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EXISTENCE OF GLOBAL SOLUTIONS FOR SYSTEMS OF
SECOND-ORDER FUNCTIONAL-DIFFERENTIAL EQUATIONS

WITH p-LAPLACIAN

MIROSLAV BARTUŠEK, MILAN MEDVEĎ

Abstract. We find sufficient conditions for the existence of global solutions
for the systems of functional-differential equations`

A(t)Φp(y′)
´′

+ B(t)g(y′, y′t) + R(t)f(y, yt) = e(t),

where Φp(u) = (|u1|p−1u1, . . . , |un|p−1un)T which is the multidimensional

p-Laplacian.

1. Introduction

There are many papers concerning various problems for ordinary differential
equations with p-Laplacian. From the recently published papers and books see
e.g. [14, 15, 24, 25, 26]. The problems treated in this paper are close to those
studied in [1]-[6], [8]-[26]. The recently published paper [10] contains some results
on the existence of positive solutions of a boundary value problem for a p-Laplacian
functional- differential equations. This paper motivated us to study the problem
of the existence of global solutions for such type of equations. This problem for
functional-differential equations of the first order on the Banach space has been
recently studied in the paper [20]. A survey of papers on this problems concerning
systems of ordinary differential equations and also scalar differential equations with
p-Laplacian and some remarks on results close to the results proved in [21] can be
found in the introduction of this paper.

In this paper, we are concerned with the initial value problem(
A(t)Φp(y′)

)′ + B(t)g(y′, y′t) + R(t)f(y, yt) = e(t), t ≥ 0, (1.1)

y(t) = ϕ0(t), y′(t) = ϕ1(t), −r ≤ t ≤ 0, (1.2)

where n ∈ {1, 2, . . . }, Φp(u) = (|u1|p−1u1, . . . , |un|p−1un)T , u ∈ Rn, yt ∈ C1 :=
C1(〈−r, 0〉, Rn), yt(Θ) = y(t + Θ), y′t ∈ C = C(〈−r, 0〉, Rn), y′t(Θ) = y′(t + Θ),
A(t), B(t), R(t) are continuous, matrix-valued functions on R+ := 〈0,∞), A(t) is
regular for all t ∈ R+, e : R+ → Rn, ϕ0 : 〈−r, 0〉 → Rn, ϕ1 : 〈−r, 0〉 → Rn and
f : Rn × C1 → Rn, g : Rn × C → Rn are continuous mappings.
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The aim of the paper is to study the problem of the existence of global solutions
of the equation (1.1) in the sense of the following definition.

Definition 1.1. A solution y(t), t ∈ 〈−r, T ) of the initial value problem (1.1), (1.2)
is called non-extendable to the right if either T < ∞ and limt→T− [‖y(t)‖+‖y′(t)‖] =
∞, or T = ∞, i. e. y(t) is defined on 〈−r,∞). In the second case the solution y(t)
is called global.

We shall use in the sequel the norm ‖z‖ = max0≤i≤n |zi| of z = (z1, z2, . . . , zn) ∈
Rn. The main results of this paper are formulated in the following theorems.

Theorem 1.2. Let m > p,m ≥ 1, A(t), B(t), R(t) be continuous matrix-valued
functions on 〈0,∞), A(t) be regular for all t ∈ R+, e : R+ → Rn, f, g : Rn → Rn be
continuous mappings and ϕ0 ∈ C1, ϕ1 ∈ C, ϕ0(0) = y0, ϕ1(0) = y1. Let∫ ∞

0

‖R(s)‖sm−1ds < ∞ (1.3)

and there exist constants K1,K2 > 0 such that

‖g(u, v)‖ ≤ K1(‖u‖m + ‖v‖m
C ), ‖f(u, v)‖ ≤ K2(‖u‖m + ‖v‖m

C ) , (1.4)

for all (u, v) ∈ Rn × C. Let A∞ = sup0≤t<∞ ‖A(t)−1‖, R∞ =
∫∞
0
‖R(s)‖ds,

B∞ := sup
0≤t<∞

∫ t

0

‖B(τ)‖dτ < ∞, E∞ := sup
0≤t<∞

∫ t

0

‖e(s)‖ds < ∞

and
m− p

p
c

m−p
p sup

0≤t<∞

∫ t

0

F (s)ds < 1, (1.5)

where

c := A∞{‖A(0)Φp(y1)‖+ 2m−1K1‖ϕ1‖m
C B∞

+ 2m−1K2

(
‖y0‖m +

(
‖ϕ0‖C + ‖y0‖

)m)
R∞},

F (t) = 2mK2A∞

∫ ∞

t

‖R(s)‖sm−1ds + (2m−1 + 1)K1A∞‖B(t)‖ .

Then any nonextendable to the right solution y(t) of the initial value problem (1.1),
(1.2) is global.

Due to the continuous Jensen’s inequality, Theorem 1.2 is valid for m ≥ 1 only.
A similar result is stated in the following theorem in case m < 1 under stronger
assumptions.

Theorem 1.3. Let m > p > 0, 0 < m < 1, A(t), B(t), R(t) be continuous matrix-
valued functions on R+, A regular for all t ∈ R+, e : R+ → Rn, f, g : Rn → Rn be
continuous mappings and ϕ0 ∈ C1, ϕ1 ∈ C, ϕ0(0) = y0, ϕ1(0) = y1. Let constants
K1, K2 > 0 exist such that

‖g(u, v)‖ ≤ K1(‖u‖m + ‖v‖m
C ), ‖f(u, v)‖ ≤ K2(‖u‖m + ‖v‖m

C )

for (u, v) ∈ Rn × C. Let

m− p

p
C

m−p
p

1 sup
0≤t<∞

∫ t

0

F1(s) ds < 1 ,
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where B∞ and E∞ are given in Theorem 1.2.2 and

C1 = A∞
{
‖A(0)Φp(y1)‖+ 2mK1‖ϕ1‖m

C B∞

+ 2mK2R∞
(
‖y0‖m + (‖ϕ0‖+ ‖y0‖)m

)}
,

F1(t) = (2m + 1)A∞K1‖B(t)‖+ 2m+1A∞K2‖R(t)‖tm .

Then any nonextendable to the right solution y(t) of the initial value problem (1.1),
(1.2) is global.

The above theorem solves the problem in case m ≤ p.

Theorem 1.4. Let p > 0, 0 < m ≤ p, A(t), B(t), R(t) be continuous matrix-
valued functions on R+, A regular for all t ∈ R+, e : R+ → Rn, f, g : Rn → Rn

be continuous mappings and ϕ0 ∈ C1, ϕ1 ∈ C. Let constants K1, K2, K3, K4, K5

and K6 exist such that

‖g(u, v)‖ ≤ K1

(
‖u‖m + ‖v‖m

C

)
, ‖f(u, v)‖ ≤ K2

(
‖u‖m + ‖v‖m

C

)
for ‖u‖ ≥ 1, ‖v‖C ≥ 1,

‖g(u, v)‖ ≤ K3‖u‖m , ‖f(u, v)‖ ≤ K4‖u‖m for ‖u‖ ≥ 1, 0 ≤ ‖v‖C < 1

and

‖g(u, v)‖ ≤ K5‖v‖m
C , ‖f(u, v)‖ ≤ K6‖v‖m

C for 0 ≤ ‖u‖ < 1, ‖v‖C ≥ 1.

Then any nonextendable to the right solution y(t) of the initial value problem (1.1),
(1.2) is global.

A special case of the equation (1.1) with g, f independent of y′t and yt, respec-
tively, i.e. the equation

A(t)Φp(y′)′ + B(t)g(y′) + R(t)f(y) = e(t), t ≥ 0, (1.6)

and with the initial conditions

y(0) = y0, y′(0) = y1 (1.7)

has been studied in the paper [21]. A similar theorem to Theorem 1.2 on the
existence of a global solution of the initial value problem (1.6), (1.7) is proved
there. It is assumed there that there exist positive constants K1,K2 such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(u)‖ ≤ K2‖u‖m, u ∈ Rn, (1.8)

where the constant c and the function F (t) are defined in [21, Theorem 1.1] as
follows:

c := n
p
2 A∞

{
‖A(0)Φp(y1)‖+ 2m−1K2‖y0‖R∞ + E∞

}
, (1.9)

F (t) := K1‖B(t)‖+ 2m−1K2

∫ ∞

t

‖R(s)‖sm−1ds, (1.10)

‖w‖ is the Euclidean norm of w ∈ Rn. If the condition (1.8) and one of the
assumptions 1., 2. of [21, Theorem 1.1] (with c, F defined by (1.9) and (1.10)) is
satisfied, then a solution of the initial value problem (1.6), (1.7) is global.

We remark that in [21, Theorem 1.1] there is a misprint. There must be A∞ =
sup0≤t<∞ ‖A(t)−1‖ instead of A∞ = sup0≤t<∞ ‖A(t)−1‖−1.
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Corollary 1.5. Consider the differential equation

y′′ = tα|y|m sgn y (1.11)

with m > 1. Then ε > 0 exists such that a solution of the problem (1.11), |y(0)| < ε,
|y′(0)| < ε is defined on R+ if and only if

α < −m− 1 . (1.12)

Corollary 1.5 shows that condition (1.3) cannot be weaken, the integral cannot
be infinite.

2. Proofs of the main results

Proof of Theorem 1.2. Let y : 〈−r, T ) → Rn be a nonextendable to the right
solution of the initial value problem (1.1), (1.2) with 0 < T < ∞. If we denote
u(t) = y′(t) for t ≥ 0, then y(t) = y0 +

∫ t

0
u(τ)dτ and we can write (1.1) as

Φp(u(t)) = A(t)−1
{
A(0)ϕ(y1)−

∫ t

0

B(s)g(u(s), y′s)ds

−
∫ t

0

R(s)f(y0 +
∫ s

0

u(τ)dτ, ys)ds +
∫ t

0

e(s)ds
}
, t ≥ 0 .

We need to estimate ‖ys‖C and ‖y′s‖C . From the definition of the shift operators
we have

‖ys‖C = max
−r≤Θ≤0

‖y(s + Θ)‖ = max{ρ1(s), ρ2(s)} ≤ ρ1(s) + ρ2(s) ,

where

ρ1(s) = max
−r≤s+Θ≤0

‖y(s + Θ)‖ ≤ ‖φ0‖C ,

ρ2(s) = max
s+Θ≥0

‖y(s + Θ)‖ ≤ max
s+Θ≥0

{‖y0‖+
∫ s+Θ

0

‖u(τ)‖dτ} ≤ ‖y0‖

+
∫ s

0

‖u(τ)‖dτ

and this yields

‖ys‖C ≤ ‖ϕ0‖C + ‖y0‖+
∫ s

0

‖u(τ)‖dτ . (2.1)

We can estimate analogously ‖y′s‖:

‖y′s‖C = max
−r≤Θ≤0

‖y′(s + Θ)‖ = max{σ1(s), σ2(s)} ≤ σ1(s) + σ2(s) ,

where

σ1(s) = max
−r≤s+Θ≤0

‖y′(s + Θ)‖ = max
−r≤s+Θ≤0

‖ϕ1(s + Θ)‖ ≤ ‖ϕ1‖C ,

σ2(s) = max
s+Θ≥0

‖y′(s + Θ)‖ = max
s+Θ≥0

‖u(s + Θ)‖ ≤ max
0≤τ≤s

‖u(τ)‖.

Thus we have
‖y′s‖C ≤ ‖ϕ1‖C + max

0≤τ≤s
‖u(τ)‖ . (2.2)
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From (1.1), the inequalites (2.1), (2.2) and the assumptions of the theorem we
obtain

‖Φp(u(t)‖ ≤ ‖A(t)−1‖
{
‖A(0)Φp(y1)‖+ K1

∫ t

0

‖B(s)‖ ‖u(s)‖mds

+ K1

∫ t

0

‖B(s)‖
(
(‖ϕ1‖C + max

0≤τ≤s
‖u(τ)‖

)mds

+ K2

∫ t

0

‖R(s)‖‖y0 +
∫ s

0

u(τ)dτ‖mds + K2

∫ t

0

‖R(s)‖
[
‖ϕ0‖C

+ ‖y0‖+
∫ s

0

‖u(τ)‖dτ
]mds

)
} .

(2.3)

Now applying the continuous and discrete versions of the Jensen’s inequality (see
[17, Theorem 2, Chapter VIII] and the Fubini theorem in a similar way as in the
proof of [21, Theorem 1.2] we obtain the inequality

v(t)p ≤ c +
∫ t

0

F1(τ)v(τ)mdτ +
∫ t

0

F2(τ)[ sup
0≤s≤τ

v(τ)]mdτ, 0 ≤ t < T,

where c is given in the theorem and v(t) = ‖u(t)‖. If we denote by G(t) the right-
hand side of this inequality then vp(s) ≤ G(t) for s ≤ t and therefore we obtain the
following inequality for w(t) := sup0≤σ≤t v(σ):

w(t)p ≤ c +
∫ t

0

F (τ)w(τ)mdτ, 0 ≤ t < T,

where F = F1 + F2 is the function from the theorem. From [21, Lemma] it follows
that M = sup0≤t<T ‖u(t)‖ < ∞ and since w(t) := sup0≤σ≤t ‖u(σ)‖ we obtain that
for the solution y(t) = y0 +

∫ t

0
u(s)ds of the initial value problem (1), (2) we have

limt→T− ‖y(t)‖ ≤ limt→T−
(
‖y0‖+ t sup0≤s<T ‖u(s)‖

)
< ∞. Thus we have proved

that limt→T− [‖y(t)‖+ ‖y′(t)‖] < ∞, i. e. the solution y(t) is global.

Proof of Theorem 1.3. Let y : 〈−r, T ) → Rn be a nonextendable to the right
solution of the initial value problem (1.1), (1.2) with 0 < T < ∞ and u(t) = y′(t)
for t ≥ 0. Then (2.3) holds. Denote w(t) = max0≤s≤t ‖u(s)‖ 0 ≤ t < T . Then (2.3)
and the inequality

(A1 + · · ·+ Al)k ≤ lk(Ak
1 + . . . Ak

l ) (2.4)
for A1, A1, . . . , Al ≥ 0, k > 0 yield

‖Φp(u(t))‖ ≤ ‖A(t)−1‖
{
‖A(0)Φp(y1)‖+ K1

∫ t

0

‖B(s)‖wm(s) ds

+ 2mK1‖ϕ1‖m
C B∞ + 2mK1

∫ t

0

‖B(s)‖wm(s) des

+ 2mK2‖y0‖mR∞ + 2mK2

∫ t

0

‖R(s)‖smwm(s) ds

+ 2mK2(‖ϕ0‖C + ‖y0‖)mR∞ + 2mK2

∫ t

0

‖R(s)‖smwm(s) ds
}

.

Hence,

wp(t) ≤ C1 +
∫ t

0

F1(τ)wm(τ) dτ ,
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where C1 and F1 are given in Theorem 1.3, and the rest of the proof is the same
as in the end of the proof of Theorem 1.2.

Proof of Theorem 1.4. Let y : 〈−r, T ) → Rn be a nonextendable solution of the
initial value problem (1.1), (1.2) with 0 < T < ∞. If we denote u(t) = y′(t) for
t ≥ 0 and ϕ0(0) = y0, ϕ1(0) = y1, then the estimations (2.1) and (2.2) are valid.
Let w(t) = max

(
1, max

0≤s≤t
‖u(s)‖

)
. Furthermore,

‖g(u, v)‖ ≤ K1‖u‖m + K1‖v‖m
C + K3‖u‖m + K5‖v‖m

C

+ max
‖u‖≤1,‖v‖C≤1

‖g(u, v)‖ = K7(‖u‖m + ‖v‖m
C + 1) (2.5)

on u, v ∈ Rn × C with

K7 = max
{
K1 + K3,K1 + K5, max

‖u‖≤1,‖v‖C≤1
‖g(u, v)‖

}
.

Similarly,
‖f(u, v)‖ ≤ K8(‖u‖m + ‖v‖m

C + 1) (2.6)
on u, v ∈ Rn × C with

K8 = max
{
K2 + K4,K2 + K6, max

‖u‖≤1,‖v‖C≤1
‖f(u, v)‖

}
.

Then (2.1), (2.2), (2.5), (2.6), the equation (1.1) and the assumptions of the theorem
yield

‖Φp(u(t))‖ ≤ ‖A(t)−1‖
{
‖A(0)Φp(y1)‖+ K7

∫ t

0

‖B(s)‖wm(s) ds

+ K7

∫ t

0

‖B(s)‖
(
‖ϕ1‖C + w(s)

)m + K7

∫ t

0

‖B(s)‖ds

+ K8

∫ t

0

‖R(s)‖
(
‖y0‖+ sw(s)

)mds + K8

∫ t

0

‖R(s)‖
[
‖ϕ0‖C + ‖y0‖

+ sw(s)
]mds + K8

∫ t

0

‖R(s)‖ds
}

.

(2.7)
From this, the inequalities (2.4) and w(t) ≥ 1, we have

wp(t) ≤ 1 + H +
∫ t

0

F2(s)wm(s) ds ≤ H + 1 +
∫ t

0

F2(s)wp(s) ds (2.8)

for t ∈ [0, T ), where

H = max
0≤t≤T

‖A(t)−1‖
{
‖A(0)Φp(y1)‖+ (2m‖ϕ1‖m

C + 1)K7

∫ T

0

‖B(s)‖ds

+ K8

(
2m‖y0‖m + 2m(‖ϕ0‖C + ‖y0‖)m + 1

) ∫ T

0

‖R(s)‖ds
}

,

F2(t) = max
0≤s≤T

‖A(t)−1‖
{
(2m + 1)K7‖B(t)‖+ 2m+1K8t

m‖R(t)‖
}

.

Hence, (2.8) and Gronwall’s inequality yield w(t) and y′(t) are bounded on 〈0, T ).
As according to y(t) = y0 +

∫ t

0
u(τ) dτ , y is bounded on 〈0, T ), too, y cannot be

nonextendable. The contradiction proves the statement.

Proof of Corollary 1.5. The sufficiency of (1.12) follows from Theorem 1.2 and
the necessity of (1.12) follows from [22, Theorem 17.3].
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[25] I. Rachunková, S. Staněk and M. Tvrdý, Singularities and Laplacians in Boundary Value

Problems for Nonlinear Ordinary Differential Equations, Handbook of Differential Equations.
Ordinary Differential Equations 3 606–723, Ed. by A. Canada, P. Drábek, A. Fonde, Elsevier
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