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EXISTENCE OF POSITIVE SOLUTION FOR SEMIPOSITONE
SECOND-ORDER THREE-POINT BOUNDARY-VALUE
PROBLEM

JIAN-PING SUN, JIA WEI

ABSTRACT. In this paper, we establish the existence of positive solution for
the semipositone second-order three-point boundary value problem w’/(t) +
Af(t,u(t)) =0,0 <t <1, u(0) = au(n), u(l) = Bu(n). Our arguments are
based on the well-known Guo-Krasnosel’skii fixed-point theorem in cones.

1. INTRODUCTION

Multi-point boundary value problems (BVPs for short), due to their applications
to almost all areas of science, engineering and technology, have attracted consider-
able attention. For example, in 1987, I'in and Moiseev [4] studied some multi-point
BVPs first for linear second-order ordinary differential equations, and then, many
authors discussed nonlinear multi-point BVPs, see [2, [3] [6], [7, 8, [0, [10] and the ref-
erences therein. In particular, Ma [6] showed the existence of at least one positive
solution for the three-point BVP

u’ () +h(t)f(u(t) =0, 0<t<1,
u(0) =0, wu(l)=au(n),
under the condition that 0 < an < 1 and f was nonnegative.

Recently, when the nonlinear term is not necessarily nonnegative, Yao [9] proved
the existence of at least one positive solution for the three-point BVP

u’ () + A f(tu(t) =0, 0<t<l,
w(0) =0, wu(l) = cau(n),
where 0 < an < 1 and A > 0 was a parameter.

Motivated by the excellent results in [6l 9], we are concerned with the existence
of positive solution for the second-order three-point BVP

u’(t) + Af(t,u(t) =0, 0<t<1, (1.1)
u(0) = au(n), u(l) = Bu(n), (1.2)
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where 0 < < 1,0< 8 < a <1, A >0is a parameter. Throughout, we assume
that there exists a constant M > 0 such that f : [0,1] x [0,400) — (=M, +00)
is continuous. This implies that the BVP (L.1) and (1.2) is semipositone. For
convenience, we denote

E=1—a+(a—pP)mn,

on (1_77)0‘}
—a+an 1-p0n "’
B = max{f(t,u) + M : (t,u) € [0,1] x [0, 1]}.

The main result of this paper is the following theorem.

’y:min{l

Theorem 1.1. Suppose that lim,_, 4 o ming<i<y f(zu) = +00. Then the BVP (1.1
and (1.2) has at least one positive solution for

2¢ 2yB€ !
l—a+an) aM(1l—a+an—pFn2)"

Our main tool is the well-known Guo-Krasnosel’skii fixed-point theorem, which
we state here for convenience of the reader.

Theorem 1.2 ([I, B]). Let E be a Banach space, K a cone in E and Q. = {u €
K : | ul|<c}. Suppose that T : K — K is a completely continuous operator and
0 <a<b< +oo such that either

(1) Tu £ u for u € 90, and w £ Tu for u € 9, or

(2) u L Tu for u € 9, and Tu % u for u € Oy,
Then T has a fized point in Qp \ Q.

O</\<min{B(

2. PRELIMINARIES

In the remainder of this paper, we assume that 0 < 8 < a < 1. Also let the
Banach space E = C|[0, 1] be equipped with the usual norm |lu| = max;¢[o,1) [u(t)].
Lemma 2.1. For any fized y € E, the BVP

() +yt) =0, 0<t<1, (2.1)
u(0) = au(n), u(l) = Fu(n)

has a unique solution
t 1 1
u(t) = 7/0 (t —s)y(s)ds + g[(l —a)t + an| /0 (1 —3s)y(s)ds

+2lla- o)t —al / (0~ s)y(s)ds.

Since the proof of the above lemma is easy, we omit it.

Lemma 2.2. Ify € E andy > 0, then the unique solution u of the BVP (2.1)—(2.2)
satisfies u(t) > 0 fort € [0,1].

Proof. Since v’ (t) = —y(t) < 0,0 < t < 11it follows that the graph of u(t) is concave
dawn, we only need to prove u(0) > 0 and u(1) > 0. In view of 0 < 8 < o < 1 and
(2.2), we know that «(0), u(n) and u(1) have same signs. Suppose on the contrary
that «(0) < 0, u(n) < 0 and u(1) < 0. Then we have
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Then
u(n) < min{u(0), u(1)},
which contradicts the concavity of u. Thus, we get that
u(0) >0 and wu(l)>0

as required. ([l

Lemma 2.3. Ify € E andy > 0, then the unique solution u of the BVP (2.1)—(2.2)
satisfies
i > . .
i u(t) 2 7ul (2.3)
Proof. Since u(0) = au(n), 0 < a < 1 and Lemma [2.2] imply that u(0) < u(n), we
know that

min u(t) = u(0). 24
ogtlgn u(t) = u(0) (2.4)
Set u(t) = ||u||. We consider the following two cases:

Case 1. n < t. It follows from the concavity of u that
u(n) —u(0)  ut) —u(0)

n—-0 — -0

Combining the boundary condition u(0) = au(n), we conclude that
an - an
0) > t) =
u0) = T2l = Tl

which together with (2.4)) implies

. an

> — . .
Jmin u(t) = Tl (25

Case 2. t <. It follows from the concavity of u that
_ 1) —
oy < M =)
L—=n
which together with (2.4) and the boundary conditions u(0) = au(n) and u(1) =
Bu(n) implies

. (1 —n)a
> . .
Join u(t) = = — B [[ul (2.6)
By (2.5) and (2.6), we know that ([2.3) is fulfilled. O
Lemma 2.4. The BVP
a'(t)+1=0, 0<t<l, (2.7)

u(0) = au(n), u(l) = Bu(n)
has a unique solution

_ 2 (1—-a)t — Bt —an?
u(t):_iJr( a)t +an + [(a — B)t —aly Cte 1]
2 2%
Remark 2.5. The unique solution @ of the BVP (2.7)—(2.8]) satisfies
_ 1—a+an—py’
<
) < T

t €10,1].
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3. PROOF OF THEOREM [I.1]

Let

g(t,u) = f(t,u) + M, (t,u) €[0,1] x [0,+00),
g(t,u) = g(t, max{u,0}), (t,u) €[0,1] X (—o0, +00).

Obviously, g : [0,1] x (=00, +00) — (0, +00) is continuous. We consider the BVP

u’(t) + Xg(t,u(t) —w(t) =0, 0<t<I1, (3.1)
u(0) = au(n), u(l) = Bu(n),

where w(t) = AMu(t) and u(t) is the solution of the BVP (2.7)—(2.8). It is not
difficult to prove that u* is a positive solution of the BVP (1.1)—(1.2)) if and only if

o = u* + w is a solution of the BVP (3.1)—(3.2) and u(t) > w(t), 0 <t < 1.
We define an operator Ty : E — E:

() = = [ (6= )t u) = w(s))ds
1
+ =[(1 — a)t + an) /0 (1 —39)g(s,u(s) —w(s))ds

+

> | >

[(a =)t —a /On(n —5)g(s,u(s) —w(s))ds, te[0,1].

It is easy to check that @ € E is a solution of the BVP (3.1)—(3.2) if and only if @
is a fixed point of the operator T in E. Therefore, we only need to prove that the
operator Ty has a fixed point @ € E and u(t) > w(t), 0 < ¢ < 1. Denote

K = E: mi > i > .
(e B: min u(t) 20, min ut) 2 7|ull}

Obviously, K is a cone in E. It follows from Lemma that Th\K C K. Further-

more, we can prove that Ty : K — K is completely continuous. Now, we introduce

a partial order in E. Let 1, zo € E. We say z1 < x2 if and only if x5 — z; € K.
If we let Qq = {u € K : ||u|]| < 1}, then we may assert that

u L Thu for any u € 9. (3.3)
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Suppose on the contrary that there exists a ug € 9y such that ug < Thug. Since
up(t) —w(t) <1land (o — B)t —a < 0,0 <¢<1, we have

uo(t) < (Thuo)(t)

_ —A/O (t — 8)5(s, uo(s) — w(s))ds

+%W—aﬁ+am4(l—@ﬂ&m®%ﬂwﬁﬂs
+gm—ﬁﬁ—ﬂzﬁn—@maw@»wmﬁm8
SgKL%m+aﬂA(LﬂE@wM@—w@Ms
< gl =a)t-+an) [ (1= max gls.ua(s) — w(s)ds
)\ 1
= 20—t an] [ (1= 5) max [F(s,max{uo(s) = w(s),0)) + M) ds
sg?w—aﬂ+mmtemJL
which leads to a contradiction:
1=luoll < 2—2(1 —a+an) <1l

So, (3.3) is satisfied.

On the other hand, we claim that there exists a constant ¢ > 1 such that
Thu £ u for any u € 99Q,. (3.4)

In fact, if we let V), = {u € K : Thu < u} and my = sup{||u|| : u € V,}, then
we only need to prove m) < +o0o. Suppose on the contrary that there exists a
sequence {uy 152, C K such that Thu, < u, and |lu,|| — +o00 (n — 400). Then
for any ¢ € [0, 7], we have

un(t) = w(t) 2 yunll = fwl] = o0 (n — +o00). (3.5)

In view of 1) and lim, . o ming<i<y ) 400, we know that

g(t, un(t) — w(t))

nkrfoo orgntlgn () —w(t) = +o0. (3.6)

So, there exists a positive integer N such that for any n > N,

. v
i (1) — w(t)] = Tl (3.7)
e (tun(t) — w(®)
Gt un(t) — w(t)) _ 4¢ nooq-1
ogl%ln wnt) —w () > pw {(1 — 77)/0 tdt} . (3.8)

For the rest of this article, we let n > N. Noticing Thu, € K, we have 0 <
(Thun)(t) < wun(t), t €[0,1]. And so,

= > > . .
| = gmax ua(t) > max (Thun) () > (Taua) ) (3.9)
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At the same time, by (3.7) and (3.8), we also obtain

(Trun)(n)
:—Aé%rww@mm@—u@»w+gnAVmewwA@—w@MS
+ = 80—l [ "= 1g(s,10(6) ~ wie)as
—gu—m[fw@mm@—ww»@+gnLYPﬂM@mAQ—w@»@
> 2 [ sgts,(6) - wls)as

> z-ni [ [Mra] " D [ sas

— 2l

which together with (3.9)) implies

[unll > (Taun)(n) > 2wl

This is impossible. So, my < +o00. And so, (3.4) is fulfilled. B
It follows from (3.3)), (3.4) and Theorem |[1.2|that T has a fixed point @ € ,\ ;.
With the similar arguments as in Lemma [2.3] we know that

min a(t) =5(1) = (o) > 2,

which together with Remark [2.5] implies

u

« 2¢

*(t)z%\\ﬂllz Pr o sy Lo et on— o’ 2 AM - u(t) = w(t),

for t € (0,1). Therefore, u* = u — w is a positive solution of the BVP (1.1)—(1.2).
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