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ANOTHER UNDERSTANDING OF FOURTH-ORDER
FOUR-POINT BOUNDARY-VALUE PROBLEMS

PETIO S. KELEVEDJIEV, PANOS K. PALAMIDES, NEDYU I. POPIVANOV

Abstract. In this article we investigate the existence of positive and/or neg-
ative solutions of a classes of four-point boundary-value problems for fourth-

order ordinary differential equations. The assumptions in this article are more

relaxed than the known assumptions. Our technique relies on the continuum
property (connectedness and compactness) of the solutions funnel (Knesser’s

Theorem), combined with the corresponding vector field’s ones. This approach

permits the extension of results (getting positive solutions) to nonlinear bound-
ary conditions, whenever the corresponding Green’s kernel is not of definite

sign or there does not exist (see the last Corollary).

1. Introduction

In recent years, boundary-value problems for second and higher order differential
equations have been extensively studied. Due to their important role in both theory
and applications, BVPs have generated a great deal of interest over the years.
They are often used to model various phenomena in physics, biology, chemistry
and engineering (see [14] and the references there in).

Erbe and Wang [8], by using a Green’s function and the Krasnoselskii’s fixed
point theorem in a cones proved the existence of a positive solution of the boundary
value problem

x′′(t) = f(t, x(t)), 0 ≤ t ≤ 1,

ax(0)− bx′(0) = 0, cx(1) + dx′(1) = 0,

under the following assumptions:
(A1) f is continuous and positive; i.e. f ∈ C([0, 1] × [0,∞), [0,∞)), δ = ad +

bc + ac > 0;
(A2)

lim
x→0+

max0≤t≤1 f(t, x)
x

= 0 and lim
x→+∞

min0≤t≤1 f(t, x)
x

= +∞

or

lim
x→0+

min0≤t≤1 f(t, x)
x

= +∞ and lim
x→+∞

max0≤t≤1 f(t, x)
x

= 0.

2000 Mathematics Subject Classification. 34B15, 34B25.
Key words and phrases. Multipoint boundary value problem; positive solution; vector field;
third order differential equation; Green function; Krasnoselskii’s fixed point theorem.
c©2008 Texas State University - San Marcos.

Submitted February 5, 2008. Published March 30, 2008.

1



2 P. S. KELEVEDJIEV, P. K. PALAMIDES, N. I. POPIVANOV EJDE-2008/47

The literature for last BVP is voluminous. Suggestively we refer to [3, 9, 17,
18, 19] and the references therein. The monographs of Agarwal [1] and Agarwal,
O’Regan and Wong [2] contain excellent surveys of known results.

Recently an increasing interest in studying the existence of solutions and posi-
tive solutions to boundary-value problems for higher order differential equations is
observed; see for example [4, 5, 11, 12, 13]. Especially, Graef and Yang [11] and
Hao et all [15] proved existence results on nonlinear boundary-value problem for
fourth order equations.

Recently, Ge and Bai [10] investigated the fourth-order nonlinear boundary-value
problem

u(4)(t) = −f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

u(0) = u(1) = 0

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0 ,

(1.1)

where 0 ≤ ξ1 < ξ1 ≤ 0. Precisely, by using a fixed point theorem due to Krasnosel-
skii and Zabreiko in [16], they proved the following result.

Theorem 1.1. Assume that
(H1) a, b, c, d are nonnegative constants such that ρ = ad + bc + ac(ξ2 − ξ1) 6= 0,

b− aξ1 ≥ 0 and 0 ≤ ξ1 < ξ2 ≤ 1;
(H2) The nonlinearity can separated as f(t, u, v) = p(t)g(u) + q(t)h(v), where

g, h : R → R are continuous,

lim
u→∞

g(u)
u

= λ, lim
v→∞

h(v)
v

= µ, (1.2)

and p, q ∈ C[0, 1]. Moreover, there exists t0 ∈ [0, 1] such that p(t0)g(0) +
q(t0)h(0) 6= 0, and there exists a continuous nonnegative function w :
[0, 1] → R+ such that |p(s)|+ |q(s)| ≤ w(s) for each s ∈ [0, 1].

(H3) max{|λ|, |µ|} < min
{

1
L1

, 1
L2

}
, where

L1 =
1
12

[ ∫ ξ1

0

τ3(2− τ)w(τ)dτ +
∫ 1

ξ1

(1− τ)3(1 + τ)w(τ)dτ

+
2(b− aξ1) + a

d

∫ ξ2

ξ1

(c(ξ2 − τ) + d)w(τ)dτ
]
,

and

L2 =
∫ 1

ξ1

(1− τ)w(τ)dτ +
1
d

∫ ξ2

ξ1

(b + a(1− ξ1))(c(ξ2 − τ) + d)w(τ)dτ.

Then the BVP (1.1) admits at least one nontrivial solution u ∈ C2[0, 1].

Graef et al. [14] obtained existence and multiplicity results for the BVP

u(4)(t) = g(t)f(u(t)),

u(0) = u(1) = u′′(1) = u′′(0)− u′′(p) = 0, p ∈ (0, 1) .

Cui and Zou [7], proved existence results for the same differential equation with the
boundary conditions

u(0) = u(1) = u′(0) = u′(1) = 0,

under sub or super-linearity conditions on the nonlinearity.



EJDE-2008/47 ANOTHER UNDERSTANDING 3

Remark 1.2. We note that in Theorem 1.1, it is not assumed any positivity
of the nonlinearity and this fact does not guarantee positivity of the obtained
solution. Furthermore, whenever the nonlinearity is nonnegative, the assumption
p(t0)g(0) + q(t0)h(0) 6= 0 in (H2) yields

lim
|u|+|v|→0

sup0≤t≤1 f(t, u, v)
|u|+ |v|

= +∞

that is, the nonlinearity has an asymptotic behavior of sublinearity type, at least
at the origin. Indeed, if p(t0)g(0) + q(t0)h(0) 6= 0 and t0 ∈ [ξ1, ξ2], then the above
condition can be written as

lim
|u|+|v|→0

supξ1≤t≤ξ2
f(t, u, v)

|u|+ |v|
= ∞.

The case f(t, u, v) ≡ 0, ξ1 ≤ t ≤ ξ2 is impossible, since then the BVP (1.1) accepts
only the trivial solution, contrary to the assumption p(t0)g(0) + q(t0)h(0) 6= 0.

Restricting our consideration on the linear case, notice as far as the author is
aware, that only the conditions in (1.1) have been studied, where the constants
a, b, c, d ≥ 0. If f(t, 0, 0) = 0, then the boundary value problem (1.1) always has
the trivial solution, but here we are only interested in a positive (negative) solution;
i.e., whenever u(t) > 0 on (0, 1).

The aim of this work is to prove the existence of a positive and/or a negative
solution for the boundary value problem (1.1), where still a, b, c, d ≥ 0, but without
the assumptions ρ = ad + bc + ac(ξ2 − ξ1) 6= 0 and/or b − aξ1 ≥ 0. Moreover the
nonlinearity is not necessarily separated and the obtained solutions are of definite
sign.

Furthermore we study BVPs of the form

u(4)(t) = ±f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

u(0) = u(1) = 0

au′′(ξ1)± bu′′′(ξ1) = 0, cu′′(ξ2)∓ du′′(ξ2) = 0,

where the constants a, b, c, d ≥ 0 are chosen positive and suitable.
In some of these cases, seems that the Green’s functions does not exists or fails

to be nonnegative. This makes Erbe and Wang’s method not applicable in those
cases.

Remark 1.3. Assume the nonlinearity is negative. The differential equation (2.3)
defines a vector field, the properties of which will be crucial for our study. More
specifically, let us look at the (v, v′) face semi-plane (v > 0). By the sign condition
on f , we obtain that v′′ < 0. Thus any trajectory (v(t), v′(t)), t ≥ 0, emanating
from the semi-line

E0 := {(v, v′) : av − bv′ = 0, v > 0}
“evolutes” naturally, initially (when v′(t) > 0) toward the positive v-semi-axis and
then (when v′(t) < 0) turns toward the semi-line

E1 := {(v, v′) : cv + dv′ = 0, v > 0}.

Setting a certain growth rate on f (say superlinearity), we can control the vector
field, so that some trajectory reaches on E1 at the time t = 1. These properties
will be referred as the nature of the vector field throughout the rest of paper.
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The technique presented here is different from those in the above mentioned
papers. Actually, we rely on the above “nature of the vector field” and the Knesser’s
property (continuum) of the cross-sections of the solutions funnel. For completeness
we restate the well-known Knesser’s theorem.

Theorem 1.4 ([6]). Consider a system

x′ = f(t, x), (t, x) ∈ Ω := [a, b]× Rn, (1.3)

with f continuous. Let Ê0 be a continuum (compact and connected) in Ω0 :=
{(t, x) ∈ Ω : t = a} and let X (Ê0) be the family of solutions of (1.3) emanating
from Ê0. If any solution x ∈ X (Ê0) is defined on the interval [a, τ ], then the set
( cross-section)

X (τ ; Ê0) := {x(τ) : x ∈ X (Ê0)}
is a continuum in Rn.

2. Main Results

Consider the differential equation

u(4)(t) = −f(t, u(t), u′′(t)), 0 ≤ t ≤ 1, (2.1)

with boundary conditions

u(0) = u(1) = 0

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0.
(2.2)

Remark 2.1. The change of variable v(t) = u′′(t) reduces the above boundary
value problem to

v′′(t) = −f(t, u(t), v(t)), t ∈ [0, 1],

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0,
(2.3)

where

u(t) =
∫ t

0

s(t− 1)v(s)ds +
∫ 1

t

t(s− 1)v(s)ds, 0 ≤ t ≤ 1.

We note that

0 ≤ v(t) ≤ M, t ∈ [0, 1] ⇒ −M

8
≤ u(t) ≤ 0, t ∈ [0, 1];

v(t) ≥ M, t ∈ [0, 1] ⇒ u(t) ≤ −M

8
, t ∈ [0, 1]

(2.4)

Moreover, whenever we are interesting in negative and convex solutions, without
loss of generality, we may extend the nonlinearity as

f(t, u, v) = f(t, 0, 0), u ≥ 0 and v ≤ 0

and if we are asking for positive and concave solutions, we may set

f(t, u, v) = f(t, 0, 0), u ≤ 0 and v ≥ 0.

We will use the following assumptions: The nonlinearity f is a continuous and
nonnegative function; that is,

f(t, u, v) ∈ C([0, 1]× (−∞, 0]× [0,+∞), [0,+∞)). (2.5)
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It is asymptotically linear at infinity; that is,

f∞ = lim
u→−∞,v→+∞

minξ1≤t≤ξ2 f(t, u, v)
v

= µ ≤ +∞. (2.6)

It is superlinear at the origin; that is,

f0 = lim
u→0−,v→0+

maxξ1≤t≤ξ2 f(t, u, v)
v

= 0. (2.7)

Similarly, we assume that:

f(t, u, v) ∈ C([0, 1]× [0,+∞)× (−∞, 0], [0,+∞)); (2.8)

f∞ = lim
u→+∞,v→−∞

minξ1≤t≤ξ2 f(t, u, v)
−v

= µ; (2.9)

f0 = lim
u→0+,v→0−

minξ1≤t≤ξ2 f(t, u, v)
v

= 0. (2.10)

For technical reasons and since readers are more familiar with the boundary
conditions at (2.3), we prefer to establish first an existence result for the boundary
value problem (2.1)–(2.2) and then (see Theorems 2.5, 2.6 and 2.7) we exhibit
results for other BVPs.

Theorem 2.2. Assume (2.5)–(2.7) hold. Then the boundary value problem (2.1)–
(2.2) admits a negative and convex solution u(t), 0 ≤ t ≤ 1, provided that

µ >
48

(ξ2 − ξ1)2
.

Proof. Consider the BVP (2.3). From assumptions (2.6) and (2.4), it follows that
for every K ∈

(
48

(ξ2−ξ1)2
, µ

)
, there is an H > 0, such that

f(t, u, v) ≥ Kv, 0 ≤ t ≤ 1, u ≤ −H

8
, v ≥ H.

We assert that there is v1 sufficiently large and a solution v ∈ X (P1), P1 =
(v1,

a
b v1) ∈ E0 such that

v(ξ2) ≤ 0. (2.11)
Considering then the function

G(P1) := cv(ξ2) + dv′(ξ2).

We note that
G(P1) < 0 (2.12)

since, in view of Remark 1.3, v′(ξ2) < 0.
We assume on the contrary, that for every P1 = (v1,

a
b v1) ∈ E0, where v1 ≥ H

and any solution v ∈ X (P1),

v(t) > 0, ξ1 ≤ t ≤ ξ2.

Note first that for v1 = H, the sign property of f yields

v(t) = v1 + (t− ξ1)
a

b
v1 −

(t− ξ1)2

2!
f(t̄, u(t̄), v(t̄)) ≤ H

(
1 +

a

b
(ξ2 − ξ1)

)
, (2.13)

for ξ1 ≤ t ≤ ξ2. We assert that there exists v1 ≥ H, for which

v(t) < 2H(1 +
a

b
(ξ2 − ξ1)), v′(t) > 0, ξ1 ≤ t ≤ ξ1 + (ξ2 − ξ1)/4,

v(ξ1 + (ξ2 − ξ1)/4 ) = 2H(1 +
a

b
(ξ2 − ξ1)).

(2.14)
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Let us assume that is not true. By the Knesser’s property, the set

C = {(t, v(t)) : ξ1 ≤ t ≤ ξ1 + (ξ2 − ξ1)/4, v ∈ X (Ω)},
where Ω = ([H,+∞) × [a

b H,+∞)) ∩ E0 is connected. Hence by (2.13) we obtain
that

v(t) < 2H
(
1 +

a

b
(ξ2 − ξ1)

)
, ξ1 ≤ t ≤ ξ1 + (ξ2 − ξ1)/4, v ∈ X (Ω).

This conclusion is impossible. Indeed, for that (fixed) H, we chose

M = max
{

f(t, u, v) : ξ1 ≤ t ≤ ξ1 + (ξ2 − ξ1)/4, 0 ≤ v ≤ 2H(1 +
a

b
(ξ2 − ξ1)),

− 2H

8
(1 +

a

b
(ξ2 − ξ1)) ≤ u ≤ 0

}
Then by the Taylor formula, we get for some t̄ ∈ [ξ1, ξ1 + (ξ2 − ξ1)/4],

v(ξ1 + (ξ2 − ξ1)/4 ) = v1 +
a

b
v1

(ξ2 − ξ1)
4

− (ξ2 − ξ1)2

422!
f(t̄, u(t̄), v(t̄))

≥ v1

(
1 +

a

b

(ξ2 − ξ1)
4

)
−M

(ξ2 − ξ1)2

32
.

Hence

lim
v1→+∞

v(ξ1 + (ξ2 − ξ1)/4 ) = lim
v1→+∞

v1

(
1 +

a

b

(ξ2 − ξ1)
4

)
−M

(ξ2 − ξ1)2

32
= +∞,

a contradiction. This and the positivity of the nonlinearity prove the assertion
(2.14). Since

v(ξ1 +(ξ2− ξ1)/4 ) = v(ξ1 )+
∫ ξ1+(ξ2−ξ1)/4

ξ1

v′(t)dt ≥ (ξ2 − ξ1)
4

v′(ξ1 +(ξ2− ξ1)/4 ),

we get

v′(ξ1 + (ξ2 − ξ1)/4 ) ≤ 8H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

. (2.15)

If
v(t) ≥ 2H

(
1 +

a

b
(ξ2 − ξ1)

)
, ξ1 + (ξ2 − ξ1)/4 ≤ t ≤ ξ2,

we obtain the contradiction

v(ξ2) = v(ξ1 + (ξ2 − ξ1)/4) +
3(ξ2 − ξ1)

4
v′(ξ1 + (ξ2 − ξ1)/4)

− 1
2!

9(ξ2 − ξ1)2

16
f(t, u(t), v(t))

≤ 2H(1 +
a

b
(ξ2 − ξ1)) +

3(ξ2 − ξ1)
4

8H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

− 9
2!

(ξ2 − ξ1)2

16
K2H(1 +

a

b
(ξ2 − ξ1)) < 0,

due to the choice of K > 48/(ξ2 − ξ1)2 > 128/9(ξ2 − ξ1)2. Thus we may consider
t0 = (ξ1, ξ1 + (ξ2 − ξ1)/4) and t1 ∈ (ξ1 + (ξ2 − ξ1)/4, ξ2) such that

v(t0) = H(1 +
a

b
(ξ2 − ξ1)) = v(t1)

v′(t0) > 0, v′(t1) < 0,

v(t) ≥ H(1 +
a

b
(ξ2 − ξ1)), t0 ≤ t ≤ t1.

(2.16)



EJDE-2008/47 ANOTHER UNDERSTANDING 7

Suppose that t1 ≥ ξ1 + (3/4)(ξ2 − ξ1). Then from (2.15) and the choice of K ≥
48/(ξ2 − ξ1)2 ≥ 16/(ξ2 − ξ1), we get the contradiction

v(t1) = v(ξ1 + (ξ2 − ξ1)/4) + [t1 − (ξ1 + (ξ2 − ξ1)/4)]v′(ξ1 + (ξ2 − ξ1)/4)

− (t1 − (ξ1 + (ξ2 − ξ1)/4))2

2!
f(t, u(t), v(t))

≤ H(1 +
a

b
(ξ2 − ξ1)) + [t1 − (ξ1 + (ξ2 − ξ1)/4)]8H

1 + a
b (ξ2 − ξ1)

(ξ2 − ξ1)

− (t1 − (ξ1 + (ξ2 − ξ1)/4))2

2!
KH(1 +

a

b
(ξ2 − ξ1))

< H(1 +
a

b
(ξ2 − ξ1))

Hence

t1 ∈ (ξ1 + (ξ2 − ξ1)/4, ξ1 + (3/4)(ξ2 − ξ1)) (2.17)

Assume that

v′(t1) > −4H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

. (2.18)

Then

v(t1) = v(ξ1 + (ξ2 − ξ1)/4) +
∫ t1

ξ1+(ξ2−ξ1)/4

v′(t)dt

≥ 2H(1 +
a

b
(ξ2 − ξ1))− 4H

1 + a
b (ξ2 − ξ1)

(ξ2 − ξ1)
(t1 − (ξ1 + (ξ2 − ξ1)/4)).

Consequently, in view of (2.16)-(2.18), we obtain

(2H −H)
(
1 +

a

b
(ξ2 − ξ1)

)
≤ 4H

1 + a
b (ξ2 − ξ1)

(ξ2 − ξ1)
(t1 − (ξ1 + (ξ2 − ξ1)/4))

and then

t1 ≥ ξ1 +
ξ2 − ξ1

2
=

ξ2 + ξ1

2
. (2.19)

Thus, noting (2.16) and the choice K > 48/(ξ2 − ξ1)2, we get the contradiction

v′(t1) = v′
(
ξ1 +

ξ2 − ξ1

4
)
− [t1 − (ξ1 +

ξ2 − ξ1

4
)]f(t, u(t), v(t))

≤ 8H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

− (t1 − ξ1 −
ξ2 − ξ1

4
)Kv(t)

≤ 8H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

− (t1 − ξ1 −
ξ2 − ξ1

4
)KH(1 +

a

b
(ξ2 − ξ1))

≤ −4H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

.

Hence

v′(t1) < −4H
1 + a

b (ξ2 − ξ1)
(ξ2 − ξ1)

.



8 P. S. KELEVEDJIEV, P. K. PALAMIDES, N. I. POPIVANOV EJDE-2008/47

Recalling (2.17), we obtain the final contradiction

v(ξ2) = v(t1) +
∫ ξ2

t1

v′(t)dt ≤ H(1 +
a

b
(ξ2 − ξ1)) + (ξ2 − t1)v′(t1)

≤ H(1 +
a

b
(ξ2 − ξ1))− (ξ2 − t1)4H

1 + a
b (ξ2 − ξ1)

(ξ2 − ξ1)
≤ 0.

Consequently, the assertion (2.11) and then (2.12) are proved.
On the other hand, by the superlinearity of f(t, u, v) at v = 0 (see the assumption

(2.7), for any λ > 0 there is an η > 0 such that

0 < v ≤ η, −η

8
≤ u < 0 implies max

ξ1≤t≤ξ2
f(t, u, v) < λv. (2.20)

Consider any positive number ε < b/[b + a(ξ2 − ξ1)] < 1 and choose

λ < min
{ εa

b(ξ2 − ξ1)
,

2
b(ξ2 − ξ1)2

[b− ε(b + a(ξ2 − ξ1))]
}
. (2.21)

We assert that for P0 = (v0,
a
b v0) ∈ E0, where v0 = εη, and any solution v ∈ X (P0),

it follows that
εη ≤ v(t) ≤ η, t ∈ [ξ1, ξ2]. (2.22)

Indeed in view of Remark 1.3, let’s assume that there exists t∗ ∈ (ξ1, ξ2] such that

εη ≤ v(t) ≤ η, v′(t) > 0, ξ1 ≤ t < t∗, v(t∗) = η.

Then by the Taylor’s formula and (2.20), we get t̄ ∈ (0, t∗) , such that

η = v(t∗) = v0[1 +
a

b
(t∗ − ξ1)]−

(t∗ − ξ1)2

2
f(t̄, u(t̄), v(t̄)).

≤ εη[1 +
a(t∗ − ξ1)

b
] +

(t∗ − ξ1)2

2
λv(t̄)

≤ εη[1 +
a

b
(ξ2 − ξ1)] +

(ξ2 − ξ1)2

2
λη.

Consequently,

λ ≥ 2
b(ξ2 − ξ1)2

[b− ε(b + a(ξ2 − ξ1))],

contrary to the choice of λ in (2.21). Hence, the assertion v(t) ≤ η, t ∈ [ξ1, ξ2] in
(2.22) is proved. Moreover, if there is t∗ ∈ (ξ1, ξ2) such that

0 ≤ v′(t) ≤ aεη

b
, ξ1 ≤ t < t∗, v′∗) = 0,

then by (2.20) and (2.22),

0 = v′∗) = v0
a

b
− (t∗ − ξ1)f(t̄, u(t̄), v(t̄)).

≥ εη
a

b
− (t∗ − ξ1)λv(t̄)

≥ εη
a

b
− (ξ2 − ξ1)λv(t̄) ≥ εη

a

b
− (ξ2 − ξ1)λη,

a contradiction to (2.21). Thus v′(t) ≥ 0, ξ1 ≤ t < ξ2 and (2.22) is proved.
Consequently

G(P0) = cv(ξ2) + dv′(ξ2) > 0. (2.23)
Finally consider the segment

[P0, P1] := {(v, v′) ∈ E0 : v0 ≤ v ≤ v1}
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and furthermore the cross-section

X (1; [P0, P1]) := {(v(1), v′(1)) : v ∈ X (P ) and P ∈ [P0, P1]}
of the solutions funnel emanating from the segment [P0, P1]. By the definition of
the function G(P1) := cv(ξ2) + dv′(ξ2), ( 2.12) and (2.23), it is clear (recall that
E1 := {(v, v′) : cv − dv′ = 0, v > 0}) that

E1 ∩ X (1; [P0, P1]) 6= ∅.
This means that there is a point P ∈ [P0, P1] such that G(P ) = 0 and thus a
solution v0(t) ∈ X (P ) satisfying the boundary value problem (2.3).

Furthermore, by the above analysis, the obtained solution v0(t), ξ1 ≤ t ≤ ξ2, is
positive. We extend v0(t) on the entire interval, as follows:

v(t) =


v0(ξ1), 0 ≤ t ≤ ξ1

v0(t), ξ1 ≤ t ≤ ξ2

v0(ξ2), ξ2 ≤ t ≤ 1.

Then, the function v(t), 0 ≤ t ≤ 1, is positive and continuous. In view of the
transformation v0(t) = u′′(t), we consider the boundary-value problem

u′′ = v0(t)

u(0) = 0 = u(1).
(2.24)

It is well known that its Green function is

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1
t(1− s), 0 ≤ t ≤ s ≤ 1.

Consequently (see (2.4)) the desired negative and convex solution of the boundary
value problem (2.1)-(2.2) is given by the formula

u(t) = −
∫ 1

0

G(t, s)v(s)ds =
∫ t

0

s(t− 1)v(s)ds +
∫ 1

t

t(s− 1)v(s)ds,

for 0 ≤ t ≤ 1. �

Example 2.3. Consider the fourth-order four-point boundary-value problem

u(4)(t) = − t

t2 + 1
u2(t)− et(u′′(t))3

u(0) = u(1) = 0 = u′′(1/3)− (1/4)u′′′(1/3) = u′′(2/3) + u′′′(2/3) = 0.

Since the nonlinearity is continuous, positive and superlinear, the conditions (2.5)-
(2.7) are obviously satisfied, where µ = +∞. To show that BVP has at least one
nontrivial solution we apply Theorem 2.2 with ξ1 = 1/3, ξ2 = 2/3, a = b = c =
d = 1. On the other hand, the conditions (H1) and (H3) of Theorem 1.1 clearly do
not hold. Hence the result in [10], does not guarantee existence of a solution to the
above BVP.

Remark 2.4. The condition (2.7) can be replaced by the more general condition

f0 = lim
u→0+,v→0−

minξ1≤t≤ξ2 f(t, u, v)
−v

= µ∗ < min
{ a

(ξ2 − ξ1)[b + a(ξ2 − ξ1)]
,

2
(ξ2 − ξ1)2

}
.
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Indeed, at (2.21) we may choose

µ∗b(ξ2 − ξ1)
a

≤ ε ≤ b(2− µ∗(ξ2 − ξ1))
b + a(ξ2 − ξ1)

and then

µ∗ < λ < min
{ εa

b(ξ2 − ξ1)
,

2
b(ξ2 − ξ1)2

[b− ε(b + a(ξ2 − ξ1))]
}
.

Consider the boundary-value problem

u(4)(t) = f(t, u(t), u′′(t)), 0 ≤ t ≤ 1, (2.25)

with
u(0) = u(1) = 0

au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0.
(2.26)

Theorem 2.5. Under assumptions (2.8)–(2.10), the boundary value problem (2.25)
- (2.26) has a positive and concave solution u(t), 0 ≤ t ≤ 1, provided that

µ >
48

(ξ2 − ξ1)2
.

Proof. We set

F (t, u, v) = f(t,−u,−v), t ∈ [0, 1], u ≤ 0, v ≥ 0.

Since f satisfies conditions (2.8)-(2.10), we easily check that F suits the conditions
(2.5)-(2.7). In view of Theorem 2.2, considering a solution u(t), 0 ≤ t ≤ 1, of the
BVP (2.1)– (2.2) (where f is replaced by F ), we set

y(t) ≡ −u(t), 0 ≤ t ≤ 1.

Then we obtain

(−y(t))(4) = (u(t))(4) = −F (t, u(t),

u′′(t)) = −f(t,−u(t), −u′′(t)) = −f(t, y(t), y′′(t)).

Hence, the function y(t), 0 ≤ t ≤ 1, is a solution of the differential equation (2.25).
Moreover, the boundary conditions (2.26) are satisfied by the function y(t), since
the solution u(t) fulfils the boundary conditions (2.2). Consequently, y(t) is the
required solution of (2.25)-(2.26). �

Consider (2.1) with the boundary condition

u(0) = u(1) = 0

au′′(ξ1) + bu′′′(ξ1) = 0, cu′′(ξ2)− du′′′(ξ2) = 0.
(2.27)

Theorem 2.6. Assume (2.8)–(2.10) hold. Then the boundary value problem (2.1)–
(2.27) has a negative and convex solution v(t), 0 ≤ t ≤ 1, provided that

µ >
48

(ξ2 − ξ1)2
.

Proof. Consider any function u(t), 0 ≤ t ≤ 1. We define a map F by the formula

F (ξ1 + ξ2 − t, u(t), v(t)) = f(t,−u(t),−v(t)), t ∈ [0, 1], u ≥ 0, v ≤ 0.
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Since f satisfies the conditions (2.8)–(2.10), we easily check that F suits the con-
ditions (2.5)–(2.7) on the interval [ξ1 + ξ2 − 1, ξ1 + ξ2]. In view of Theorem 2.2 ,
consider a solution u∗(t), [ξ1 + ξ2 − 1 ≤ t ≤ ξ1 + ξ2] , of the BVP:

u(4)(t) = −F (t, u(t), v(t))

with boundary conditions (2.2). and set

u(t) ≡ −u∗(ξ1 + ξ2 − t), 0 ≤ t ≤ 1.

Then we obtain

(−u(t))(4) = (u∗(ξ1 + ξ2 − t))(4)

= −F (ξ1 + ξ2 − t, u∗(ξ1 + ξ2 − t), v∗(ξ1 + ξ2 − t))

= −F (ξ1 + ξ2 − t,−u(t),−v(t))

= −f(t, u(t), v(t));

that is, the function u(t), 0 ≤ t ≤ 1 is a solution of the differential equation (2.1).
Moreover, since the solution u∗(t) fulfils the boundary conditions (2.2), we get via
the above transformation

cu∗′′(ξ1)− du∗′′′(ξ1) = 0 ⇒ −cu′′(ξ2) + du′′′(ξ2) = 0 ⇒ cu′′(ξ2)− du′′′(ξ2),

au∗′′(ξ2) + bu∗′′′(ξ2) = 0 ⇒ −au′′(ξ1)− bu′′′(ξ1) = 0 ⇒ au′′(ξ1) + bu′′′(ξ1) = 0

that is, the boundary conditions (2.27) are satisfied by the function u(t). Conse-
quently, u(t) is the requited solution of (2.1)– (2.27). �

Consider now the equation

u(4)(t) = f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

with boundary condition (2.27).

Theorem 2.7. Assume (2.5)-(2.7) hold. Then the boundary value problem (2.25)-
(2.27) has a negative and convex solution u(t), 0 ≤ t ≤ 1, provided that

µ >
48

(ξ2 − ξ1)2
.

Proof. We set

F (t, u, v) = f(t,−u,−v), t ∈ [0, 1], u ≥ 0, v ≤ 0.

Since f satisfies the conditions (2.5)-(2.7), we easily check that F fulfills the con-
ditions (2.8)-(2.10). Thus, in view of Theorem 2.6, the BVP

u(4)(t) = −F (t, u(t), u′′(t)), 0 ≤ t ≤ 1,

with boundary condition (2.27) admits a positive and concave solution u(t), 0 ≤
t ≤ 1. We set

u∗(t) ≡ −u(t), 0 ≤ t ≤ 1.

Then we obtain

u∗(4)(t) = −u(4)(t) = F (t, u(t),

u′′(t)) = f(t,−u(t), −u′′∗(t), u∗′′(t)).

Consequently, the function u∗(t), 0 ≤ t ≤ 1 is a solution of the differential equation
(2.25). Moreover, the boundary conditions (2.27) are satisfied by the function
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u(t), since the solution u∗(t) fulfils the same conditions. Consequently, u(t) is the
requited solution. �

cv − dv′ = 0 �
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Theorem 2.5

Theorem 2.6

Theorem 2.2

Theorem 2.7

Figure 1. Summary of results

3. Additional Results

In this section, we consider the equation

u(4)(t) = −f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

with boundary condition (2.2), under the following assumptions: The nonlinearity
f is a continuous and positive function; that is,

f(t, u, v) ∈ C([0, 1]× (−∞, 0]× [0,+∞), [0,+∞)); (3.1)

It is asymptotically linear at infinity; that is,

f∞ = lim
u→−∞,v→+∞

maxξ1≤t≤ξ2 f(t, u, v)
v

= µ (3.2)

It is sublinear at the origin; that is,

f0 = lim
u→0−,v→0+

minξ1≤t≤ξ2 f(t, u, v)
v

= +∞. (3.3)

Similarly, assume that

f(t, u, v) ∈ C([0, 1]× [0,+∞)× (−∞, 0], [0,+∞)); (3.4)

f∞ = lim
u→+∞,v→−∞

minξ1≤t≤ξ2 f(t, u, v)
−v

= µ; (3.5)

f0 = lim
u→0+,v→0−

maxξ1≤t≤ξ2 f(t, u, v)
−v

= +∞. (3.6)
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Theorem 3.1. Assume that conditions (3.1)–(3.3) hold. Then the boundary-value
problem (2.1)–(2.2) admits a negative and convex solution u(t), 0 ≤ t ≤ 1, provided
that

µ <
a

b + a(ξ2 − ξ1)

Proof. Consider the BVP (2.3). By the assumption (3.3) and (2.4), it follows that
for every K ≥ 32[1 + a

b (ξ2 − ξ1)]/(ξ2 − ξ1)2 there is an η > 0, such that

f(t, u, v) ≥ Kv, 0 ≤ t ≤ 1,

−
η[1 + a

b (ξ2 − ξ1)]
8

≤ u ≤ −η, 0 < v ≤ η[1 +
a

b
(ξ2 − ξ1)].

For P = (η, a
b η) ∈ E0 and any solution v ∈ X (P ) and t ∈ [ξ1, ξ2], we get

v(t) = [1 + (t− ξ1)
a

b
]η − (t− ξ1)2

2!
f(t̄, u(t̄), v(t̄)) ≤ η(1 +

a

b
(ξ2 − ξ1)).

Moreover, by the Knesser’s property and the connectedness of the set

{P1 = (v1,
a

v
v1) ∈ E0 : η ≤ v1 ≤ η(1 +

a

b
(ξ2 − ξ1))}

(see also the proof of (2.14)), it follows that

v1 ≤ v(t) < η(1 +
a

b
(ξ2 − ξ1)), v′(t) > 0, ξ1 ≤ t ≤ ξ1 + (ξ2 − ξ1)/4,

v(ξ1 + (ξ2 − ξ1)/4 ) = η(1 +
a

b
(ξ2 − ξ1)),

(3.7)

for some v1 ∈ [η, η(1 + a
b (ξ2 − ξ1))] and v ∈ X (P1). If u(ξ2) ≤ 0 and since then

u′(ξ2) ≤ 0, we immediately obtain

G(P ) := cv(ξ2) + dv′(ξ2) < 0. (3.8)

Assume that u(t) > 0, ξ1 ≤ t ≤ ξ2. By (3.7) and the choice of K, we obtain

v(ξ1 + (ξ2 − ξ1)/4 ) = [1 +
(ξ2 − ξ1)

4
a

b
]v1 −

(ξ2 − ξ1)2

422!
f(t̄, u(t̄), v(t̄))

≤ [1 +
(ξ2 − ξ1)

4
a

b
]v1 −

(ξ2 − ξ1)2

32
Kv(t̄)

≤ [1 + (ξ2 − ξ1)
a

b
]v1 −

(ξ2 − ξ1)2

32
Kv1 < 0.

Moreover, by Remark 1.3 (the nature of the vector field), we know that v′(ξ2) ≤ 0
and hence (3.8) holds.

On the other hand, by assumption (3.2), for every λ ∈ (µ, a
b+a(ξ2−ξ1)

), there is
H > 0, such that

f(t, u, v) ≤ λv, 0 ≤ t ≤ 1, u ≤ −H

8
, v ≥ H. (3.9)

Hence, setting P = (H, a
b H) and v ∈ X (P ), (2.13) still holds; i.e.,

v(t) ≤ H(1 +
a

b
(ξ2 − ξ1)), ξ1 ≤ t ≤ ξ2. (3.10)

We assert that
v′(t) ≥ 0, ξ1 ≤ t ≤ ξ2. (3.11)

Assume on the contrary, that there exists a t∗ ∈ (ξ1, ξ2) such that

0 < v′(t) ≤ a

b
H, ξ1 ≤ t ≤ t∗, v′∗) = 0.
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Then, by (3.10),

H ≤ v(t) ≤ H(1 +
a

b
(ξ2 − ξ1)), ξ1 ≤ t ≤ t∗.

Hence in view of the choice of λ and (3.9), we obtain the contradiction

v′∗) =
a

b
H − f(t̄, u(t̄), v(t̄))

≥ a

b
H − λu(t̄)

≥ H[
a

b
− λ(1 +

a

b
(ξ2 − ξ1))] > 0.

Consequently (3.11) yields G(ξ2;P ) = cv(ξ2) + dv′(ξ2) > 0. �

Theorem 3.2. Assume (3.4)–(3.6) hold. Then the boundary value problem (2.25)–
(2.26) admits a positive and concave solution u(t), 0 ≤ t ≤ 1, provided that

µ <
a

b + a(ξ2 − ξ1)
.

The proof of the above theorem is similar to that of Theorem 2.5, and thus
omitted.

Remark 3.3. We may easily obtain more results similar to the above given, in
Theorems 2.6-2.7.

The final Corollary-example illustrates the power of our approach. Indeed, it is
unknown, at least to the authors of this paper, if we are able to construct a Green’s
function for (2.1) with the the boundary conditions

u(0) = u(1) = 0

a[u′′(ξ1)]1/2 − bu′′′(ξ1) = 0, c[u′′(ξ2)]5/3 + du′′′(ξ2) = 0.
(3.12)

Corollary 3.4. Under the assumptions of Theorem 2.6, the BVP (2.1) and (3.12)
admits a negative and convex solution.

Proof. We must only replace the semi-lines E0 and E1, by the relating semi-
parabolas defined by the boundary conditions (3.12), instead of those in (2.2).
The rest of the proof follows readily by that of Theorem 2.6. �

Remark 3.5. More general, we could replace the semi-lines E0 and E1, by suitable
continua.

The essential part of the present work was prepared while P. Palamides was
visiting the University of Sofia during 2007. The research of P. Kelevedjiev was
partially supported by the Bulgarian NSF under Grant VU-MI-102/2005 and the
research of N. Popivanov - by Sofia University Grant N100/2007.
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