for all u ∈ Hm,0
γ (QT ), γ > 0 and almost t ∈ (0, T ).

Proof. It follows from (2.2) that∑
|p|=|q|=m

∫
Ω

apq(x, t) DquDpudx ≥ C0

∑
|p|=m

‖Dpu‖2
L2(Ω)

for all u(x, t) ∈ Hm,0
γ (QT ) and almost t ∈ (0, T ), where C0 is a positive number,

independent of u. Since apq are bounded, using Cauchy’s inequality one has

C0

∑
|p|=m

‖Dpu‖2
L2(Ω)

≤
∑

|p|=|q|=m

∫
Ω

apq DquDpudx

= (−1)mB[u, u](t)− (−1)m
∑

|p|+|q|<2m, |p|,|q|≤m

(−1)|p|
∫

Ω

apq DquDpudx

≤ (−1)mB[u, u](t) + C(ε)‖u‖2
Hm−1(Ω) + ε

∑
|p|=m

‖Dpu‖2
L2(Ω),
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where 0 < ε < C0, C(ε) > 0. This implies∑
|p|=m

‖Dpu‖2
L2(Ω) ≤ C1(−1)mB[u, u](t) + C2‖u‖2

Hm−1(Ω), (2.6)

where C1 = 1
C0−ε , C2 = C(ε)

C0−ε > 0. Following [1, Theorem 4.15], we have for all
ε > 0, there exists a constant C3(ε) such that the inequality∑

|p|=k

‖Dpu‖2
L2(Ω) ≤ ε

∑
|p|=m

‖Dpu‖2
L2(Ω) + C3(ε)‖u‖2

L2(Ω) (2.7)

holds for all k = 1, 2, . . . ,m − 1, and for all u ∈ Hm(Ω). Note that for all 0 <
T ≤ +∞, if u ∈ Hm,0

γ (QT ), γ > 0, then for almost fixed point t1 ∈ (0, T ) we have
u(x, t1) ∈ Hm(Ω) and (2.7) is valid for u(x, t1). Because ε, C3(ε) are independent
of t1 ∈ (0, T ), so one gets∑

|p|=k

‖Dpu(x, t)‖2
L2(Ω) ≤ ε

∑
|p|=m

‖Dpu(x, t)‖2
L2(Ω) + C(ε)‖u(x, t)‖2

L2(Ω) (2.8)

for all k = 1, 2, . . . ,m− 1, for all u ∈ Hm,0
γ (QT ) and almost t ∈ (0, T ). This follows

that for all 0 < ε < 1, there exists C4 = C4(ε) such that the following inequality
holds

‖u‖2
Hm−1(Ω) ≤ ε‖u‖2

Hm(Ω) + C4‖u‖L2(Ω) (2.9)

for all u ∈ Hm,0
γ (QT ), almost t ∈ (0, T ).

Hence, from (2.6) and (2.9) we have

‖u‖2
Hm(Ω) ≤ C1(−1)mB[u, u](t) + (C2 + 1)‖u‖2

Hm−1(Ω)

≤ C1(−1)mB[u, u](t) + (C2 + 1)[ε‖u‖2
Hm(Ω) + C4‖u‖2

L2(Ω)]

for all 0 < ε < min{1, C0,
1

C2+1}. So we obtain

(−1)mB[u, u](t) ≥ µ0‖u‖2
Hm(Ω) − λ0‖u‖2

L2(Ω),

where µ0 = [1− (C2 + 1)ε](C0 − ε) > 0, λ0 = C4(C2 + 1)(C0 − ε). This proves the
lemma. �

From lemma 2.1, using the transformation u(x, t) = eiλ0tv(x, t) if necessary, we
can assume that the operator L(x, t,D) satisfies

(−1)mB[u, u](t) ≥ µ0‖u‖2
Hm(Ω) (2.10)

for all u ∈ Hm,0
γ (QT ), almost t ∈ (0, T ).

3. The uniqueness and existence theorems

In this section we investigate the unique solvability of the second initial boundary
value problem for the system (2.3) with non homogeneously initial condition (2.4)
in the space Hm,0

γ (QT ), γ > 0, where 0 < T ≤ +∞.
Denote m∗ =

∑m
|p|=1 1, we begin by studying the uniqueness theorem.

Theorem 3.1. Assume that for a positive constant µ,

sup{|∂apq

∂t
| : (x, t) ∈ QT , 0 ≤ |p|, |q| ≤ m} ≤ µ .
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Then the second initial boundary value problem for (2.3) with non homogeneously
initial condition (2.4) has at most one generalized solution in Hm,0

γ (QT ) for all
γ > 0 arbitrary.

Proof. Suppose that the problem has two solutions u1, u2 in Hm,0
γ (QT ). Put u =

u1 − u2. For all 0 < τ < T and b ∈ (0, τ) we set

η(x, t) =

{∫ t

b
u(x, s)ds, 0 ≤ t ≤ b,

0, b < t ≤ τ.

It is easy to check that η(x, t) ∈ Hm,1(Qτ ), η(x, τ) = 0 and ηt(x, t) = u(x, t) for all
(x, t) ∈ Qb. It follows from (2.5) that

(−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Qb

apqD
qηtDpη dx dt + i

∫
Qb

|ηt|2 dx dt = 0. (3.1)

Adding this equation with its complex conjugate, using apq = (−1)|p|+|q|a∗qp and
integrating by parts with respect to t, we get

B[η, η](0) = −
m∑

|p|,|q|=0

(−1)|p|
∫

Qb

∂apq

∂t
DqηDpη dx dt.

Since |∂apq

∂t | are bounded, using the Cauchy inequality and (2.10), we obtain

‖η(x, 0)‖2
Hm(Ω) ≤ C‖η(x, t)‖2

Hm,0(Qb)
, (C = µm∗/µ0 > 0). (3.2)

Putting vp(x, t) =
∫ 0

t
Dpu(x, s)ds, 0 < t < b, 0 ≤ |p| ≤ m, so we have Dpη(x, t) =∫ t

b
Dpu(x, s)ds = vp(x, b) − vp(x, t), Dpη(x, 0) = vp(x, b). Substituting those into

(3.2), one gets

m∑
|p|=0

∫
Ω

|vp(x, b)|2dx ≤ 2Cb
m∑

|p|=0

∫
Ω

|vp(x, b)|2dx + 2C
m∑

|p|=0

∫
Qb

|vp(x, t)|2 dx dt.

Setting J(t) =
∑m
|p|=0

∫
Ω
|vp(x, t)|2dx, we have (1 − 2Cb)J(b) ≤ 2C

∫ b

0
J(t)dt, or

J(b) ≤ 4C
∫ b

0
J(t)dt, for all b ∈ [0, 1

4C ]. This implies that J(t) ≡ 0 on [0, 1
4C ] by

Gronwall-Bellman’s inequality. It follows u1 ≡ u2 on [0, 1
4C ], where C does not

depend on τ . Using similar arguments for two functions u1, u2 on [ 1
4C , τ ], we can

show that after finite steps we get u1 ≡ u2 on [0, τ ]. Since 0 < τ < T is arbitrary,
so u1 ≡ u2 on (0, T ). The theorem is proved. �

Now, we establish the existence of generalized solution of the mentioned problem
by Galerkin’s approximate method.

Theorem 3.2. Assume that:

(i) For a positive constant µ, |apq(x, 0)|;
∣∣∂apq

∂t

∣∣ ≤ µ, for all 0 ≤ |p|, |q| ≤ m;
and all (x, t) ∈ QT ;

(ii) f, ft ∈ L∞(0, T ; L2(Ω)), f(., 0) ∈ L2(Ω);
(iii) ϕ ∈ Hm(Ω).
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Then for every γ > γ0 = m∗µ
2µ0

the second initial boundary value problem for (2.3)–
(2.4) has a generalized solution u(x, t) in the space Hm,0

γ (QT ) and the following
estimate holds

‖u‖2
Hm,0

γ (QT )
≤ C

[
‖ϕ‖2

Hm(Ω) + ‖f(., 0)‖2
L2(Ω) + ‖f‖2

∞ + ‖ft‖2
∞

]
,

where the constant C only depends on µ, µ0.

Proof. Let {ϕk(x)}∞k=1 be a basis of Hm(Ω), which is orthonormal in L2(Ω). We
find an approximate solution uN (x, t) in the form uN (x, t) =

∑N
k=1 CN

k (t)ϕk(x),
where {CN

k (t)}N
k=1 satisfies

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫

Ω

apqD
quNDpϕldx−

∫
Ω

uN
t ϕldx =

∫
Ω

fϕldx, (3.3)

CN
l (0) =

∫
Ω

ϕ(x)ϕl(x)dx, l = 1, . . . , N. (3.4)

From (i), (ii) and (3.3)–(3.4) it follows that coefficients CN
k (t) are defined uniquely

and ‖uN (x, 0)‖2
Hm(Ω) ≤ ‖ϕ(x)‖2

Hm(Ω) for all N = 1, 2, . . . .

After multiplying (3.3) by dCN
l (t)

dt , taking sum with respect to l from 1 to N , we
get

(−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Ω

apqD
quNDpuN

t dx− i

∫
Ω

uN
t uN

t dx = i

∫
Ω

fuN
t dx. (3.5)

Adding this equality and its complex conjugate, we have

(−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Ω

apq
∂

∂t
(DquNDpuN )dx = −2 Im

∫
Ω

fuN
t dx.

So for all 0 < τ < T , by integrating with respect to t from 0 to τ , and integrating
by parts, we obtain

(−1)mB[uN , uN ](τ) = (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

∂apq

∂t
DquNDpuN dx dt

+ (−1)mB[uN , uN ](0)− 2 Im
∫

Ω

f(x, 0)uN (x, 0)dx

+ 2 Im
[ ∫

Ω

f(x, τ)uN (x, τ)dx−
∫

Qτ

ftuN dx dt
]
.

This implies by Cauchy’s inequality and (2.10) that for all 0 < ε < µ0,

‖uN (x, τ)‖2
Hm(Ω) ≤

m∗µ + ε

µ0 − ε

∫ τ

0

‖uN (x, t)‖2
Hm(Ω)dt +

m∗µ + ε

µ0 − ε
‖uN (x, 0)‖2

Hm(Ω)

+
1

ε(µ0 − ε)
[
‖f(x, 0)‖2

L2(Ω) + ‖f‖2
∞ + τ‖ft‖2

∞
]
.

Applying Gronwall-Bellman’s inequality, one gets

‖uN (x, τ)‖2
Hm(Ω)

≤ C1

[
‖uN (x, 0)‖2

Hm(Ω) + ‖f(x, 0)‖2
L2(Ω) + ‖f‖2

∞ + ‖ft‖2
∞

]
e

m∗µ+ε
µ0−ε τ ,
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where C1 = max{ m∗µ
µ0−ε , 1

ε(µ0−ε)} > 0. Therefore,

‖uN (x, τ)‖2
Hm(Ω) ≤ C1

[
‖ϕ‖2

Hm(Ω) +‖f(x, 0)‖2
L2(Ω) +‖f‖

2
∞+‖ft‖2

∞

]
e

m∗µ+ε
µ0−ε τ . (3.6)

For each γ > γ0 = µm∗

2µ0
= inf(0,µ0)

m∗µ+ε
2(µ0−ε) we can choose ε ∈ (0, µ0) such that

γ > m∗µ+ε
2(µ0−ε) ; i.e., −2γ + m∗µ+ε

(µ0−ε) < 0. Multiplying (3.6) with e−2γτ , then integrating
with respect to τ from 0 to T , we obtain

‖uN‖2
Hm,0

γ (QT )
≤ C

[
‖ϕ‖2

Hm(Ω) + ‖f(., 0)‖2
L2(Ω) + ‖f‖2

∞ + ‖ft‖2
∞

]
, (3.7)

where C > 0 independent of N . Since the sequence {uN} is uniformly bounded
in Hm,0

γ (QT ), we can take a subsequence, denoted also by {uN} for convenience,
which converges weakly to a vector function u(x, t) in Hm,0

γ (QT ).
We will prove that u(x, t) is a generalized solution of the problem. Since

M =
∞⋃

N=1

{
N∑

l=1

dl(t)ϕl(x), dl(t) ∈ H1(0, τ), dl(τ) = 0, ∀l = 1, 2, . . . , N}

is dense in the space of test functions Ĥm,1(Qτ ) = {η(x, t) ∈ Hm,1(Qτ ), η(x, τ) = 0}
for all 0 < τ < T so it suffices to show that u(x, t) satisfies (2.5) for all η(x, t) ∈ M .
Note that the denseness of the set M in the space Ĥm,1(Qτ ) can be proved easily
by using lemma 2.1 and arguments analogous as that used in the first problem (see
in [2, 3]).

Taking η(x, t) ∈ M arbitrarily, there exists N0 such that η can be written in
the form η(x, t) =

∑N0
l=1 dl(t)ϕl(x), dl(t) ∈ H1(0, τ), dl(τ) = 0, ∀l = 1, . . . , N0.

Multiplying (3.3) (with N ≥ N0) by dl(t), taking sum with respect to l from 1 to
N , then integrating with respect to t from 0 to τ , we obtain

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

apqD
quNDpη dx dt−

∫
Qτ

uN
t η dx dt =

∫
Qτ

fη dx dt.

It is easy to check that
∫

Qτ
uN

t η dx dt = −
∫
Ω

ϕ(x)η(x, 0)dx−
∫

Qτ
uNηt dx dt, so one

has

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

apqD
quNDpη dx dt +

∫
Qτ

uNηt dx dt

= −
∫

Ω

ϕ(x)η(x, 0)dx +
∫

Qτ

fη dx dt.

Passing to the limit for the weakly convergent subsequence, we get

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

apqD
quDpη dx dt +

∫
Qτ

uηt dx dt

= −
∫

Ω

ϕ(x)η(x, 0)dx +
∫

Qτ

fη dx dt.

Hence u(x, t) is a generalized solution of the second initial boundary value problem
for the system (2.3)–(2.4). Moreover, the weak convergence of the subsequence of
{uN (x, t)} and (3.7) imply that this solution satisfies the inequality

‖u‖2
Hm,0

γ (QT )
≤ lim inf

N→∞
‖uN‖2

Hm,0
γ (QT )
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≤ C
[
‖ϕ‖2

Hm(Ω) + ‖f(., 0)‖2
L2(Ω) + ‖f‖2

∞ + ‖ft‖2
∞

]
,

where C only depends on µ, µ0. This completes the proof. �

4. Smoothness of generalized solutions with respect to time

In this section, we consider the second initial boundary value problem for the
system

i(−1)m−1L(x, t,D)u− ut = f(x, t), (x, t) ∈ QT , (4.1)

u(x, 0) = 0, x ∈ Ω, (4.2)

We will prove that the smoothness with respect to time variable of generalized
solution of the second initial boundary value problem for the Schrödinger system
(4.1)–(4.2) depends on only the smoothness with respect to time variable of the
coefficients and the right side of the systems. Indeed, we have the following theorem.

Theorem 4.1. Suppose that

(i) for some positive constant µ, {|apq(x, 0)|, |∂
kapq

∂tk (x, t)|} ≤ µ, for all 0 ≤
|p|, |q| ≤ m, all (x, t) ∈ QT , all 1 ≤ k ≤ h + 1;

(ii) ftk ∈ L∞(0, T ;L2(Ω)), for all 0 ≤ k ≤ h + 1, f(x, 0) = 0, if h ≥ 2 then we
assume that ftk(x, 0) = 0, for all 1 ≤ k ≤ h− 1, all x ∈ Ω.

Then for every γ > γ0 = m∗µ
2µ0

the generalized solution u(x, t) of the second problem
for (4.1)–(4.2) has the generalized derivatives with respect to t up to order h in the
space Hm,0

(2h+1)γ(QT ) and the following estimate holds

‖uth‖2
Hm,0

(2h+1)γ
(QT )

≤ C

h+1∑
k=0

‖ftk‖2
∞, (4.3)

where the constant C does not depend on u and f .

Proof. Let {ϕk(x)}∞k=1 be a basis of Hm(Ω), which is orthonormal in L2(Ω). For
each natural number N , we set uN (x, t) =

∑N
k=1 CN

k (t)ϕk(x), where {CN
k (t)}N

k=1

is the solution of the ordinary differential system

(−1)m−1i
m∑

|p|,|q|=0

(−1)|p|
∫

Ω

apqD
quNDpϕldx−

∫
Ω

uN
t ϕldx =

∫
Ω

fϕldx, (4.4)

with CN
l (0) = 0, l = 1, . . . , N .

From (i), (ii), it follows that coefficients CN
k (t), defined uniquely by (4.4), have

derivatives up to order h + 1 and uN (x, 0) = 0.
We will prove that

DpuN
tk(x, 0) = 0, ∀0 ≤ k ≤ h, 0 ≤ |p| ≤ m,∀x ∈ Ω. (4.5)

Indeed, it is clear that (4.5) holds for k = 0. Differentiating (4.4) (k−1) times with
respect to t, multiplying by dk

dtk

(
CN

l (t)
)
, then taking sum with respect to l from 1
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to N , we obtain

− i

∫
Ω

∣∣uN
tk

∣∣2dx + (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Ω

apqD
quN

tk−1DpuN
tkdx

= (−1)m−1
m∑

|p|,|q|=0

(−1)|p|
k−2∑
s=0

Cs
k−1

∫
Ω

∂k−s−1apq

∂tk−s−1
DquN

tsDpuN
tkdx

+ i

∫
Ω

ftk−1uN
tkdx.

(4.6)

By using (ii) and induction on k, we obtain (4.5) holds for all 0 ≤ k ≤ h.
In the following part, we shall prove the inequalities∥∥uN

th(x, τ)
∥∥2

Hm(Ω)
≤ Ceλhτ

h+1∑
k=0

‖ftk‖2
∞, ∀0 < τ < T, ∀N = 1, 2, . . . , (4.7)

∥∥uN
th

∥∥2

Hm,0
(2h+1)γ

(QT )
≤ C

h+1∑
k=0

∥∥ftk

∥∥2

∞ (4.8)

are valid with 0 < ε < µ0, λh = (2h+1)m∗µ+ε
µ0−ε ; C does not depend on N , f .

From the inequalities (3.6)–(3.7) (with ϕ(x) = 0, f(x, 0) = 0), we can see easily
that (4.7)–(4.8) hold for h = 0, and {uN} convergent weakly to the solution u of
the problem in Hm,0

γ (QT ).
Now let (4.7)–(4.8) be true for h − 1. We will prove that these also hold for h.

Integrating (4.6), for k = h + 1, with respect to t from 0 to τ , we get

− i

∫
Qτ

∣∣uN
th+1

∣∣2 dx dt + (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

apqD
quN

thDpuN
th+1 dx dt

= (−1)m−1
m∑

|p|,|q|=0

(−1)|p|
h−1∑
s=0

Cs
h

∫
Qτ

∂h−sapq

∂th−s
DquN

tsDpuN
th+1 dx dt

+ i

∫
Qτ

fthuN
th+1 dx dt.

Adding this equation with its complex conjugate then integrating by parts with
respect to t, using (ii), (4.5), we obtain

(−1)mB[uN
th(x, τ), uN

th(x, τ)]

= (−1)m
m∑

|p|,|q|=0

(−1)|p|
∫

Qτ

∂apq

∂t
DquN

thDpuN
th dx dt

+ (−1)m2 Re
m∑

|p|,|q|=0

(−1)|p|.h.

∫
Qτ

∂apq

∂t
DquN

thDpuN
th dx dt

+ (−1)m2 Re
m∑

|p|,|q|=0

(−1)|p|
h−1∑
s=0

Cs
h

∫
Qτ

∂h−s+1apq

∂th−s+1
DquN

tsDpuN
th dx dt

+ (−1)m2 Re
m∑

|p|,|q|=0

(−1)|p|
h−2∑
s=0

Cs
h

∫
Qτ

∂h−sapq

∂th−s
DquN

ts+1DpuN
th dx dt
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− (−1)m 2 Re
m∑

|p|,|q|=0

(−1)|p|
h−1∑
s=0

Cs
h

∫
Ω

∂h−sapq

∂th−s
(x, τ)DquN

ts (x, τ)DpuN
th(x, τ)dx

− 2 Im
∫

Ω

fth(x, τ)uN
th(x, τ)dx − 2 Im

∫
Qτ

fth+1uN
th dx dt.

For all ε1 > 0, using Cauchy’s inequality and (2.10), we have

[µ0 − (µm∗(2h − 1) + 1)ε1]‖uN
th(x, τ)‖2

Hm(Ω)

≤ [(2h + 1)m∗µ + ((2h+1 − 2− h)µm∗ + 1)ε1]
∫ τ

0

∥∥uN
th(x, t)

∥∥2

Hm(Ω)
dt

+ C
[ h−1∑

k=0

∥∥uN
tk

∥∥2

Hm,0(Qτ )
+

h−1∑
k=0

∥∥uN
tk(x, τ)

∥∥2

Hm(Ω)
+ ‖fth‖2

∞ + τ
∥∥fth+1

∥∥2

∞

]
,

where C = max{ 2µm∗M
ε1

, 1
ε1
}, M = maxs=0,h−1 Cs

h.
Set ε = ((2h+1 − 2 − h)µm∗ + 1)ε1 ≥ ((2h − 1)µm∗ + 1)ε1 > 0 for h > 0. This

implies that for all 0 < ε < µ0,

‖uN
th(x, τ)‖2

Hm(Ω)

≤ (2h + 1)m∗µ + ε

µ0 − ε

∫ τ

0

∥∥uN
th(x, t)

∥∥2

Hm(Ω)
dt

+ C1

[ h−1∑
k=0

∥∥uN
tk

∥∥2

Hm,0(Qτ )
+

h−1∑
k=0

∥∥uN
tk(x, τ)

∥∥2

Hm(Ω)
+ ‖fth‖2

∞ + τ
∥∥fth+1

∥∥2

∞

]
,

where C1 is a positive constant.
Using the induction assumption, one has

‖uN
th(x, τ)‖2

Hm(Ω) ≤ λh

∫ τ

0

∥∥uN
th(x, t)

∥∥2

Hm(Ω)
dt+C2e

λh−1τ (1+τ)
h+1∑
k=0

∥∥ftk

∥∥2

∞, (4.9)

where C2 = const > 0. Applying Gronwall-Bellman’s inequality, we obtain

‖uN
th(x, τ)‖2

Hm(Ω) ≤ C3 eλhτ
h+1∑
k=0

∥∥ftk

∥∥2

∞, (4.10)

where C3 is a positive constant. We can choose 0 < ε < µ0 such that (2h+1)γ > λh

2

for all γ > γ0 = µm∗

2µ0
, because

inf
0<ε<µ0

(2h + 1)m∗µ + ε

2(µ0 − ε)
=

(2h + 1)m∗µ

2µ0
< (2h + 1)γ .

After multiplying (4.10) with e−2(2h+1) γ τ , then integrating with respect to τ from
0 to T , we have the inequality

∥∥uN
th

∥∥2

Hm,0
(2h+1)γ

(QT )
≤ C

h+1∑
k=0

∥∥ftk

∥∥2

∞, (4.11)

where C is a positive number, independent of N , f . Hence (4.7)–(4.8) hold for h.
Since

{
uN

th

}
is bounded in Hm,0

(2h+1)γ(QT ) for all γ > γ0, we can choose a subsequence
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which converges weakly to a vector function u(h) in Hm,0
(2h+1)γ(QT ). On the other

hand, one has∫
QT

uN
thv dx dt = −(1)h

∫
QT

uNvth dx dt, ∀v ∈ C∞0 (QT ).

Passing N → ∞, it follows that
∫

QT
u(h)v dx dt = −(1)h

∫
QT

uvth dx dt, for all
v ∈ C∞0 (QT ); i.e., u has generalized derivatives up to order h with respect to t and
uth = u(h). Furthermore, by passing (4.11) to the limit for the weakly convergent
subsequence, we obtain ∥∥uth

∥∥2

Hm,0
(2h+1)γ

(QT )
≤ C

h+1∑
k=0

∥∥ftk

∥∥2

∞. (4.12)

The theorem is proved. �

Remark 4.2. We also have the same results of the smoothness with respect to
time variable of the solution of the system (2.3)–(2.4) if the initial function ϕ(x)
is required to be in Hm(Ω) space and the coefficients apq and the right side f are
required to satisfy some suitable conditions.
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