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ASYMPTOTIC BEHAVIOR FOR A DISSIPATIVE PLATE
EQUATION IN RN WITH PERIODIC COEFFICIENTS

RUY C. CHARÃO, ELENI BISOGNIN,

VANILDE BISOGNIN, ADEMIR F. PAZOTO

Abstract. In this work we study the asymptotic behavior of solutions of a
dissipative plate equation in RN with periodic coefficients. We use the Bloch

waves decomposition and a convenient Lyapunov function to derive a complete
asymptotic expansion of solutions as t→∞. In a first approximation, we prove

that the solutions for the linear model behave as the homogenized heat kernel.

1. Introduction

The aim of this paper is to study the asymptotic behavior, for large time, of
solutions of the following Cauchy problem associated with vibrations of thin plates
and beams

utt +A2u+ aAutt + bAut = 0 in RN × (0,∞)

u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x).
(1.1)

Here, a and b are positive constants and A is the divergence operator

A ≡ − ∂

∂xk

(
ak`(x)

∂

∂x`

)
(1.2)

where the coefficients {ak`(x)}N
k,`=1 are Y -periodic, with Y =]0, 2π[N and

ak` ∈ L∞# (Y ) = {φ ∈ L∞(RN ) ; φ(x+ 2πp) = φ(x) ,∀x ∈ RN , ∀ p ∈ ZN}. (1.3)

We also assume that the operator A is elliptic and symmetric, that is

∃α > 0 such that ak`(x)ηkη` ≥ α|η|2, ∀ η ∈ RN , a.e. x ∈ RN ;
ak` = a`k ∀ k, ` = 1, 2, . . . , N.

(1.4)

The energy associate with the problem (1.1) is given by

E(t) =
1
2

∫
RN

[
|ut|2 + |Au|2 + a ak`(x)

∂ut

∂xk

∂ut

∂x`

]
dx (1.5)

and satisfies the dissipation law
dE

dt
= −b

∫
RN

|A1/2ut|2dt = −b
∫

RN

ak`(x)
∂ut

∂xk

∂ut

∂x`
dx. (1.6)
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This indicates that the term bAut in the equation in (1.1) plays the role of a
feedback damping mechanism. Consequently, E(t) is a nonincreasing function and
the following basic question arises: Does E(t) → 0 as t → ∞ and, if yes, is it
possible to find the decay rate of E(t)?

An important model associated to (1.1) is the nonlinear plate equation with
periodic coefficients

utt +A2u+ aAutt −M
( ∫

RN

|A 1
2u|2dx

)
Au+ bAut = 0, in RN × (0,∞),

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x)
(1.7)

where M = M(s) ≥ 0 for all s. When n = 1 such a model is a general mathemati-
cal formulation of a problem arising in the dynamic buckling of a hinged extensible
beam with infinite measure under an axial force. If n = 2, equations in (1.1) repre-
sent the “Berger approximation” of the full dynamic von Kármán system modelling
the nonlinear vibrations of a plate. A rigorous mathematical justification for this
fact was given in [15] where it was shown that the limit is a linear plate model, i.e.,
M ≡ 0.

Roughly speaking, when the medium is homogeneous, i.e., the coefficients are
constant, the plane waves eiξ·x serve as an effective tool for transforming the differ-
ential equation into a set of algebraic equations. If the medium is periodic (which
is true in the present case) there exists an exact theory, by which the response of
the medium can be obtained, that serves the same purpose. This method is based
on Floquet theory in ordinary differential equations, and known in the waves liter-
ature as Bloch waves decomposition. Simply put, Bloch waves decomposition gives
a representation for the solution of the problem in terms of an eigenvalue problem.
These waves were originally introduced by Bloch (see [3]) in solid state physics in
the context of propagation of electrons in a crystal. Since that time, several ques-
tions and properties of periodic media were translated in terms of Bloch waves.
We refer to [6] for a wide variety of applications in the vibrations of fluid-solid
structures and to [1] and [20] for additional references on Bloch waves.

Equations of fourth-order appear in problems of solid mechanics, in particular,
in the theory of thin plates and beams. Also, elliptic equations of fourth-order
appear in problems related with the Navier-Stokes equations (see Mozolevski-Süli-
Bösing[14]). The model we are considering here is an optional one since, in some
cases, the vibrations of thin plates are given by the full von Kármán system which
have been studied by several authors (see, for instance, Lasiecka [11], [12], [13],
Koch-Lasiecka [9], Puel-Tucsnak [18]).

In this work we are interested in using Bloch waves decomposition to study the
asymptotic behavior of the solutions of the linear model (1.1). For (1.1) we are going
to prove that, in a first approximation, the solutions behave as a linear combination,
at some order k, depending on the initial data, of derivatives of the fundamental
solution of the homogenized heat equation modulated by periodic functions. By
homogenized heat equation we mean the underlying parabolic homogenized system

ut − qk`
∂2u

∂xk∂x`
= 0, in RN × (0,∞),

u(x, 0) = δ0(x),
(1.8)
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where δ0(x) is the Dirac delta distribution at the origin and {qk`}N
k,`=1 are the

homogenized coefficients associated to the periodic matrix with coefficients (1.3)-
(1.4). We remark that the homogenized coefficients qk` associated to the periodic
matrix a are given by (see [1] and [19])

qk` =
1
|Y |

∫
Y

ak`dy +
1
|Y |

∫
Y

akm
∂χ`

∂ym
dy , 1 ≤ k, ` ≤ N (1.9)

where χj is the solution of the Y -periodic elliptic problem

− ∂

∂xk

(
ak`

∂χi

∂x`

)
=
∂aj`

∂y`
(1.10)

where χj is Y -periodic, and 1 ≤ j ≤ N . The solution χj of this equation is
uniquely determined up to an additive constant. Moreover, the homogenized matrix
{qk`}N

k,`=1 given in (1.9) is symmetric, that is,

qk` = q`k (1.11)

and elliptic with the same constant α of ellipticity for the matrix {ak`(x)}N
k,`=1 in

(1.2), that is
qk`ξkξ` ≥ α|ξ|2 , ξ ∈ RN . (1.12)

We refer the reader to [4] and [5] for more details on homogenization.
A similar analysis was done in [16] by J.H. Ortega and E. Zuazua. In this article,

the authors obtain a complete asymptotic expansion (for large time) of the solution
of linear parabolic equations with periodic coefficients and L1(RN )∩L2(RN ) data.
Such problem is somewhat surprisingly related to the problem of homogenization
of parabolic equations with periodically oscillating coefficients. This is one of the
effects of the scaling laws present in such equations. Furthermore, these scaling
laws transform the original initial data to another one approximating Dirac mass.
Thus, the large-time behavior of the solution is governed by that of the fundamental
solution of the homogenized equation, a fact which is already known from the work
of G. Duro and E. Zuazua [8] (see also [7]). Exploiting this idea we address the same
issue and we prove the main result of this paper, i.e., we conclude that the solutions
of (1.1) behave as the homogenized heat kernel, as t → ∞. In fact, equation in
(1.1) can be viewed as a “perturbed” heat equation

ut +Au = −A−1(I +A)utt

and, according to our analysis, the behavior of solutions as, t→∞, does not change
in a first approximation. It is also possible to see the influence of the first eigenvalue
due to the presence of the operator A−1 on the right hand side of the above equation.
Thus, our result is not so similar to the asymptotic expansion obtained in [17] for
dissipative wave equation with periodic coefficients and in [2] where the Benjamin-
Bona-Mahony equation with periodic coefficients was considered. Moreover, the
asymptotic expansion for the plate equation depends on two waves given by two
Kernels that will be defined latter. In addition, from the decomposition described
above it is possible to see that the total mass of the solution is given by the first
term in the asymptotic expansion.

We observe that the Bloch waves decomposition provides an orthogonal decom-
position of L2(RN ). Therefore, our results is established in the L2-setting with
L2 ∩ L1(RN )×H−1 ∩ L1(RN ) initial data.
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2. Main result

The well-posedness of (1.1) under the conditions (1.3) and (1.4) can be obtained
writing (1.1) as an abstract evolution equation in the space of finite energy

H = H2(RN )×H1(RN )

with the inner product

((u, v), (ũ, ṽ))H =
∫

RN

uũdx+
∫

RN

AuAũdx+
∫

RN

vṽdx+ a

∫
RN

ak`(x)
∂v

∂xk

∂ṽ

∂x`
dx,

with {ak`(x)}N
k,l=1 as in (1.3) and (1.4), whenever (u, v), (ũ, ṽ) ∈ H. Under these

conditions the operator associated to (1.1) is maximal and dissipative on H. Then,
Lummer-Phillip’s theorem guarantees that the operator associated to (1.1) is the
infinitesimal generator of a continuous semigroup. Thus, we deduce that for any
initial data (ϕ0, ϕ1) ∈ L2(RN )×H−1(RN ), problem (1.1) has a unique weak solution
u = u(x, t) such that

u ∈ C(R+, L2(RN )) ∩ C1(R+,H−1(RN )).

Let us now state the main result of this work.

Theorem 2.1 (Asymptotic expansion). Let the initial data ϕ0 ∈ L2(RN )∩L1(RN )
and ϕ1 ∈ H−1(RN ) ∩ L1(RN ) with |x|kϕ0(x), |x|kϕ1(x) ∈ L1(RN ) for some fixed
integer k ≥ 1. Let u = u(x, t) be the solution of (1.1) with b2 6= 4. Then, there exist
periodic functions ciα(·) ∈ L∞# (Y ), |α| ≤ k, i = 1, 2 and constants di

β,n, i = 1, 2,
depending on initial data and the coefficients ak` such that∥∥∥u(·, t)− ∑

|α|≤k

{
c1α(·)

[
G−α (·, t) +

p∑
n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d1
β,nG

−
α+β(·, t)

]

+ c2α(·)
[
G+

α (·, t) +
p∑

n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d2
β,nG

+
α,β(·, t)

]}∥∥∥
L2(RN )

≤ Ckt
− 2k+N−2

4

as t→∞, where Ck is a positive constant depending on k, the initial data and the
coefficients ak`. The integers p = p(α) and p1 = p1(α, n) are given by p(α) = [k−|α|

2 ]
and p1 = p(α)− n. The functions G±(x, t) are defined by

G±α (x, t) =
∫

RN

ξα|ξ|−2e−
b±
√

b2−4
2 qk`ξkξ`teix·ξdξ , |α| ≤ k.

Here, qk` are the homogenized constant coefficients associated with the matrix a =
{ak`(x

ε )}N
k,`=1, as ε→ 0.

Remark 2.2. When b2 = 4 the asymptotic expansion is the same, except for the
fact that the decay rate is t−

2k+N−4
4 . This can be seen in the proof of Lemma 4.8.

It is important to observe that the convergence result given by Theorem 1.1
indicates that the solution u of (1.1) can be, roughly, approximated at any order
by a linear combination of the derivatives of the fundamental solution of the heat
equation, modulated by the periodic functions.

Here, as in the previous works, to obtain the main result we use the Bloch waves
decomposition. This is done following closely the work of Conca and Vanninathan
[5] which shows how classical homogenization results may be recovered using Bloch
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waves decomposition for elliptic equations. As we shall see, when deriving higher
order asymptotic results for (1.1), two types of terms appear: first, we get those
terms that are provided by the moments of the initial data and then, those that are
generated by the microstructure. This second contribution may be obtained by a
careful analysis of the first Bloch mode. The contribution of the higher Bloch modes
may be neglected since they provide terms that decay exponentially as t → ∞,
which is in agreement with the elliptic results of [5].

The rest of this work is organized as follows: The next section contains the basic
results on Bloch waves. In Section 3 we present some technical lemmas that we use
in the Section 4. Section 4 is devoted to the asymptotic expansion. In Section 5
we prove the main result of this work, i.e., Theorem 2.1.

3. Bloch Waves Decomposition

In this section we recall same basic results on Bloch wave decomposition. We
refer to [4], [5] and [20] for the notations and the proofs.

Let us consider the following spectral problem depending on a parameter ξ ∈ RN :
to find λ = λ(ξ) ∈ RN and a function ψ = ψ(x, ξ) not identically zero, such that

Aψ(·, ξ) = λ(ξ)ψ(·, ξ) in RN

ψ(·, ξ)is (ξ, Y )-periodic; i.e.,

ψ(x+ 2πm, ξ) = e2πim·ξψ(x, ξ) ∀ m ∈ ZN , x ∈ RN ,

(3.1)

where i =
√
−1 and A is the elliptic operator in divergence form given in (1.2).

We can write ψ(x, ξ) = eix.ξφ(x, ξ), φ being Y -periodic in the variable x. From
(3.1) we can observe that the (ξ, Y )-periodicity is unaltered if we replace ξ by (δ+n),
with n ∈ ZN . Therefore, ξ can be confined to the dual cell Y ′ = [−1/2, 1/2[N .

From the ellipticity and symmetry assumption on the matrix {ak,`(x)}N
k,`=1 it is

possible to prove (see for instance [1]) that for each ξ ∈ Y ′ the spectral problem
(3.1) admits a sequence of eigenvalues {λm(ξ)}m∈N with the following properties:

0 ≤ λ1(ξ) ≤ · · · ≤ λm(ξ) ≤ · · · → +∞,

λm(ξ) is a Lipschitz function of ξ ∈ Y ′, ∀ m ≥ 1 .
(3.2)

Besides, the sequences {ψm(x, ξ)}m∈N and {φm(x, ξ)}m∈N of the corresponding
eigenfunctions constitute orthonormal basis in the subspaces of L2

loc(RN ) which
are (ξ, Y )-periodic and Y -periodic, respectively. Moreover, as a consequence of
min-max principle we have that

· · · ≥ λm(ξ) ≥ · · · ≥ λ2(ξ) ≥ λN
2 > 0 , ∀ ξ ∈ Y ′ (3.3)

where λN
2 is the second eigenvalue of the operator A, given in (3.2) in the cell Y

with Neumann boundary conditions on ∂Y .
The Bloch waves introduced above enable us to describe the spectral resolution

of the unbounded self-adjoint operator A in L2(RN ), in the orthogonal basis of
Bloch waves

{ψm(x, ξ) = eix·ξφm(x, ξ) : m ≥ 1, ξ ∈ Y ′}.

The result related to this subject is as follows.
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Proposition 3.1. Let g ∈ L2(RN ). The m-th Bloch coefficients of g is defined as
follows:

ĝm(ξ) =
∫

RN

g(x)e−ix·ξ φm(x, ξ) dx, ∀ m ≥ 1, ξ ∈ Y ′.

Then, the inverse formula

g(x) =
∫

Y ′

∞∑
m=1

ĝm(ξ)eix·ξφm(x, ξ)dξ

and the Parseval’s identity∫
RN

|g(x)|2dx =
∫

Y ′

∞∑
m=1

|ĝm(ξ)|2dξ (3.4)

hold. Furthermore, for all g in the domain of A, we have

Ag(x) =
∫

Y ′

∞∑
m=1

λm(ξ)ĝm(ξ)eix·ξφm(x, ξ)dξ

and, consequently, the equivalence of norms in H1(RN ) and H−1(RN ) given by

‖g‖2Hs(RN ) =
∫

Y ′

∞∑
m=1

(1 + λm(ξ))s |ĝm(ξ)|2dξ, s = 1,−1.

Remark 3.2. Observe that Parseval’s identity guarantees that L2(RN ) may be
identified with L2(Y ′, `2(N)).

The following result on the behavior of λ1(ξ) and φ1(x, ξ), near ξ = 0, will also
be necessary in this work (see [4] and [5]).

Proposition 3.3. We assume that {ak`(x)}N
k,`=1 satisfy the conditions (1.4). Then

there exists δ1 > 0 such that the first eigenvalue λ1(ξ) is an analytic function on
Bδ1 := {ξ ∈ Y ′, |ξ| < δ1}, and there is a choice of the first eigenvector φ1(·, ξ) such
that

ξ → φ1(·, ξ) ∈ L∞# (Y ) ∩H1
#(Y )

is analytic on Bδ1 and

φ1(x, 0) = |Y |−1/2 =
1

(2π)N/2
, x ∈ RN .

Moreover,

λ1(0) = 0 , ∂kλ1(0) = 0 , 1 ≤ k ≤ N ,

1
2
∂2

k`λ1(0) = qk` , 1 ≤ k, ` ≤ N,

∂αλ1(0) = 0, ∀α such that |α| is odd

and

c1|ξ|2 ≤ λ1(ξ) ≤ c2|ξ|2 , ξ ∈ Bδ1 , (3.5)

where c1 and c2 are positive constants.
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4. Asymptotic Expansion

We begin this section with a basic lemma on asymptotic analysis and some technical
results which will be useful in the proof of the asymptotic expansion of solutions of
(1.1). For the proofs, we refer to [16], [17] and [4], respectively.

Lemma 4.1. Let c > 0. Then∫
Bγ

e−c|ξ|2t|ξ|kdξ ∼ Ckt
− k+N

2 , ∀ k ∈ N, (4.1)

as t→ +∞, where Ck is a positive constant which may be computed explicitly.

Lemma 4.2. Let ϕ ∈ L1(RN ) be a function such that |x|kϕ ∈ L1(RN ). Then its
first Bloch coefficient ϕ̂1(ξ) belongs to Ck(Bδ), with Bδ a neighborhood of ξ = 0
where there first Bloch wave φ1(·, ξ) is analytic.

Lemma 4.3. Consider the function

G(x) =
∫

Y ′
g(ξ)eix·ξw(x, ξ)dξ , x ∈ RN (4.2)

where g ∈ L2(Y ′) and w ∈ L∞
(
Y ′, L2

#(Y )
)
. Then G ∈ L2(RN ) and

‖G‖2L2(RN ) =
∫

Y ′
|g(ξ)|2‖w(·, ξ)‖2L2(Y )dξ .

Next, we want to compute the Bloch coefficients of the solution u of (1.1) and
derive a result on the dependence of such coefficients with respect to the parameter
ξ.

Lemma 4.4. Let u = u(x, t) be the solution of (1.1). Then,

u(x, t) =
∞∑

m=1

∫
Y ′

[
β1

m(ξ)e−α1
m(ξ)t + β2

m(ξ)e−α2
m(ξ)t

]
eix·ξφm(x, ξ)dξ (4.3)

with

β1
m(ξ) =

(1 + aλm(ξ))α2
m(ξ)

λm(ξ)
√
b2 − 4 (1 + aλm(ξ))

ϕ̂0
m +

1 + aλm(ξ)
λm(ξ)

√
b2 − 4 (1 + aλm(ξ))

ϕ̂1
m

(4.4)

β2
m(ξ) = − (1 + aλm(ξ))α1

m(ξ)
λm(ξ)

√
b2 − 4 (1 + aλm(ξ))

ϕ̂0
m − 1 + aλm(ξ)

λm(ξ)
√
b2 − 4 (1 + aλm(ξ))

ϕ̂1
m

(4.5)

where ϕ̂0
m and ϕ̂1

m are the Bloch coefficients of the initial data ϕ0 and ϕ1, respec-
tively. The functions α1

m and α2
m are given by

α1
m(ξ) =

b−
√
b2 − 4 (1 + aλm(ξ))
2 (1 + aλm(ξ))

λm(ξ),

α2
m(ξ) =

b+
√
b2 − 4 (1 + aλm(ξ))
2 (1 + aλm(ξ))

λm(ξ).

(4.6)

Proof. Since u(x, t) ∈ L2(RN ) for all t > 0, we have

u(x, t) =
∫

Y ′

∞∑
m=1

ûm(ξ, t)eix·ξφm(x, ξ)dξ (4.7)
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where ûm are the Bloch coefficients of u = u(x, t) given by Proposition 3.1. Fur-
thermore, since

A(e−ix·ξφm(x, ξ)) = A(eix·ξφm(x, ξ)) = λm(ξ)e−ix·ξφm(x, ξ)

and {φm(x, ·)}m∈N is orthonormal, it follows from (1.1) that the functions ûm(ξ, t)
satisfy the following ordinary differential equation

(1 + aλm(ξ)) ∂2
t ûm(ξ, t) + λ2

m(ξ)ûm(ξ, t) + bλm(ξ)∂tûm(ξ, t) = 0,

in Y ′ × (0,+∞)

ûm(ξ, 0) = ϕ̂0
m(ξ), ∂tûm(ξ, 0) = ϕ̂1

m(ξ), ξ ∈ Y ′, t > 0

(4.8)

for each m ≥ 1. Solving the differential equation above we find

ûm(ξ, t) = β1
m(ξ)e−α1

m(ξ)t + β2
m(ξ)e−α2

m(ξ)t (4.9)

where {αi(ξ)}, i = 1, 2, are defined by (4.6) and they are the two roots of the
characteristic equation

(1 + aλm(ξ)) r2 + bλm(ξ)r + λ2
m(ξ) = 0. (4.10)

It is easy to see that the terms β1
m and β2

m given in (4.4) and (4.5), respectively,
are obtained in order to satisfy the initial data in (4.8). �

Since α1
1(ξ) and α2

1(ξ) are also defined by (4.6) we use Proposition 3.3 to obtain
the following result.

Lemma 4.5. Assume that the {ak`(x)}N
k,`=1 satisfy (1.4). Then, there exists δ > 0

such that the functions αi
1(ξ) and βi

1(ξ), i=1, 2, defined in (4.4)-(4.6) are analytic
functions on Bδ := {ξ ∈ Y ′, |ξ| < δ}. Furthermore, α1

1(ξ) and α2
1(ξ) satisfy

c5|ξ|2 ≤ |α1
1(ξ)| ≤ c6|ξ|2 , ∀ ξ ∈ Bδ ,

c7|ξ|2 ≤ |α2
1(ξ)| ≤ c8|ξ|2 , ∀ ξ ∈ Bδ

(4.11)

and
αi

1(0) = ∂kα
i
1(0) = 0 , k = 1, 2, . . . , N, i = 1, 2

∂βαi
1(0) = 0, ∀β such that |β| is odd, i = 1, 2

∂2
k` α

1
1(0) =

(
b −

√
b2 − 4

)
qk`, k, ` = 1, 2, . . . , N

∂2
k` α

2
1(0) =

(
b +

√
b2 − 4

)
qk`, k, ` = 1, 2, . . . , N

(4.12)

where c5, c6, c7 and c8 are positive constants.

Proof. Let 0 < δ ≤ δ1, with δ1 given by Proposition 3.3. Then we can consider two
cases:
(a) If b2 > 4 we choose δ > 0 satisfying b2 − 4 − 4ac2δ2 > 0. Then, for |ξ| ≤ δ,
Proposition 3.3 give us that

α1
1(ξ) =

b−
√
b2 − 4(1 + aλ1(ξ))

2 (1 + aλ1(ξ))
λ1(ξ) ≥

(
b−

√
b2 − 4

)
c1|ξ|2

2(1 + ac2δ2)
= c3|ξ|2

and

α1
1(ξ) ≤

bλ1(ξ)
2

≤ bc2|ξ|2

2
= c4|ξ|2 .
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(b) If b2 ≤ 4 we can choose any δ ≤ δ1. Then, since

α1
1(ξ) =

[ b

2 (1 + aλ1(ξ))
− i

√
−b2 + 4 (1 + aλ1(ξ))

2 (1 + aλ1(ξ))

]
λ1(ξ) ,

it is easy to see that there exist positive constants c5 and c6 such that

c5|ξ|2 ≤
∣∣α1

1(ξ)
∣∣ ≤ c6|ξ|2 for |ξ| ≤ δ.

In the same way we can obtain c7 > 0 and c8 > 0 satisfying

c7|ξ|2 ≤ |α2
1(ξ)| ≤ c8|ξ|2 for |ξ| ≤ δ

with δ > 0 as given in (a) or (b). The second part of the Lemma is straightforward
and follows from Proposition 3.3. �

The next steps are devoted studying the asymptotic behavior of the Bloch coef-
ficients of the solution u computed in Lemma 4.4

4.1. Bloch components of u with exponential decay. First, we prove that the
terms in (4.3) corresponding to the eigenvalues λm(ξ), m ≥ 2, decay exponentially
to zero as t → ∞. Then, we show that the term corresponding to λ1(ξ) also goes
to zero exponentially, whenever ξ ∈ Y ′\Bδ = {ξ ∈ Y ′, |ξ| > δ}.

Lemma 4.6. Let ûm = ûm(ξ, t) be the Bloch coefficients of the solution u = u(x, t)
of (1.1). Then, there exist positive constants c and ν0 such that∫

Y ′

∑
m≥2

|ûm(ξ, t)|2dξ ≤ ce−ν0t
(
‖ϕ0‖2L2(RN ) + ‖ϕ1‖2H−1(RN )

)
(4.13)

for all t > 0.

Proof. We consider the Liapunov function associated to ordinary differential equa-
tion in (4.8)

Lm(ξ, t) = Em(ξ, t) + εFm(ξ, t), ε > 0 (4.14)

where

Em(ξ, t) =
1
2

[
|∂tûm(ξ, t|2 +

λ2
m(ξ)

1 + aλm(ξ)
|ûm(ξ, t)|2

]
,

Fm(ξ, t) = ûm(ξ, t) ∂tûm(ξ, t) +
bλm(ξ)

2 (1 + aλm(ξ))
|ûm(ξ, t)|2 .

Then, since λm(ξ) ≥ λN
2 > 0, ∀ m ≥ 2, we have

|Lm(ξ, t)− Em(ξ, t)| = ε|Fm(ξ, t)|

≤ ε
[
|ûm(ξ, t)‖∂tûm(ξ, t)|+ bλm(ξ)

2 (1 + aλm(ξ))
|ûm(ξ)|2

]
≤ ε

[ λ2
m(ξ)

2 (1 + aλm(ξ))
|ûm(ξ, t)|2 +

1 + aλm(ξ)
2λ2

m(ξ)
|∂tûm(ξ, t)|2

+
bλ2

m(ξ)
2λN

2 (1 + aλm(ξ))
|ûm(ξ, t)|2

]
=
ε

2

[
(1 +

b

λN
2

)
λ2

m(ξ)
1 + aλm(ξ)

|ûm(ξ, t)|2 +
1 + aλm(ξ)
λ2

m(ξ)
|∂tûm(ξ, t)|2

]
.
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Moreover, due to
1 + aλm(ξ)
λ2

m(ξ)
≤ 1(

λN
2

)2 +
a

λN
2

, m ≥ 2,

we obtain

|Lm(ξ, t)− Em(ξ, t)|

≤ ε

2

[(
1 +

b

λN
2

) λ2
m(ξ)

1 + aλm(ξ)
|ûm(ξ, t)|2 +

( 1
(λN

2 )2
+

a

λN
2

)]
|∂tûm(ξ, t)|2

for all m ≥ 2. Thus,

|Lm(ξ, t)− Em(ξ, t)| ≤ εc0Em(ξ, t), ∀m ≥ 2 (4.15)

with c0 = max
{

1
(λN

2 )2
+ a

λN
2
, 1 + b

λN
2

}
. Consequently, for 0 < ε < 1

c0
we have

0 < (1− εc0)Em(ξ, t) ≤ Lm(ξ, t) ≤ (1 + εc0)Em(ξ, t). (4.16)

Now, we claim that
∂tLm(ξ, t) ≤ − cLm(ξ, t) (4.17)

holds for some positive constant c independent of ξ, whenever m ≥ 2. To prove
this claim we proceed as follows:

Multiplying the equation in (4.8) by ûm(ξ, t), we have

∂tFm(ξ, t) = − λ2
m(ξ)

1 + aλm(ξ)
|ûm(ξ, t)|2 + |∂tûm(ξ, t)|2. (4.18)

Next, we multiply the equation in (4.8) by ∂tûm(ξ, t) to obtain

∂tEm(ξ, t) = − bλm(ξ)
1 + aλm(ξ)

|∂tûm(ξ, t)|2 . (4.19)

Then, multiplying (4.18) by ε and adding with (4.19) it results

∂tLm(ξ, t) =
(
ε− bλm(ξ)

1 + aλm(ξ)

)
|∂tûm(ξ, t)|2 − ελ2

m(ξ)
1 + aλm(ξ)

|ûm(ξ, t)|2. (4.20)

On the other hand, since λm(ξ) ≥ λN
2 > 0, ∀m ≥ 2, we get

λN
2

1 + aλN
2

≤ λm(ξ)
1 + aλm(ξ)

≤ 1
a
, ∀ m ≥ 2 .

Consequently, choosing 0 < ε ≤ min
{

1
2c0

,
bλN

2
2(1+aλN

2 )

}
, where c0 is given in (4.15),

we deduce that
∂tLm(ξ, t) ≤ −cEm(ξ, t) (4.21)

for some positive constant c = c(ε). Now, combining the above inequality and
(4.16) the following holds

Em(ξ, t) ≤ c9Em(ξ, 0)e−ν0t (4.22)

for some positive constant ν0 which does not depend on t and ξ and c9 = 1+εc0
1−εc0

> 0.
Recalling the definition of Em(ξ, t), from (4.22) we deduce that

λ2
m(ξ)

1 + aλm(ξ)
|ûm(ξ, t)|2 ≤ c9

[
|∂tûm(ξ, 0)|2 +

λ2
m(ξ)

1 + aλm(ξ)
|ûm(ξ, 0)|2

]
e−ν0t.
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Due to λm(ξ) ≥ λN
2 , for m ≥ 2, there exists a positive constant c10 such that

1 + aλm(ξ)
λ2

m(ξ)
≤ c10

1 + λm(ξ)
, ∀m ≥ 2.

Then, we obtain that

|ûm(ξ, t)|2 ≤
{ c9 c10

1 + λm(ξ)
|ϕ̂1

m(ξ)|2 + c9|ϕ̂0
m(ξ)|2

}
e−ν0t

where ϕ̂1
m(ξ) and ϕ̂0

m(ξ) are the Bloch coefficients of the initial data ϕ1 and ϕ0,
respectively. Consequently, according to Proposition 3.1∫

Y ′

∑
m≥2

|ûm(ξ, t)|2dξ ≤ c
[
‖ϕ1‖2H−1(RN ) + ‖ϕ0‖2L2(RN )

]
e−ν0t (4.23)

for t > 0, where c > 0 is a constant which does not depend on ξ and t. �

Lemma 4.7. Let û1(ξ, t) be the first Bloch coefficients of the solution u of (1.1)
given in (4.3). Then, there exist positive constants c and ν1 such that∫

Y ′\Bδ

|û1(ξ, t)|2dξ ≤ c
[
‖ϕ0‖2L2(RN ) + ‖ϕ1‖2H−1(RN )

]
e−ν1t (4.24)

for all t ≥ 0, where δ is given in Lemma 4.5 and satisfies 0 ≤ δ ≤ δ1, with δ1 as in
Proposition 3.3.

Proof. To prove (4.24) we argue as in the previous lemma. But, instead of using
the fact that λm(ξ) ≥ λN

2 > 0, ∀ ξ ∈ Y ′ and m ≥ 2, we use the fact that c1|ξ|2 ≤
λ1(ξ) ≤ c2|ξ|2 for all ξ ∈ Bδ (see Proposition 3.3). �

4.2. Bloch component of u with polynomial decay. According to the previous
analysis, To prove the asymptotic expansion of the solution u(x, t) of (1.1), it is
sufficient to analyze

I(x, t) =
∫

Bδ

[
β1

1(ξ)e−α1
1(ξ)t + β2

1(ξ)e−α2
1(ξ)t

]
eix·ξφ1(x, ξ)dξ (4.25)

with δ > 0 given in Lemma 4.5, since the other components of u, in particular
the term

∫
Y ′\Bδ

|û1(ξ, t)|2dξ decay exponentially. The asymptotic expansion of
the solution is obtained from the term in (4.25). To analyze I(x, t) defined above
we make use of classical asymptotic lemmas and assume that the initial data ϕ0 ∈
L2(RN )∩L1(RN ) and ϕ1 ∈ H−1(RN )∩L1(RN ) are such that |x|kϕ0(x), |x|kϕ1(x) ∈
L1(RN) for some k ≥ 1. Under these conditions the first Bloch coefficients ϕ̂0

1(ξ)
and ϕ̂1

1(ξ) of the initial data belong to Ck(Bδ), which is crucial in the proof of
the asymptotic expansion. Indeed, a further Taylor’s development of the first term
in the asymptotics shows a connection with the fundamental solution of the heat
equation.

In this way, we begin by considering

J(x, t) =
∫

Bδ

1
λ1(ξ)

∑
|α|≤k

[
d1

αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
]
ξαeix·ξφ1(x, ξ)dξ (4.26)

where
d1

α =
1
α!

∂α
(
λ1β

1
1

)
(0) and d2

α =
1
α!
∂α

(
λ1β

2
1

)
(0), α ∈ NN

which are the Taylor’s coefficients of β1
1(ξ) and β2

1(ξ) around ξ = 0, respectively.
Then, we have the following result.
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Lemma 4.8. Let ϕ0 ∈ L2(RN ) ∩ L1(RN ), ϕ1 ∈ H−1(RN ) ∩ L1(RN ) such that
|x|k+1ϕ0(x) and |x|k+1ϕ1(x) ∈ L1(RN ). Then, there exists δ > 0 and a positive
constant ck such that

‖I(·, t)− J(·, t)‖L2(RN ) ≤ ckt
− 2k+N−2

4 (4.27)

as t→∞, where I(x, t) and J(x, t) are defined in (4.25) and (4.26), respectively.

Proof. By the assumptions on ϕ0(x) and ϕ1(x) if follows that ϕ̂0
1(ξ) and ϕ̂1

1(ξ) ∈
Ck+1(Bδ). According to the proof of Lemma 4.5, 0 ≤ δ ≤ δ1 satisfies

bδ = b2 − 4− 4ac2δ2 > 0 if b2 > 4 or δ > 0 is any value if b2 < 4,

where c2 and δ1 are given in Proposition 3.3. This allows us to conclude that

b2 − 4− 4aλ1(ξ) > bδ if b2 > 4;

b2 − 4− 4aλ1(ξ) < b2 − 4 < 0 if b2 < 4
(4.28)

whenever ξ ∈ Bδ. Here, we observe that

β1
1(ξ) =

1
λ1(ξ)

[b+
√
b2 − 4 (1 + aλ1(ξ))

2
√
b2 − 4 (1 + aλ1(ξ))

λ1(ξ)ϕ̂0
1(ξ)

+
1 + aλ1(ξ)√

b2 − 4 (1 + aλ1(ξ))
ϕ̂1

1(ξ)
]

=
1

λ1(ξ)
β̃1

1(ξ)

(4.29)

and

β2
1(ξ) =

1
λ1(ξ)

[
−
b+

√
b2 − 4(1 + aλ1(ξ))

2
√
b2 − 4 (1 + aλ1(ξ))

λ1(ξ)ϕ̂0
1(ξ)

− 1 + aλ1(ξ)√
b2 − 4(1 + aλ1(ξ))

ϕ̂1
1(ξ)

]
=

1
λ1(ξ)

β̃2
1(ξ).

(4.30)

Since λ1(ξ) is analytic and ϕ̂0
1, ϕ̂

1
1 ∈ Ck+1(Bδ), we have β̃1

1 , β̃
2
1 ∈ Ck+1(Bδ), for

δ > 0 sufficiently small. Then, we can write

β̃1
1(ξ) =

∑
|α|≤k

d1
αξ

α and β̃2
1(ξ) =

∑
|α|≤k

d2
αξ

α

where d1
α = ∂αβ̃1

1(0)
α! and d2

α = ∂αβ̃2
1(0)

α! . Thus, from Taylor’s expansion we obtain
positive constants c̃1k and c̃2k, depending on the integer k, such that

|β̃1
1(ξ)−

∑
|α|≤k

d1
αξ

α| ≤ c̃1k |ξ|k+1

|β̃2
1(ξ)−

∑
|α|≤k

d2
αξ

α| ≤ c̃2k |ξ|k+1
(4.31)
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for all ξ ∈ Bδ. Consequently, from Parseval’s identity (see Proposition 3.1) we get

‖I(·, t)− J(·, t)‖2L2(RN ) ≤
∫

Bδ

1
λ2

1(ξ)

∣∣∣β̃1
1(ξ)−

∑
|α|≤k

d1
αξ

α
∣∣∣2∣∣∣ e−α1

1(ξ)t
∣∣∣2dξ+

+
∫

Bδ

1
λ2

1(ξ)

∣∣∣β̃2
1(ξ)−

∑
|α|≤k

d2
αξ

α
∣∣∣2∣∣∣ e−α2

1(ξ)t
∣∣∣2dξ. (4.32)

Now, using (4.31) and Proposition 3.3 it results

‖I(·, t)− J(·, t)‖2L2(RN ) ≤ Ck

∫
Bδ

|ξ|2k−2
[
|e−α1

1(ξ)t|2 + |e−α2
1(ξ)t|2

]
dξ. (4.33)

In order to conclude the proof, we consider two cases:
Case b2 > 4: In this case, it follows from (4.28) that α1

1(ξ), α
2
1(ξ) ≥ 0. Therefore,

combining Lemma 4.5, Lemma 4.1 and (4.33) we get

‖I(·, t)− J(·, t)‖2L2(RN ) ≤ 2Ck

∫
Bδ

|ξ|2k−2 e−c̃ |ξ|2tdξ ≤ C̃kt
− 2k+N−2

2 , as t→∞,

where Ck and C̃k are positive constants.
Case 0 < b2 < 4: Now, according to (4.28) (see also item (b) in the proof of
Lemma 4.5) the functions α1

1(ξ) and α2
1(ξ) are complex functions. Therefore, due

to Proposition 3.3 we have

|e−αi
1(ξ)t|2 = e−2Reαi

1(ξ)t = e
−2bλ1(ξ)t

2(1+aλ1(ξ)) ≤ e−C̃|ξ|2t, ∀ ξ ∈ Bδ and i = 1, 2. (4.34)

where C̃ is a positive constant. Then, proceeding as in the first case we conclude
that

‖I(·, t)− J(·, t)‖2L2(RN ) ≤ 2Ck

∫
Bδ

|ξ|2k−2e−C̃|ξ|2tdξ ≤ C̃kt
− 2k+N−2

2 as t→∞

where C̃k is a positive constant depending on k. The proof is complete. �

Remark 4.9. When b2 = 4 the previous analysis shows that the decay rate in
(4.27) is t−

2k+N−4
4 with J(x, t) given in (4.26) modulated by λ−

3
2 (ξ) instead of

λ−1(ξ).

Now, we compute the Taylor expansion of φ1(x, ξ) around ξ = 0 and prove that
all terms in (4.26), which we denote by

Jα(x, t) =
∫

Bδ

ξα

λ1(ξ)

[
d1

αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
]
eix·ξ φ1(x, ξ)dξ, (4.35)

for α ∈ (N∪{0})N , |α| ≤ k and (x, t) ∈ RN×R+, can be approximated in L2-setting
by a linear combination of the form∑

|γ|≤k−|α|

dγ(x)
∫

Bδ

ξα

λ1(ξ)

[
d1

αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
]
eix·ξ ξγdξ, (4.36)

where dγ are periodic functions defined by

dγ(x) =
1
γ!

∂γ
ξ φ1(x, 0) , |γ| ≤ k − |α|. (4.37)

This can be done because φ1(·, ξ) ∈ L2
#(Y ) is an analytic function in Bδ. The result

reads as follows.
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Lemma 4.10. There exists a constant Ck > 0, such that

‖Jα(·, t)−
∑

|γ|≤k−|α|

dγ(·)Iα+γ(·, t)‖L2(RN ) ∼ Ckt
− 2k+N−2

4

as t→∞, where

Iα+γ(x, t) =
∫

Bδ

ξα+γ

λ1(ξ)

[
d1

αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
]
eix·ξdξ

:= d1
α I

1
α+γ(x, t) + d2

α I
2
α+γ(x, t).

(4.38)

Proof. Let

Rk,α(x, ξ) = φ1(x, ξ)−
∑

|γ|≤k−|α|

dγ(x)ξγ

where dγ(·) is defined in (4.37) and α ∈ (N ∪ {0})N with |α| ≤ k. Since φ1(·, ξ) is
an analytic function with respect to ξ in Bδ and values in L2

#(Y ), for all ξ ∈ Bδ we
obtain that

‖Rk,α(·, ξ)‖L2
#(Y ) ≤ Ck|ξ|k+1−|α| . (4.39)

Thus,

Rk,α ∈ L∞(Bδ, L
2
#(Y )) . (4.40)

Now, we consider the function G given by

G(x, t) = Jα(x, t)−
∑

|γ|≤k−|α|

dγ(x)Iα+γ(x, t)

=
∫

Bδ

ξα

λ1(ξ)

[
d1

αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
]
Rk,α(x, ξ)eix·ξdξ .

(4.41)

Then, from Lemma 4.3, (4.39) and (4.40) we obtain

‖G(·, t)‖2L2(RN ) =
∫

Bδ

∣∣∣ ξα

λ1(ξ)

(
d1

αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
) ∣∣∣2‖Rk,α(·, ξ)‖2L2

#(Y )dξ

≤ C2
k

∫
Bδ

|ξ|2k+2

λ2
1(ξ)

∣∣∣d1
αe
−α1

1(ξ)t + d2
αe
−α2

1(ξ)t
∣∣∣2dξ .

Consequently, using Proposition 3.3 and Lemma 4.1, we obtain

‖G(·, t)‖2L2(RN ) ≤ C2
k

∫
Bδ

|ξ|2k−2e−c9|ξ|2tdξ ∼ C̃kt
− 2k+N−2

2 (4.42)

as t→∞, where k ≥ 1 and c9 = max{c5, c7} (see Lemma 4.5). �

Next, we study the integral in (4.38) which appears in the statement of Lemma
4.10. This will be done considering expansions of type

∑
|α|≤k d̃α ξα for the func-

tions α1
1(ξ) and α2

1(ξ) around ξ = 0. We observe that, according to Proposition
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3.3, we have

α1
1(0) =

∂α1
1(0)
∂ξk

= 0 , k = 1, 2, . . . , N

∂2α1
1(0)

∂ξk∂ξ`
= (b−

√
b2 − 4)qk` , k, ` = 1, 2, . . . , N

α2
1(0) =

∂α2
1

∂ξk
(0) = 0 , k = 1, 2, . . . , N

∂2α2
1(0)

∂ξk∂ξ`
= (b+

√
b2 − 4)qk` , k, ` = 1, 2, . . . , N

∂αα1
1(0) = ∂αα2

1(0) = 0 if |α| is odd.

(4.43)

In view of the above consideration, if we define

r1(ξ) = α1
1(ξ)−

b−
√
b2 − 4
2

qk`ξkξ`, r2(ξ) = α2
1(ξ)−

b+
√
b2 − 4
2

qk`ξkξ` (4.44)

the maps ξ 7→ r1(ξ) and ξ 7→ r2(ξ) are analytic in ξ. Moreover,

e−α1
1(ξ)t = e−

b−
√

b2−4
2 qk`ξkξ`te−r1(ξ)t = e−

b−
√

b2−4
2 qk`ξkξ`t

( ∞∑
n=0

tn

n!
(−r1(ξ))n

)
(4.45)

e−α2
1(ξ)t = e−

b+
√

b2−4
2 qk`ξkξ`te−r2(ξ)t = e−

b+
√

b2−4
2 qk`ξkξ`t

( ∞∑
n=0

tn

n!
(−r2(ξ))n

)
.

(4.46)

Now, for p ∈ N fixed, we define the following two functions

Ĩ1
γ(x, t) =

∫
Bδ

ξγ

λ1(ξ)
e−

b−
√

b2−4
2 qk`ξkξ`t

( p∑
n=0

tn

n!
(−r1(ξ))n eix·ξ

)
dξ (4.47)

Ĩ2
γ(x, t) =

∫
Bδ

ξγ

λ1(ξ)
e−

b+
√

b2−4
2 qk`ξkξ`t

( p∑
n=0

tn

n!
(−r2(ξ))n eix·ξ

)
dξ. (4.48)

Replacing (4.44) into I1
γ(x, t) and I2

γ(x, t) defined in Lemma 4.10, identities (4.45)
and (4.46) lead us to consider the asymptotic behavior of the differences

I1
γ(x, t)− Ĩ1

γ(x, t)

=
∫

Bδ

ξγ

λ1(ξ)
e−

b−
√

b2−4
2 qk`ξkξ`t

[
e−r1(ξ)t −

p∑
n=0

tn

n!
(−r1(ξ))n

]
eix·ξdξ ,

(4.49)

I2
γ(x, t)− Ĩ2

γ(x, t)

=
∫

Bδ

ξγ

λ1(ξ)
e−

b+
√

b2−4
2 qk`ξkξ`t

[
e−r2(ξ)t −

p∑
n=0

tn

n!
(−r2(ξ))n

]
eix·ξdξ.

(4.50)

This provides an estimate of Iα+γ(x, t) in L2-setting.

Lemma 4.11. Let 2p ≥ k − |γ| − 1. Then, there exists a constant Ck > 0, such
that

‖Ii
γ(·, t)− Ĩi

γ(·, t)‖2L2(RN ) ∼ Ckt
− 2k+N−2

2 , as t→∞
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with Ii
γ(x, t) and Ĩi

γ(x, t), defined in (4.38) and (4.47)-(4.48), respectively, for i =
1, 2.

Proof. Parseval’s identity and formula (4.49) imply

‖I1
γ(·, t)− Ĩ1

γ(·, t)‖2L2(RN )

=
∫

Bδ

|ξ|2|γ|

λ2
1(ξ)

∣∣∣e− b−
√

b2−4
2 qk`ξkξ`t

[
e−r1(ξ)t −

p∑
n=0

tn

n!
(−r1(ξ))n

]∣∣∣2dξ. (4.51)

Since the function ez, z ∈ R, is analytic, we obtain Cp > 0 satisfying

∣∣∣e−r1(ξ)t −
p∑

n=0

(−t)n

n!
(r1(ξ))n

∣∣∣ ≤ Cp|r1(ξ)|p+1 tp+1, ∀ t > 0, ξ ∈ Bδ. (4.52)

Then, combining (4.43) and (4.44) we may conclude that

r1(ξ) =
∞∑

m=0

∑
|α|=4+2m

1
α!

∂α
ξ α

1
1(0)ξα , ξ ∈ Bδ (4.53)

which guarantees the existence of a positive constant satisfying

|r1(ξ)| ≤ C|ξ|4, ∀ ξ ∈ Bδ. (4.54)

Now, returning to (4.51) we can proceed as in the proof of Lemma 4.8 (see for
instance (4.33)) and consider two cases: if b2 > 4 we can combine (4.52), (4.54),
Proposition 3.3 and Lemma 4.1 to obtain

‖I1
γ(·, t)− Ĩ1

γ(·, t)‖2L2(RN )

≤ Cp

∫
Bδ

|ξ|2|γ|

λ2
1(ξ)

e−
b−
√

b2−4
2 qk`ξkξ`t|r1(ξ)|2p+2t2p+2dξ

≤ c−2
1 CpC

( ∫
Bδ

e−
b−
√

b2−4
2 qk`ξkξ`t|ξ|2|γ|+8p+4dξ

)
t2p+2

∼ Cp,kt
2p+2− 2|γ|+8p+4+N

2 , for t large,

(4.55)

with Cp,k > 0 and |γ| ≤ k. Now, since p is an integer, such that

2p ≥ k − |γ| − 1 (4.56)

then, (4.55) and (4.56) give us the result for the case i = 1 and b2 > 4. When
0 < b2 ≤ 4 the proof is similar (see (4.33) and the end of the proof of Lemma 4.8).
Finally, the case i = 2 is obtained in the same way. �

Before stating the next result let us recall that the idea is to prove that the
solution of (1.1) behave as a linear combination of the derivatives of the fundamental
solution of the homogenized heat equation, modulated by the first eigenvalue λ1(ξ)
of the operator A. So, taking the last result into account the next step is to study
the asymptotic behavior of r1(ξ) and r2(ξ) defined in (4.44). However, before doing
that, we consider the Taylor’s expansion of r1(ξ) and r2(ξ) around ξ = 0 to obtain,
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for n ≥ 1,

(r1(ξ))n =
( ∑

β≥0

1
β!
∂β

ξ r1(0)ξβ
)n

=
( ∞∑

m=0

∑
|β|=4+2m

1
β!
∂β

ξ α
1
1(0)ξβ

)n

=
∞∑

m=0

∑
|β|=4n+2m

d1
β,nξ

β

(4.57)

and

(r2(ξ))n =
( ∑

β≥0

1
β!
∂β

ξ r2(0)ξβ
)n

=
( ∞∑

m=0

∑
|β|=4+2m

1
β!
∂β

ξ α
2
1(0)ξβ

)n

=
∞∑

m=0

∑
|β|=4n+2m

d2
β,n, ξ

β

(4.58)

because ∂β
ξ α

1
1(0) = ∂β

ξ α
2
1(0) = 0 when |β| = 0 and |β| odd (see also 4.43).

Now, we note that
∞∑

n=0

(−t)n

n!
(r1(ξ))n = 1 +

∞∑
n=1

(−t)n

n!

∞∑
m=0

∑
|β|=4n+2m

d1
β,nξ

β , (4.59)

∞∑
n=0

(−t)n

n!
(r2(ξ))n = 1 +

∞∑
n=1

(−t)n

n!

∞∑
m=0

∑
|β|=4n+2m

d2
β,nξ

β . (4.60)

These facts suggest us the following approximation for Ĩi
γ(x, t), i = 1, 2:

I1
γ∗(x, t)

=
∫

Bδ

ξγ

λ1(ξ)
e−

b−
√

b2−4
2 qk`ξkξ`t

( p∑
n=0

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d1
β,nξ

β
)
eix·ξdξ

(4.61)

and

I2
γ∗(x, t)

=
∫

Bδ

ξγ

λ1(ξ)
e−

b+
√

b2−4
2 qk`ξkξ`t

( p∑
n=0

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d2
β,nξ

β
)
eix·ξdξ

(4.62)

where p1 = p1(n, γ) will be chosen later. The constants d1
β,n and d2

β,n can be
calculated explicitly in terms of ∂β

ξ α
1
1(0) and ∂β

ξ α
2
1(0), respectively.

Lemma 4.12. Let Ĩi
γ(x, t) and Ii

γ∗(x, t) defined in (4.47)-(4.48) and (4.61)-(4.62),
respectively. Then, for |γ| ≤ k,

‖Ĩi
γ(·, t)− Ii

γ∗(·, t)‖2L2(RN ) ∼ Ckt
− 2k+N−2

2 , as t→∞, (4.63)

for i = 1, 2, where Ck is a positive constant.



18 R. C. CHARÃO, E. BISOGNIN, V. BISOGNIN, A. F. PAZOTO EJDE-2008/46

Proof. It will be done for i = 1. The case i = 2 follows the same arguments and is
omitted. First we suppose that b2 > 4. Then, from Parseval’s theorem we get

‖Ĩ1
γ(·, t)− I1

γ∗(·, t)‖2L2(RN )

=
∫

Bδ

∣∣∣ ξγ

λ1(ξ)
e−

b−
√

b2−4
2 qk`ξkξ`t

×
[ p∑

n=0

(−t)n

n!
(r1(ξ))n −

p∑
n=0

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d1
β,nξ

β
]∣∣∣2dξ

≤
∫

Bδ

|ξ|2|γ|

λ2
1(ξ)

e−(b−
√

b2−4)qk`ξkξ`t

×
∣∣∣ p∑

n=0

tn

n!

[
(r1(ξ))n −

p1∑
m=0

∑
|β|=4n+2m

d1
β,nξ

β
] ∣∣∣2dξ.

(4.64)

On the other hand, since r1(ξ) is analytic, by using the Taylor expansion (4.58),
we obtain a positive constant Cn, such that∣∣∣(r1(ξ))n −

p1∑
m=0

∑
|β|=4n+2m

d1
β,nξ

β
∣∣∣ ≤ Cn|ξ|2p1+4n+1 , ξ ∈ Bδ

with p1 = p1(n, γ) to be chosen. Thus, using (4.64) we deduce that

‖Ĩ1
γ(·, t)− I1

γ∗(·, t)‖2L2(R)

≤
∫

Bδ

|ξ|2|γ|

λ2
1(ξ)

e−(b−
√

b2−4)qk`ξkξ`t
( p∑

n=0

tn

n!
Cn|ξ|2p1+4n+1

)2

dξ

≤ Cp

p∑
n=0

t2n

∫
Bδ

|ξ|2|γ|+4p1+8n−2 e−(b−
√

b2−4)qk`ξkξ`tdξ.

(4.65)

Now, for |γ| ≤ k we can apply Lemma 4.1 to obtain

‖Ĩ1
γ(·, t)− I1

γ∗(·, t)‖2L2(RN ) ≤ Cp,k

p∑
n=0

t2n t−
2|γ|+4p1+8n−2+N

2 , as t→∞

where Cp,k is a positive constant. Thus, choosing p1 = p1(n, γ) such that

2p1 ≥ k − |γ| − 2n (4.66)

where |γ| ≤ k and k ≥ 1, we get the following inequality

‖Ĩ1
γ(·, t)− I1

γ∗(·, t)‖2L2(RN ) ≤ Ck t
− 2k+N−2

2 , as t→∞.

This completes the proof for the case b2 > 4. The case 0 < b2 ≤ 4 is similar. �

Remark 4.13. Although the heat Kernel, modulated by λ−1
1 (ξ), is defined as an

integral in RN and in our case only in Bδ, we observe that the difference between
the two integrals decays exponentially in L2(RN ) due to the coercivity of matrix
{qk`}N

k,`=1 in RN . Indeed, for |γ| ≤ k and t > 0, we have∥∥∫
RN\Bδ

ξγ

λ1(ξ)
e−

b±
√

b2−4
2 qk`ξkξ`t eix·ξdξ

∥∥
L2(RN )

≤ Ce−σδ2t

where σ > 0 is a constant that depends on the coercivity constant of the matrix and
the constant b. The constant C > 0 depends on k and the constant c1 introduced in
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Proposition 3.3. Moreover, due to Proposition 3.3 we can see the analogy between
G±α and the Kernels introduced above. In particular, since c1|ξ|2 ≤ λ1(ξ) ≤ c2|ξ|2,
∀ ξ ∈ Bδ, they have the same polynomial decay.

5. Proof of Theorem 2.1

Taking Remark 4.13 into account, we define

H(x, t) =
∑
|α|≤k

{
C1

α(x)
[
G−α (x, t) +

p∑
n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d1
β,nG

−
α+β(x, t)

]

+ C2
α(x)

[
G+

α (x, t) +
p∑

n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d2
β,nG

+
α+β(x, t)

]}
(5.1)

where G±α (x, t) was defined in Theorem 2.1, p = p(α) satisfies (4.56), p1 = p1(n, α)
is given in the proof of Lemma 4.12 and

Ci
α(x) =

∑
γ≤α

dγ(x)di
α , i = 1, 2

with di
α and dγ as in (4.26) and (4.37), respectively. We now fix

p = p(α) =
[k − |α|

2
]

and p1 = p1(n, α) = p(α)− n.

Then, according to (4.59), (4.60) and Remark 4.13, we obtain

‖u(·, t)−H(·, t)‖L2(RN )

≤ ‖u(·, t)− I(·, t)‖L2(RN ) + ‖I(·, t)−H(·, t)‖L2(RN )

≤
∥∥ ∞∑

m=2

∫
Y ′

[
β1

m(ξ)e−α1
m(ξ)t + β2

m(ξ)e−α2
m(ξ)t

]
eix·ξφm(x, ξ)dξ

∥∥
L2(RN )

+
∥∥∫

Y ′\Bδ

[
β1

1(ξ)e−α1
1(ξ)t + β2

1(ξ)e−α2
1(ξ)t

]
eix·ξφ1(x, ξ)dξ

∥∥
L2(RN )

+ ‖I(·, t)−H(·, t)‖L2(RN ),

with I(x, t) defined in (4.25). Consequently, from Lemma 4.6, Lemma 4.7 and
Parseval’s identity we get

‖u(·, t)−H(·, t)‖L2(RN ) ≤ Ce−νt + ‖I(·, t)−H(·, t)‖L2(RN ) (5.2)

where C and ν are positive constants, with C depending on the initial data ϕ0 and
ϕ1.

To estimate the difference I(x, t) −H(x, t) that appears on the right hand side
of the above inequality, we use Lemma 4.8:

‖I(·, t)−H(·, t)‖L2(RN ) ≤ ‖I(·, t)− J(·, t)‖L2(RN ) + ‖J(·, t)−H(·, t)‖L2(RN )

≤ Ct−
2k+N−2

4 + ‖J(·, t)−H(·, t)‖L2(RN ),

(5.3)
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as t→∞, where k ≥ 1. We also have

‖J(·, t)−H(·, t)‖L2(RN ) =
∥∥ ∑
|α|≤k

Jα(·, t)−H(·, t)
∥∥

L2(RN )

≤
∑
|α|≤k

∥∥Jα(·, t)−
∑

|γ|≤k−|α|

dγ(·)Iα+γ(·, t)
∥∥

L2(RN )

+
∥∥ ∑
|α|≤k

∑
|γ|≤k−|α|

dγ(·)Iα+γ(·, t)−H(·, t)
∥∥

L2(RN )
.

Thus, from Lemma 4.10 it results

‖J(·, t)−H(·, t)‖L2(RN )

≤ Ckt
− 2k+N−2

4 +
∥∥ ∑
|α|≤k

∑
|γ|≤k−|α|

dγ(·)Iα+γ(·, t)−H(·, t)
∥∥

L2(RN )
.

Here we observe that∑
|α|≤k

∑
|γ|≤k−|α|

dγ(·)Iα+γ(·, t) =
∑
|α|≤k

∑
|γ|≤k−|α|

dγ(x)
[
d1

αI
1
α+γ(x, t) + d2

αI
2
α+γ(x, t)

]
(5.4)

where I1
γ(x, t) and I2

γ(x, t) are defined by (4.38). Consequently, we can write∑
|α|≤k

∑
|γ|≤k−|α|

dγIα+γ(x, t) =
∑
|α|≤k

[C1
α(x)I1

α(x, t) + C2
α(x)I2

α(x, t)] (5.5)

with Ci
α given above, which allows to conclude that∥∥ ∑
|α|≤k

∑
|γ|≤k−|α|

dγ(·)Iα+γ(·, t)−H(·, t)
∥∥

L2(RN )

≤
∥∥ ∑
|α≤k

C1
α(·)[I1

α(·, t)− Ĩ1
α(·, t)] + C2

α(·)[I2
α(·,t) − Ĩ2

α(·, t)]
∥∥

L2(RN )

+
∥∥ ∑
|α|≤k

[C1
α(·)Ĩ1

α(·, t) + C2
α(·, t)Ĩ2

α(·, t)]−H(·, t)
∥∥

L2(RN )

(5.6)

where Ĩi
α, i = 1, 2, are given by (4.47) and (4.48), respectively, and Ci

α(·) ∈ L∞# (Y ),
because dγ(·) ∈ L∞# (Y ).

Now, using Lemma 4.11 and (5.6) we get∥∥ ∑
|α|≤k

∑
|γ|≤k−|α|

dγ(·)Iα+γ(·, t)−H(·, t)
∥∥

L2(RN )

≤ Ck

∑
|α|≤k

[∥∥I1
α(·, t)− Ĩ1

α(·, t)
∥∥

L2(RN )
+

∥∥I2
α(·, t)− Ĩ2

α(·, t)
∥∥

L2(RN )

]
+

∥∥ ∑
|α|≤k

[
C1

α(·)Ĩ1
α(·, t) + C2

α(·)Ĩ2
α(·, t)

]
−H(·, t)

∥∥
L2(RN )

≤ C̃kt
− 2k+N−2

4 +
∥∥ ∑
|α|≤k

[
C1

α(·)Ĩ1
α(·, t) + C2

α(·)Ĩ2
α(·, t)

]
−H(·, t)

∥∥
L2(RN )

(5.7)

with the constants Ck, C̃k depending on k and sup|α|≤k ‖Ci
α(·)‖L∞(RN ), i = 1, 2.
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The next step is devoted to estimate the last term in the right hand side of (5.7).
Therefore we observe that∑

|α|≤k

[C1
α(x)Ĩ1

α(x, t) + C2
α(x)Ĩ2

α(x, t)]−H(x, t)

=
∑
|α|≤k

{
C1

α(x)[Ĩ1
α(x, t)− I1

α∗(x, t)] + C2
α(x)[Ĩ2

α(x, t)− I2
α∗(x, t)]

}
+

∑
|α|≤k

[C1
α(x)I1

α∗(x, t) + C2
α(x)I2

α∗(x, t)]−H(x, t)

where Ii
α∗ , i = 1, 2, are defined in (4.61) and (4.62). Thus, applying Lemma 4.12

we have∑
|α|≤k

∥∥[C1
α(·, t)Ĩ1

α(·) + C2
α(·)Ĩ2

α(·, t)]−H(·, t)
∥∥

L2(RN )

≤ Ckt
− 2k+N−2

4 +
∥∥ ∑
|α|≤k

[C1
α(·)I1

α∗(·, t) + C2
α(·)I2

α∗(·, t)]−H(·, t)
∥∥

L2(RN )

(5.8)

with Ck a positive constant.
Now, returning to the definition of H(x, t) in (5.1) we have∥∥ ∑
|α|≤k

[C1
α(·)I1

α∗(·, t) + C2
α(·)I2

α∗(·, t)]−H(·, t)
∥∥

L2(RN )

≤
∥∥ ∑
|α|≤k

C1
α(·)I1

α∗(·, t)−G−α (·, t)−
p∑

n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d1
β,nG

−
α+β(·, t)

∥∥
L2(RN )

+
∥∥ ∑
|α|≤k

C2
α(·)I2

α∗(·, t)−G+
α (·, t)−

p∑
n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d2
β,nG

+
α+β(·, t)

∥∥
L2(RN )

≤ e−νδ2t +
∥∥ ∑
|α|≤k

C1
α(·)

p∑
n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d1
β,n

×
∫

RN\Bδ

ξα+β

λ1(ξ)
e−

b−
√

b2−4
2 qk`ξkξ`teix·ξdξ

∥∥
L2(RN )

+
∥∥ ∑
|α|≤k

C2
α(·)

p∑
n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

d2
β,n

×
∫

RN\Bδ

ξα+β

λ1(ξ)
e−

b+
√

b2−4
2 qk`ξkξ`teix·ξdξ

∥∥
L2(RN )

(5.9)
due to Remark 4.13 stated in the previous section.

It remains to estimate the term

F i(x, t) =
∑
|α|≤k

Ci
α(·)

p∑
n=1

(−t)n

n!

p1∑
m=0

∑
|β|=4n+2m

di
β,n

×
∫

RN\Bδ

ξα+β

λ1(ξ)
e−

b±
√

b2−4
2 qk`ξkξ`t eix·ξdξ,

(5.10)
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in L2- setting. We observe that the signs − and + in b ±
√
b2 − 4 correspond to

i = 1 and i = 2, respectively.
Due to Parseval’s identity, for the case b2 ≥ 4 we have that

‖F i(·, t)‖L2(RN )

≤ C
∑
|α|≤k

p∑
n=1

p1∑
m=0

∑
|β|=4n+2m

tp
( ∫

RN\Bδ

|ξ|2|α|+2|β|

λ2
1(ξ)

e−(b±
√

b2−4) qk`ξkξ` tdξ
)1/2

≤ C
∑
|α|≤k

p∑
n=1

p1∑
m=0

∑
|β|=4n+2m

tp
( ∫

RN\Bδ

|ξ|2|α|+2|β|−4e−(b±
√

b2−4) qk`ξkξ` tdξ
)1/2

≤ C
∑
|α|≤k

p∑
n=1

p1∑
m=0

∑
|β|=4n+2m

tp
(
t−

2|α|+2|β|−4+N
2 e−νδ2t

)1/2

≤ Cke
− νδ2t

2 , as t→∞
(5.11)

where Ck is a positive constant and ν is the constant of coercivity of the matrix
{qk`}N

k,`=1. To obtain this result we have used that, for m ∈ N,∫
RN\Bδ

|ξ|me−α|ξ|2tdξ =
∫ ∞

δ

rme−αr2t
( ∫

|ξ|=r

dSξ

)
dr ≤ CwN t−

m+N
2 e−

αδ2t
2 ,

(5.12)
for all t > 0, where wN denotes the measure of the sphere SN−1. Finally, returning
to (5.2) and using estimates (5.3) up to (5.11), we conclude that

‖u(·, t)−H(·, t)‖L2(RN ) ≤ Ckt
− 2k+N−2

4 , as t→∞

where k ≥ 1 and Ck is a positive constant that depends on the initial data.
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[3] F. Bloch; Über die Quantenmechanik der Electronen in Kristallgittern, Z. Phys. 52 (1928)
555–600.

[4] C. Conca, R. Orive and M. Vanninathan; Bloch Approximate in homogenization and appli-
cations, SIAM J. Math. Anal. 33 (5) (2002) 1166-1198.

[5] C. Conca and M. Vanninathan; Homogenization of periodic structures via Bloch decomposi-
tion, SIAM J. Appl. Math. 57 (6)(1997) 1639–1659.

[6] C. Conca, J. Planchard and M. Vanninathan; Fluids and Periodic Structures, Research in
Applied Mathematics 38, J. Wiley-Masson (1995).

[7] J. Duoandikoetxea and E. Zuazua; Moments, Dirac deltas and expansion of functions, C. R.
Acad. Sci. Paris Sér. I Math. 315 (6)(1992) 693–698.



EJDE-2008/46 ASYMPTOTIC BEHAVIOR FOR A DISSIPATIVE PLATE EQUATION 23

[8] G. Duro and E. Zuazua; Large time behavior for convection-diffusion equations in RN with

periodic coefficients, J. Differential Equations 167 (2) (2000) 275–315.

[9] H. Koch and I. Lasiecka, Hadamard wellposedness of weak solutions in nonlinear dynamical
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[14] I. Mozolevski, E. Süli and P. R. Bösing, Discontinous Galerkin finite element method for a
fourth-order nonlinear elliptic equation related to the two-dimensional Navier-Stokes equa-

tions, Numerical Mathematics and Advance Applications (Santiago de Compostela, Spain,
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Departamento de Matemática, Universidade Federal de Santa Catarina, P. O. Box 476,

CEP 88040-900, Florianópolis, SC, Brasil
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