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EXISTENCE OF POSITIVE SOLUTION FOR SEMIPOSITONE
SECOND-ORDER THREE-POINT BOUNDARY-VALUE

PROBLEM

JIAN-PING SUN, JIA WEI

Abstract. In this paper, we establish the existence of positive solution for

the semipositone second-order three-point boundary value problem u′′(t) +
λf(t, u(t)) = 0, 0 < t < 1, u(0) = αu(η), u(1) = βu(η). Our arguments are

based on the well-known Guo-Krasnosel’skii fixed-point theorem in cones.

1. Introduction

Multi-point boundary value problems (BVPs for short), due to their applications
to almost all areas of science, engineering and technology, have attracted consider-
able attention. For example, in 1987, Il’in and Moiseev [4] studied some multi-point
BVPs first for linear second-order ordinary differential equations, and then, many
authors discussed nonlinear multi-point BVPs, see [2, 3, 6, 7, 8, 9, 10] and the ref-
erences therein. In particular, Ma [6] showed the existence of at least one positive
solution for the three-point BVP

u′′(t) + h(t)f(u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η),

under the condition that 0 < αη < 1 and f was nonnegative.
Recently, when the nonlinear term is not necessarily nonnegative, Yao [9] proved

the existence of at least one positive solution for the three-point BVP

u′′(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η),

where 0 < αη < 1 and λ > 0 was a parameter.
Motivated by the excellent results in [6, 9], we are concerned with the existence

of positive solution for the second-order three-point BVP

u′′(t) + λf(t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = αu(η), u(1) = βu(η), (1.2)
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where 0 < η < 1, 0 < β ≤ α < 1, λ > 0 is a parameter. Throughout, we assume
that there exists a constant M > 0 such that f : [0, 1] × [0,+∞) → (−M,+∞)
is continuous. This implies that the BVP (1.1) and (1.2) is semipositone. For
convenience, we denote

ξ = 1− α + (α− β)η,

γ = min
{ αη

1− α + αη
,
(1− η)α
1− βη

}
,

B = max{f(t, u) + M : (t, u) ∈ [0, 1]× [0, 1]}.
The main result of this paper is the following theorem.

Theorem 1.1. Suppose that limu→+∞min0≤t≤η
f(t,u)

u = +∞. Then the BVP (1.1)
and (1.2) has at least one positive solution for

0 < λ < min
{ 2ξ

B(1− α + αη)
,

2γβξ

αM(1− α + αη − βη2)
}
.

Our main tool is the well-known Guo-Krasnosel’skii fixed-point theorem, which
we state here for convenience of the reader.

Theorem 1.2 ([1, 5]). Let E be a Banach space, K a cone in E and Ωc = {u ∈
K : ‖ u ‖< c}. Suppose that T : K → K is a completely continuous operator and
0 < a < b < +∞ such that either

(1) Tu 
 u for u ∈ ∂Ωa and u 
 Tu for u ∈ ∂Ωb, or
(2) u 
 Tu for u ∈ ∂Ωa and Tu 
 u for u ∈ ∂Ωb.

Then T has a fixed point in Ωb \ Ωa.

2. Preliminaries

In the remainder of this paper, we assume that 0 < β ≤ α < 1. Also let the
Banach space E = C[0, 1] be equipped with the usual norm ‖u‖ = maxt∈[0,1] |u(t)|.
Lemma 2.1. For any fixed y ∈ E, the BVP

u′′(t) + y(t) = 0, 0 < t < 1, (2.1)

u(0) = αu(η), u(1) = βu(η) (2.2)

has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds +
1
ξ
[(1− α)t + αη]

∫ 1

0

(1− s)y(s)ds

+
1
ξ
[(α− β)t− α]

∫ η

0

(η − s)y(s)ds.

Since the proof of the above lemma is easy, we omit it.

Lemma 2.2. If y ∈ E and y ≥ 0, then the unique solution u of the BVP (2.1)–(2.2)
satisfies u(t) ≥ 0 for t ∈ [0, 1].

Proof. Since u′′(t) = −y(t) ≤ 0, 0 < t < 1 it follows that the graph of u(t) is concave
dawn, we only need to prove u(0) ≥ 0 and u(1) ≥ 0. In view of 0 < β ≤ α < 1 and
(2.2), we know that u(0), u(η) and u(1) have same signs. Suppose on the contrary
that u(0) < 0, u(η) < 0 and u(1) < 0. Then we have

u(η) =
u(0)
α

< u(0), u(η) =
u(1)
β

< u(1) .
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Then
u(η) < min{u(0), u(1)},

which contradicts the concavity of u. Thus, we get that

u(0) ≥ 0 and u(1) ≥ 0

as required. �

Lemma 2.3. If y ∈ E and y ≥ 0, then the unique solution u of the BVP (2.1)–(2.2)
satisfies

min
0≤t≤η

u(t) ≥ γ‖u‖. (2.3)

Proof. Since u(0) = αu(η), 0 < α < 1 and Lemma 2.2 imply that u(0) ≤ u(η), we
know that

min
0≤t≤η

u(t) = u(0). (2.4)

Set u(t) = ‖u‖. We consider the following two cases:
Case 1. η ≤ t. It follows from the concavity of u that

u(η)− u(0)
η − 0

≥ u(t)− u(0)
t− 0

.

Combining the boundary condition u(0) = αu(η), we conclude that

u(0) ≥ αη

1− α + αη
u(t) =

αη

1− α + αη
‖u‖,

which together with (2.4) implies

min
0≤t≤η

u(t) ≥ αη

1− α + αη
‖u‖. (2.5)

Case 2. t < η. It follows from the concavity of u that

u(t) ≤ u(1)− u(η)
1− η

(0− η) + u(η),

which together with (2.4) and the boundary conditions u(0) = αu(η) and u(1) =
βu(η) implies

min
0≤t≤η

u(t) ≥ (1− η)α
1− βη

‖u‖. (2.6)

By (2.5) and (2.6), we know that (2.3) is fulfilled. �

Lemma 2.4. The BVP

ũ′′(t) + 1 = 0, 0 < t < 1, (2.7)

ũ(0) = αũ(η), ũ(1) = βũ(η) (2.8)

has a unique solution

ũ(t) = − t2

2
+

(1− α)t + αη + [(α− β)t− α]η2

2ξ
, t ∈ [0, 1].

Remark 2.5. The unique solution ũ of the BVP (2.7)–(2.8) satisfies

ũ(t) ≤ 1− α + αη − βη2

2ξ
, t ∈ [0, 1].
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3. Proof of Theorem 1.1

Let

g(t, u) = f(t, u) + M, (t, u) ∈ [0, 1]× [0,+∞),

g(t, u) = g(t, max{u, 0}), (t, u) ∈ [0, 1]× (−∞,+∞).

Obviously, g : [0, 1]× (−∞,+∞) → (0,+∞) is continuous. We consider the BVP

u′′(t) + λg(t, u(t)− w(t)) = 0, 0 < t < 1, (3.1)

u(0) = αu(η), u(1) = βu(η), (3.2)

where w(t) = λMũ(t) and ũ(t) is the solution of the BVP (2.7)–(2.8). It is not
difficult to prove that u∗ is a positive solution of the BVP (1.1)–(1.2) if and only if
u = u∗ + w is a solution of the BVP (3.1)–(3.2) and u(t) > w(t), 0 < t < 1.

We define an operator Tλ : E → E:

(Tλu)(t) = −λ

∫ t

0

(t− s)g(s, u(s)− w(s))ds

+
λ

ξ
[(1− α)t + αη]

∫ 1

0

(1− s)g(s, u(s)− w(s))ds

+
λ

ξ
[(α− β)t− α]

∫ η

0

(η − s)g(s, u(s)− w(s))ds, t ∈ [0, 1].

It is easy to check that u ∈ E is a solution of the BVP (3.1)–(3.2) if and only if u
is a fixed point of the operator Tλ in E. Therefore, we only need to prove that the
operator Tλ has a fixed point u ∈ E and u(t) > w(t), 0 < t < 1. Denote

K = {u ∈ E : min
0≤t≤1

u(t) ≥ 0, min
0≤t≤η

u(t) ≥ γ‖u‖}.

Obviously, K is a cone in E. It follows from Lemma 2.3 that TλK ⊂ K. Further-
more, we can prove that Tλ : K → K is completely continuous. Now, we introduce
a partial order in E. Let x1, x2 ∈ E. We say x1 ≤ x2 if and only if x2 − x1 ∈ K.

If we let Ω1 = {u ∈ K : ‖u‖ < 1}, then we may assert that

u 
 Tλu for any u ∈ ∂Ω1. (3.3)
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Suppose on the contrary that there exists a u0 ∈ ∂Ω1 such that u0 ≤ Tλu0. Since
u0(t)− w(t) ≤ 1 and (α− β)t− α < 0, 0 ≤ t ≤ 1, we have

u0(t) ≤ (Tλu0)(t)

= −λ

∫ t

0

(t− s)g(s, u0(s)− w(s))ds

+
λ

ξ
[(1− α)t + αη]

∫ 1

0

(1− s)g(s, u0(s)− w(s))ds

+
λ

ξ
[(α− β)t− α]

∫ η

0

(η − s)g(s, u0(s)− w(s))ds

≤ λ

ξ
[(1− α)t + αη]

∫ 1

0

(1− s)g(s, u0(s)− w(s))ds

≤ λ

ξ
[(1− α)t + αη]

∫ 1

0

(1− s) max
0≤s≤1

g(s, u0(s)− w(s))ds

=
λ

ξ
[(1− α)t + αη]

∫ 1

0

(1− s) max
0≤s≤1

[f(s,max{u0(s)− w(s), 0}) + M ] ds

≤ Bλ

2ξ
[(1− α)t + αη], t ∈ [0, 1],

which leads to a contradiction:

1 = ‖u0‖ ≤
Bλ

2ξ
(1− α + αη) < 1.

So, (3.3) is satisfied.
On the other hand, we claim that there exists a constant σ > 1 such that

Tλu 
 u for any u ∈ ∂Ωσ. (3.4)

In fact, if we let Vλ = {u ∈ K : Tλu ≤ u} and mλ = sup{‖u‖ : u ∈ Vλ}, then
we only need to prove mλ < +∞. Suppose on the contrary that there exists a
sequence {un}∞n=1 ⊂ K such that Tλun ≤ un and ‖un‖ → +∞ (n → +∞). Then
for any t ∈ [0, η], we have

un(t)− w(t) ≥ γ‖un‖ − ‖w‖ → +∞ (n → +∞). (3.5)

In view of (3.5) and limu→+∞min0≤t≤η
f(t,u)

u = +∞, we know that

lim
n→+∞

min
0≤t≤η

g(t, un(t)− w(t))
un(t)− w(t)

= +∞. (3.6)

So, there exists a positive integer N such that for any n ≥ N ,

min
0≤t≤η

[un(t)− w(t)] ≥ γ

2
‖un‖ (3.7)

and

min
0≤t≤η

g(t, un(t)− w(t))
un(t)− w(t)

≥ 4ξ

λγ

[
(1− η)

∫ η

0

tdt
]−1

. (3.8)

For the rest of this article, we let n ≥ N . Noticing Tλun ∈ K, we have 0 ≤
(Tλun)(t) ≤ un(t), t ∈ [0, 1]. And so,

‖un‖ = max
0≤t≤1

un(t) ≥ max
0≤t≤1

(Tλun)(t) ≥ (Tλun)(η). (3.9)
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At the same time, by (3.7) and (3.8), we also obtain

(Tλun)(η)

= −λ

∫ η

0

(η − s)g(s, un(s)− w(s))ds +
λ

ξ
η

∫ 1

0

(1− s)g(s, un(s)− w(s))ds

+
λ

ξ
[(α− β)η − α]

∫ η

0

(η − s)g(s, un(s)− w(s))ds

=
λ

ξ
(1− η)

∫ η

0

sg(s, un(s)− w(s))ds +
λ

ξ
η

∫ 1

η

(1− s)g(s, un(s)− w(s))ds

≥ λ

ξ
(1− η)

∫ η

0

sg(s, un(s)− w(s))ds

≥ λ

ξ
(1− η)

∫ η

0

s min
0≤s≤η

[g(s, un(s)− w(s))
un(s)− w(s)

]
min

0≤s≤η
[un(s)− w(s)]ds

≥ λ

ξ
(1− η)

4ξ

λγ

[
(1− η)

∫ η

0

tdt
]−1 γ

2
‖un‖ ·

∫ η

0

sds

= 2‖un‖,

which together with (3.9) implies

‖un‖ ≥ (Tλun)(η) ≥ 2‖un‖.
This is impossible. So, mλ < +∞. And so, (3.4) is fulfilled.

It follows from (3.3), (3.4) and Theorem 1.2 that Tλ has a fixed point u ∈ Ωσ\Ω1.
With the similar arguments as in Lemma 2.3, we know that

min
0≤t≤1

u(t) = u(1) =
β

α
u(0) ≥ βγ

α
‖u‖,

which together with Remark 2.5 implies

u(t) ≥ βγ

α
‖u‖ ≥ βγ

α
> λM · 1− α + αη − βη2

2ξ
≥ λM · ũ(t) = w(t),

for t ∈ (0, 1). Therefore, u∗ = u− w is a positive solution of the BVP (1.1)–(1.2).
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