Electronic Journal of Differential Equations, Vol. 2008(2008), No. 40, pp 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF GLOBAL SOLUTIONS FOR SYSTEMS OF SECOND-ORDER FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN

MIROSLAV BARTUŠEK, MILAN MEDVEĎ

Abstract

We find sufficient conditions for the existence of global solutions for the systems of functional-differential equations $$
\left(A(t) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+B(t) g\left(y^{\prime}, y_{t}^{\prime}\right)+R(t) f\left(y, y_{t}\right)=e(t)
$$ where $\Phi_{p}(u)=\left(\left|u_{1}\right|^{p-1} u_{1}, \ldots,\left|u_{n}\right|^{p-1} u_{n}\right)^{T}$ which is the multidimensional p-Laplacian.

1. Introduction

There are many papers concerning various problems for ordinary differential equations with p-Laplacian. From the recently published papers and books see e.g. [14, 15, 24, 25, 26]. The problems treated in this paper are close to those studied in [1]- [6], [8]-[26]. The recently published paper [10] contains some results on the existence of positive solutions of a boundary value problem for a p-Laplacian functional- differential equations. This paper motivated us to study the problem of the existence of global solutions for such type of equations. This problem for functional-differential equations of the first order on the Banach space has been recently studied in the paper [20. A survey of papers on this problems concerning systems of ordinary differential equations and also scalar differential equations with p-Laplacian and some remarks on results close to the results proved in 21] can be found in the introduction of this paper.

In this paper, we are concerned with the initial value problem

$$
\begin{gather*}
\left(A(t) \Phi_{p}\left(y^{\prime}\right)\right)^{\prime}+B(t) g\left(y^{\prime}, y_{t}^{\prime}\right)+R(t) f\left(y, y_{t}\right)=e(t), \quad t \geq 0 \tag{1.1}\\
y(t)=\varphi_{0}(t), y^{\prime}(t)=\varphi_{1}(t), \quad-r \leq t \leq 0 \tag{1.2}
\end{gather*}
$$

where $n \in\{1,2, \ldots\}, \Phi_{p}(u)=\left(\left|u_{1}\right|^{p-1} u_{1}, \ldots,\left|u_{n}\right|^{p-1} u_{n}\right)^{T}, u \in \mathbb{R}^{n}, y_{t} \in C^{1}:=$ $C^{1}\left(\langle-r, 0\rangle, \mathbb{R}^{n}\right), y_{t}(\Theta)=y(t+\Theta), y_{t}^{\prime} \in C=C\left(\langle-r, 0\rangle, \mathbb{R}^{n}\right), y_{t}^{\prime}(\Theta)=y^{\prime}(t+\Theta)$, $A(t), B(t), R(t)$ are continuous, matrix-valued functions on $\mathbb{R}_{+}:=\langle 0, \infty), A(t)$ is regular for all $t \in \mathbb{R}_{+}, e: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}, \varphi_{0}:\langle-r, 0\rangle \rightarrow \mathbb{R}^{n}, \varphi_{1}:\langle-r, 0\rangle \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \times C^{1} \rightarrow R^{n}, g: \mathbb{R}^{n} \times C \rightarrow \mathbb{R}^{n}$ are continuous mappings.

[^0]The aim of the paper is to study the problem of the existence of global solutions of the equation (1.1) in the sense of the following definition.

Definition 1.1. A solution $y(t), t \in\langle-r, T)$ of the initial value problem (1.1), 1.2 is called non-extendable to the right if either $T<\infty$ and $\lim _{t \rightarrow T^{-}}\left[\|y(t)\|+\left\|y^{\prime}(t)\right\|\right]=$ ∞, or $T=\infty$, i. e. $y(t)$ is defined on $\langle-r, \infty)$. In the second case the solution $y(t)$ is called global.

We shall use in the sequel the norm $\|z\|=\max _{0 \leq i \leq n}\left|z_{i}\right|$ of $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in$ R^{n}. The main results of this paper are formulated in the following theorems.

Theorem 1.2. Let $m>p, m \geq 1, A(t), B(t), R(t)$ be continuous matrix-valued functions on $\langle 0, \infty), A(t)$ be regular for all $t \in \mathbb{R}_{+}, e: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$, $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous mappings and $\varphi_{0} \in C^{1}, \varphi_{1} \in C, \varphi_{0}(0)=y_{0}, \varphi_{1}(0)=y_{1}$. Let

$$
\begin{equation*}
\int_{0}^{\infty}\|R(s)\| s^{m-1} \mathrm{~d} s<\infty \tag{1.3}
\end{equation*}
$$

and there exist constants $K_{1}, K_{2}>0$ such that

$$
\begin{equation*}
\|g(u, v)\| \leq K_{1}\left(\|u\|^{m}+\|v\|_{C}^{m}\right), \quad\|f(u, v)\| \leq K_{2}\left(\|u\|^{m}+\|v\|_{C}^{m}\right) \tag{1.4}
\end{equation*}
$$

for all $(u, v) \in \mathbb{R}^{n} \times C$. Let $A_{\infty}=\sup _{0 \leq t<\infty}\left\|A(t)^{-1}\right\|, R_{\infty}=\int_{0}^{\infty}\|R(s)\| \mathrm{d} s$,

$$
B_{\infty}:=\sup _{0 \leq t<\infty} \int_{0}^{t}\|B(\tau)\| \mathrm{d} \tau<\infty, \quad E_{\infty}:=\sup _{0 \leq t<\infty} \int_{0}^{t}\|e(s)\| \mathrm{d} s<\infty
$$

and

$$
\begin{equation*}
\frac{m-p}{p} c^{\frac{m-p}{p}} \sup _{0 \leq t<\infty} \int_{0}^{t} F(s) \mathrm{d} s<1 \tag{1.5}
\end{equation*}
$$

where

$$
\begin{gathered}
c:=A_{\infty}\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+2^{m-1} K_{1}\left\|\varphi_{1}\right\|_{C}^{m} B_{\infty}\right. \\
\left.+2^{m-1} K_{2}\left(\left\|y_{0}\right\|^{m}+\left(\left\|\varphi_{0}\right\|_{C}+\left\|y_{0}\right\|\right)^{m}\right) R_{\infty}\right\} \\
F(t)=2^{m} K_{2} A_{\infty} \int_{t}^{\infty}\|R(s)\| s^{m-1} \mathrm{~d} s+\left(2^{m-1}+1\right) K_{1} A_{\infty}\|B(t)\|
\end{gathered}
$$

Then any nonextendable to the right solution $y(t)$ of the initial value problem (1.1), (1.2) is global.

Due to the continuous Jensen's inequality, Theorem 1.2 is valid for $m \geq 1$ only. A similar result is stated in the following theorem in case $m<1$ under stronger assumptions.

Theorem 1.3. Let $m>p>0,0<m<1, A(t), B(t), R(t)$ be continuous matrixvalued functions on \mathbb{R}_{+}, A regular for all $t \in \mathbb{R}_{+}, e: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$, $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous mappings and $\varphi_{0} \in C^{1}, \varphi_{1} \in C, \varphi_{0}(0)=y_{0}, \varphi_{1}(0)=y_{1}$. Let constants $K_{1}, K_{2}>0$ exist such that

$$
\|g(u, v)\| \leq K_{1}\left(\|u\|^{m}+\|v\|_{C}^{m}\right), \quad\|f(u, v)\| \leq K_{2}\left(\|u\|^{m}+\|v\|_{C}^{m}\right)
$$

for $(u, v) \in \mathbb{R}^{n} \times C$. Let

$$
\frac{m-p}{p} C_{1}^{\frac{m-p}{p}} \sup _{0 \leq t<\infty} \int_{0}^{t} F_{1}(s) \mathrm{d} s<1
$$

where B_{∞} and E_{∞} are given in Theorem 1.2.2 and

$$
\begin{aligned}
C_{1}= & A_{\infty}\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+2^{m} K_{1}\left\|\varphi_{1}\right\|_{C}^{m} B_{\infty}\right. \\
& \left.+2^{m} K_{2} R_{\infty}\left(\left\|y_{0}\right\|^{m}+\left(\left\|\varphi_{0}\right\|+\left\|y_{0}\right\|\right)^{m}\right)\right\} \\
F_{1}(t)= & \left(2^{m}+1\right) A_{\infty} K_{1}\|B(t)\|+2^{m+1} A_{\infty} K_{2}\|R(t)\| t^{m} .
\end{aligned}
$$

Then any nonextendable to the right solution $y(t)$ of the initial value problem (1.1), (1.2) is global.

The above theorem solves the problem in case $m \leq p$.
Theorem 1.4. Let $p>0,0<m \leq p, A(t), B(t), R(t)$ be continuous matrixvalued functions on \mathbb{R}_{+}, A regular for all $t \in \mathbb{R}_{+}$, $e: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n}$, $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous mappings and $\varphi_{0} \in C^{1}, \varphi_{1} \in C$. Let constants $K_{1}, K_{2}, K_{3}, K_{4}, K_{5}$ and K_{6} exist such that

$$
\|g(u, v)\| \leq K_{1}\left(\|u\|^{m}+\|v\|_{C}^{m}\right), \quad\|f(u, v)\| \leq K_{2}\left(\|u\|^{m}+\|v\|_{C}^{m}\right)
$$

for $\|u\| \geq 1,\|v\|_{C} \geq 1$,

$$
\|g(u, v)\| \leq K_{3}\|u\|^{m}, \quad\|f(u, v)\| \leq K_{4}\|u\|^{m} \quad \text { for }\|u\| \geq 1,0 \leq\|v\|_{C}<1
$$

and

$$
\|g(u, v)\| \leq K_{5}\|v\|_{C}^{m}, \quad\|f(u, v)\| \leq K_{6}\|v\|_{C}^{m} \quad \text { for } 0 \leq\|u\|<1,\|v\|_{C} \geq 1
$$

Then any nonextendable to the right solution $y(t)$ of the initial value problem (1.1), (1.2) is global.

A special case of the equation 1.1 with g, f independent of y_{t}^{\prime} and y_{t}, respectively, i.e. the equation

$$
\begin{equation*}
A(t) \Phi_{p}\left(y^{\prime}\right)^{\prime}+B(t) g\left(y^{\prime}\right)+R(t) f(y)=e(t), \quad t \geq 0 \tag{1.6}
\end{equation*}
$$

and with the initial conditions

$$
\begin{equation*}
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} \tag{1.7}
\end{equation*}
$$

has been studied in the paper [21]. A similar theorem to Theorem 1.2 on the existence of a global solution of the initial value problem (1.6), 1.7) is proved there. It is assumed there that there exist positive constants K_{1}, K_{2} such that

$$
\begin{equation*}
\|g(u)\| \leq K_{1}\|u\|^{m}, \quad\|f(u)\| \leq K_{2}\|u\|^{m}, u \in \mathbb{R}^{n} \tag{1.8}
\end{equation*}
$$

where the constant c and the function $F(t)$ are defined in [21, Theorem 1.1] as follows:

$$
\begin{gather*}
c:=n^{\frac{p}{2}} A_{\infty}\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+2^{m-1} K_{2}\left\|y_{0}\right\| R_{\infty}+E_{\infty}\right\}, \tag{1.9}\\
F(t):=K_{1}\|B(t)\|+2^{m-1} K_{2} \int_{t}^{\infty}\|R(s)\| s^{m-1} \mathrm{~d} s \tag{1.10}
\end{gather*}
$$

$\|w\|$ is the Euclidean norm of $w \in \mathbb{R}^{n}$. If the condition 1.8 and one of the assumptions 1., 2. of [21, Theorem 1.1] (with c, F defined by (1.9) and (1.10)) is satisfied, then a solution of the initial value problem $1.6,1.7$ is global.

We remark that in [21, Theorem 1.1] there is a misprint. There must be $A_{\infty}=$ $\sup _{0 \leq t<\infty}\left\|A(t)^{-1}\right\|$ instead of $A_{\infty}=\sup _{0 \leq t<\infty}\left\|A(t)^{-1}\right\|^{-1}$.

Corollary 1.5. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}=t^{\alpha}|y|^{m} \operatorname{sgn} y \tag{1.11}
\end{equation*}
$$

with $m>1$. Then $\varepsilon>0$ exists such that a solution of the problem 1.11, $|y(0)|<\varepsilon$, $\left|y^{\prime}(0)\right|<\varepsilon$ is defined on \mathbb{R}_{+}if and only if

$$
\begin{equation*}
\alpha<-m-1 \tag{1.12}
\end{equation*}
$$

Corollary 1.5 shows that condition 1.3 cannot be weaken, the integral cannot be infinite.

2. Proofs of the main results

Proof of Theorem 1.2, Let $y:\langle-r, T) \rightarrow \mathbb{R}^{n}$ be a nonextendable to the right solution of the initial value problem (1.1), 1.2 with $0<T<\infty$. If we denote $u(t)=y^{\prime}(t)$ for $t \geq 0$, then $y(t)=y_{0}+\int_{0}^{t} u(\tau) d \tau$ and we can write 1.1 as

$$
\begin{aligned}
\Phi_{p}(u(t))= & A(t)^{-1}\left\{A(0) \varphi\left(y_{1}\right)-\int_{0}^{t} B(s) g\left(u(s), y_{s}^{\prime}\right) \mathrm{d} s\right. \\
& \left.-\int_{0}^{t} R(s) f\left(y_{0}+\int_{0}^{s} u(\tau) \mathrm{d} \tau, y_{s}\right) \mathrm{d} s+\int_{0}^{t} e(s) \mathrm{d} s\right\}, t \geq 0
\end{aligned}
$$

We need to estimate $\left\|y_{s}\right\|_{C}$ and $\left\|y_{s}^{\prime}\right\|_{C}$. From the definition of the shift operators we have

$$
\left\|y_{s}\right\|_{C}=\max _{-r \leq \Theta \leq 0}\|y(s+\Theta)\|=\max \left\{\rho_{1}(s), \rho_{2}(s)\right\} \leq \rho_{1}(s)+\rho_{2}(s)
$$

where

$$
\begin{gathered}
\rho_{1}(s)=\max _{-r \leq s+\Theta \leq 0}\|y(s+\Theta)\| \leq\left\|\phi_{0}\right\|_{C} \\
\rho_{2}(s)=\max _{s+\Theta \geq 0}\|y(s+\Theta)\| \leq \max _{s+\Theta \geq 0}\left\{\left\|y_{0}\right\|+\int_{0}^{s+\Theta}\|u(\tau)\| d \tau\right\} \leq\left\|y_{0}\right\| \\
+\int_{0}^{s}\|u(\tau)\| \mathrm{d} \tau
\end{gathered}
$$

and this yields

$$
\begin{equation*}
\left\|y_{s}\right\|_{C} \leq\left\|\varphi_{0}\right\|_{C}+\left\|y_{0}\right\|+\int_{0}^{s}\|u(\tau)\| \mathrm{d} \tau \tag{2.1}
\end{equation*}
$$

We can estimate analogously $\left\|y_{s}^{\prime}\right\|$:

$$
\left\|y_{s}^{\prime}\right\|_{C}=\max _{-r \leq \Theta \leq 0}\left\|y^{\prime}(s+\Theta)\right\|=\max \left\{\sigma_{1}(s), \sigma_{2}(s)\right\} \leq \sigma_{1}(s)+\sigma_{2}(s)
$$

where

$$
\begin{gathered}
\sigma_{1}(s)=\max _{-r \leq s+\Theta \leq 0}\left\|y^{\prime}(s+\Theta)\right\|=\max _{-r \leq s+\Theta \leq 0}\left\|\varphi_{1}(s+\Theta)\right\| \leq\left\|\varphi_{1}\right\|_{C} \\
\sigma_{2}(s)=\max _{s+\Theta \geq 0}\left\|y^{\prime}(s+\Theta)\right\|=\max _{s+\Theta \geq 0}\|u(s+\Theta)\| \leq \max _{0 \leq \tau \leq s}\|u(\tau)\|
\end{gathered}
$$

Thus we have

$$
\begin{equation*}
\left\|y_{s}^{\prime}\right\|_{C} \leq\left\|\varphi_{1}\right\|_{C}+\max _{0 \leq \tau \leq s}\|u(\tau)\| \tag{2.2}
\end{equation*}
$$

From (1.1), the inequalites (2.1), 2.2 and the assumptions of the theorem we obtain

$$
\begin{align*}
\| \Phi_{p}(u(t) \| \leq & \left\|A(t)^{-1}\right\|\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+K_{1} \int_{0}^{t}\|B(s)\|\|u(s)\|^{m} \mathrm{~d} s\right. \\
& +K_{1} \int_{0}^{t}\|B(s)\|\left(\left(\left\|\varphi_{1}\right\|_{C}+\max _{0 \leq \tau \leq s}\|u(\tau)\|\right)^{m} \mathrm{~d} s\right. \tag{2.3}\\
& +K_{2} \int_{0}^{t}\|R(s)\|\left\|y_{0}+\int_{0}^{s} u(\tau) \mathrm{d} \tau\right\|^{m} \mathrm{~d} s+K_{2} \int_{0}^{t}\|R(s)\|\left[\left\|\varphi_{0}\right\|_{C}\right. \\
& \left.\left.\left.+\left\|y_{0}\right\|+\int_{0}^{s}\|u(\tau)\| \mathrm{d} \tau\right]^{m} \mathrm{~d} s\right)\right\}
\end{align*}
$$

Now applying the continuous and discrete versions of the Jensen's inequality (see [17. Theorem 2, Chapter VIII] and the Fubini theorem in a similar way as in the proof of [21, Theorem 1.2] we obtain the inequality

$$
v(t)^{p} \leq c+\int_{0}^{t} F_{1}(\tau) v(\tau)^{m} \mathrm{~d} \tau+\int_{0}^{t} F_{2}(\tau)\left[\sup _{0 \leq s \leq \tau} v(\tau)\right]^{m} \mathrm{~d} \tau, \quad 0 \leq t<T
$$

where c is given in the theorem and $v(t)=\|u(t)\|$. If we denote by $G(t)$ the righthand side of this inequality then $v^{p}(s) \leq G(t)$ for $s \leq t$ and therefore we obtain the following inequality for $w(t):=\sup _{0 \leq \sigma \leq t} v(\sigma)$:

$$
w(t)^{p} \leq c+\int_{0}^{t} F(\tau) w(\tau)^{m} \mathrm{~d} \tau, \quad 0 \leq t<T
$$

where $F=F_{1}+F_{2}$ is the function from the theorem. From [21, Lemma] it follows that $M=\sup _{0 \leq t<T}\|u(t)\|<\infty$ and since $w(t):=\sup _{0 \leq \sigma \leq t}\|u(\sigma)\|$ we obtain that for the solution $y(t)=y_{0}+\int_{0}^{t} u(s) d s$ of the initial value problem (1), (2) we have $\lim _{t \rightarrow T^{-}}\|y(t)\| \leq \lim _{t \rightarrow T^{-}}\left(\left\|y_{0}\right\|+t \sup _{0 \leq s<T}\|u(s)\|\right)<\infty$. Thus we have proved that $\lim _{t \rightarrow T^{-}}\left[\|y(t)\|+\left\|y^{\prime}(t)\right\|\right]<\infty$, i. e. the solution $y(t)$ is global.

Proof of Theorem 1.3. Let $y:\langle-r, T) \rightarrow \mathbb{R}^{n}$ be a nonextendable to the right solution of the initial value problem (1.1), 1.2 with $0<T<\infty$ and $u(t)=y^{\prime}(t)$ for $t \geq 0$. Then (2.3) holds. Denote $w(t)=\max _{0 \leq s \leq t}\|u(s)\| 0 \leq t<T$. Then 2.3) and the inequality

$$
\begin{equation*}
\left(A_{1}+\cdots+A_{l}\right)^{k} \leq l^{k}\left(A_{1}^{k}+\ldots A_{l}^{k}\right) \tag{2.4}
\end{equation*}
$$

for $A_{1}, A_{1}, \ldots, A_{l} \geq 0, k>0$ yield

$$
\begin{aligned}
\left\|\Phi_{p}(u(t))\right\| \leq & \left\|A(t)^{-1}\right\|\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+K_{1} \int_{0}^{t}\|B(s)\| w^{m}(s) \mathrm{d} s\right. \\
& +2^{m} K_{1}\left\|\varphi_{1}\right\|_{C}^{m} B_{\infty}+2^{m} K_{1} \int_{0}^{t}\|B(s)\| w^{m}(s) \mathrm{de} s \\
& +2^{m} K_{2}\left\|y_{0}\right\|^{m} R_{\infty}+2^{m} K_{2} \int_{0}^{t}\|R(s)\| s^{m} w^{m}(s) \mathrm{d} s \\
& \left.+2^{m} K_{2}\left(\left\|\varphi_{0}\right\|_{C}+\left\|y_{0}\right\|\right)^{m} R_{\infty}+2^{m} K_{2} \int_{0}^{t}\|R(s)\| s^{m} w^{m}(s) \mathrm{d} s\right\}
\end{aligned}
$$

Hence,

$$
w^{p}(t) \leq C_{1}+\int_{0}^{t} F_{1}(\tau) w^{m}(\tau) \mathrm{d} \tau
$$

where C_{1} and F_{1} are given in Theorem 1.3 , and the rest of the proof is the same as in the end of the proof of Theorem 1.2 .
Proof of Theorem 1.4. Let $y:\langle-r, T) \rightarrow \mathbb{R}^{n}$ be a nonextendable solution of the initial value problem (1.1), 1.2) with $0<T<\infty$. If we denote $u(t)=y^{\prime}(t)$ for $t \geq 0$ and $\varphi_{0}(0)=y_{0}, \varphi_{1}(0)=y_{1}$, then the estimations 2.1) and 2.2 are valid. Let $w(t)=\max \left(1, \max _{0 \leq s \leq t}\|u(s)\|\right)$. Furthermore,

$$
\begin{align*}
\|g(u, v)\| \leq & K_{1}\|u\|^{m}+K_{1}\|v\|_{C}^{m}+K_{3}\|u\|^{m}+K_{5}\|v\|_{C}^{m} \\
& +\max _{\|u\| \leq 1,\|v\|_{C} \leq 1}\|g(u, v)\|=K_{7}\left(\|u\|^{m}+\|v\|_{C}^{m}+1\right) \tag{2.5}
\end{align*}
$$

on $u, v \in \mathbb{R}^{n} \times C$ with

$$
K_{7}=\max \left\{K_{1}+K_{3}, K_{1}+K_{5}, \max _{\|u\| \leq 1,\|v\|_{C} \leq 1}\|g(u, v)\|\right\}
$$

Similarly,

$$
\begin{equation*}
\|f(u, v)\| \leq K_{8}\left(\|u\|^{m}+\|v\|_{C}^{m}+1\right) \tag{2.6}
\end{equation*}
$$

on $u, v \in \mathbb{R}^{n} \times C$ with

$$
K_{8}=\max \left\{K_{2}+K_{4}, K_{2}+K_{6}, \max _{\|u\| \leq 1,\|v\|_{C} \leq 1}\|f(u, v)\|\right\}
$$

Then (2.1), 2.2 , 2.5), (2.6), the equation (1.1) and the assumptions of the theorem yield

$$
\begin{align*}
\left\|\Phi_{p}(u(t))\right\| \leq & \left\|A(t)^{-1}\right\|\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+K_{7} \int_{0}^{t}\|B(s)\| w^{m}(s) \mathrm{d} s\right. \\
& +K_{7} \int_{0}^{t}\|B(s)\|\left(\left\|\varphi_{1}\right\|_{C}+w(s)\right)^{m}+K_{7} \int_{0}^{t}\|B(s)\| \mathrm{d} s \\
& +K_{8} \int_{0}^{t}\|R(s)\|\left(\left\|y_{0}\right\|+s w(s)\right)^{m} \mathrm{~d} s+K_{8} \int_{0}^{t}\|R(s)\|\left[\left\|\varphi_{0}\right\|_{C}+\left\|y_{0}\right\|\right. \\
& \left.+s w(s)]^{m} \mathrm{~d} s+K_{8} \int_{0}^{t}\|R(s)\| \mathrm{d} s\right\} . \tag{2.7}
\end{align*}
$$

From this, the inequalities (2.4) and $w(t) \geq 1$, we have

$$
\begin{equation*}
w^{p}(t) \leq 1+H+\int_{0}^{t} F_{2}(s) w^{m}(s) \mathrm{d} s \leq H+1+\int_{0}^{t} F_{2}(s) w^{p}(s) \mathrm{d} s \tag{2.8}
\end{equation*}
$$

for $t \in[0, T)$, where

$$
\begin{aligned}
& H= \max _{0 \leq t \leq T}\left\|A(t)^{-1}\right\|\left\{\left\|A(0) \Phi_{p}\left(y_{1}\right)\right\|+\left(2^{m}\left\|\varphi_{1}\right\|_{C}^{m}+1\right) K_{7} \int_{0}^{T}\|B(s)\| \mathrm{d} s\right. \\
&\left.+K_{8}\left(2^{m}\left\|y_{0}\right\|^{m}+2^{m}\left(\left\|\varphi_{0}\right\|_{C}+\left\|y_{0}\right\|\right)^{m}+1\right) \int_{0}^{T}\|R(s)\| \mathrm{d} s\right\} \\
& F_{2}(t)=\max _{0 \leq s \leq T}\left\|A(t)^{-1}\right\|\left\{\left(2^{m}+1\right) K_{7}\|B(t)\|+2^{m+1} K_{8} t^{m}\|R(t)\|\right\}
\end{aligned}
$$

Hence, 2.8 and Gronwall's inequality yield $w(t)$ and $y^{\prime}(t)$ are bounded on $\langle 0, T)$. As according to $y(t)=y_{0}+\int_{0}^{t} u(\tau) \mathrm{d} \tau, y$ is bounded on $\langle 0, T)$, too, y cannot be nonextendable. The contradiction proves the statement.
Proof of Corollary 1.5. The sufficiency of 1.12 follows from Theorem 1.2 and the necessity of 1.12) follows from [22, Theorem 17.3].

Acknowledgements. The work of the first author was supported by the Ministry of Education of the Czech Republic under the project MSM 0021622409 and by the Grant No. 201/08/0469 of the Grant Agency of the Czech Republic. The work of the second author was supported by the Grant No. 1/0098/08 of the Slovak Grant Agency VEGA-SAV-MŠ.

References

[1] M. Bartušek, Singular solutions for the differential equation with p-Laplacian, Archivum Math. (Brno), 41 (2005) 123-128.
[2] M. Bartušek, On singular solutions of a second order differential equations, Electronic Journal of Qualitaive Theory of Differential Equations, 8 (2006), 1-13.
[3] M. Bartušek, Existence of noncontinuable solutions, Electronic Journal of Differential Equations, Conference 15 (2007), 29-39.
[4] M. Bartušek On the existence of unbounded noncontinuable solutions, Annali di Matematica 185 (2006), 93-107.
[5] M. Bartušek and J. R. Graef, On the limit-point/limit-circle problem for second order nonlinear equations, Nonlinear Studies 9(2002), 361-369
[6] M. Bartušek and E. Pekárková On existence of proper solutions of quasilinear second order differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 1 (2007), 1-14.
[7] J. A. Bihari, A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94.
[8] T. A. Chanturia, A singular solutions of nonlinear systems of ordinary differential equations, Colloquia Mathematica Society János Bolyai (15)Differential Equations, Keszthely (Hungary) (1975), 107-119.
[9] M. Cecchi, Z. Došlá and M. Marini, On oscillatory solutions of differential equations with p-Laplacian, Advances in Math. Scien. Appl., 11 (2001), 419-436.
[10] Chang-Xin Song: Existence of positive solutions of p-Laplacian functional-differential equations, Electronic J. of Differential Equations, Vol. 2006, 22 (2006), 1-9.
[11] O. Došlý, Half-linear differential equations, Handbook of Differential Equations, Elsevier Amsterdam, Boston, Heidelberg, (2004) 161-357.
[12] O. Došlý and Z. Pátiková, Hille-Wintner type comparison criteria for half-linear second order differential equations, Archivum Math. (Brno), 42 (2006), 185-194.
[13] Ph. Hartman, Half-linear differential equations, Ordinary Differential Equations, John-Wiley and Sons, New-York, London, Sydney 1964.
[14] P. Jebelean and J. Mawhin, Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian, Adv. Nonlinear Stud., 2 (2002), 299-312.
[15] P. Jebelean and J. Mawhin, Periodic solutions of forced dissipative p-Lienard equations with singularities, Vietnam J. Math., 32 (2004), 97-103.
[16] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer, Dortrecht 1993.
[17] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow-Katowice 1985.
[18] M. Medveď, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 214 (1997), 349-366.
[19] M. Medveď, Integral inequalities and global solutions of semilinear evolution equations, J. Math. Anal. Appl., 267 (2002) 643-650.
[20] M. Medved, On the global existence of mild solutions of delay systems, Colloquium on Differential and Difference Equations, CDDE 2006, FOLIA FSN Mathematica 16, Universitatis Masarykianae Brunensis, Brno 2007, 115-122.
[21] M. Medveď and E. Pekárková, Existence of global solutions for systems of second-order differential equations with p-Laplacian. Electronic Journal of Differential Equations, 2007 (2007) no. 136, 1-9.
[22] M. Mirzov, Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations, Folia Facultatis Scie. Natur. Univ. Masarykianae Brunensis, Masaryk Univ., Brno, Czech Rep. 2004.
[23] B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, San Diego, Boston, New York 1998.
[24] I. Rachunková and M. Tvrdý, Periodic singular problem with quasilinear differential operator, Math. Bohemica, 131 (2006), 321-336.
[25] I. Rachunková, S. Staněk and M. Tvrdý, Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations, Handbook of Differential Equations. Ordinary Differential Equations 3 606-723, Ed. by A. Canada, P. Drábek, A. Fonde, Elsevier 2006.
[26] Shiguo Peng and Zhiting Xu, On the existence of periodic solutins for a class of p-Laplacian system, J. Math. Anal. Appl., 325 (2007), 166-174.

Miroslav Bartušek
Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Janáčkovo nám. 2A, CZ-602 00 Brno, Czech Republic

E-mail address: bartusek@math.muni.cz
Milan Medveď
Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia

E-mail address: medved@fmph.uniba.sk

[^0]: 2000 Mathematics Subject Classification. 34C11, 34K10.
 Key words and phrases. Second order functional-differential equation; p-Laplacian; global solution.
 (C) 2008 Texas State University - San Marcos.

 Submitted January 29, 2008. Published March 20, 2008.

