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LYAPUNOV-RAZUMIKHIN METHOD FOR ASYMPTOTIC
STABILITY OF SETS FOR IMPULSIVE FUNCTIONAL

DIFFERENTIAL EQUATIONS

IVANKA M. STAMOVA, GANI T. STAMOV

Abstract. In the present paper, we study the global stability of sets of suffi-
ciently general type with respect to impulsive functional differential equations

with variable impulsive perturbations. The main results are obtained by means

of piecewise continuous Lyapunov functions and the use of the Razumikhin
technique.

1. Introduction

Stability of impulsive ordinary differential equations is discussed in [2, 3, 9, 10],
and recently the stability of impulsive functional differential equations is investi-
gated in [4, 5, 13, 14, 15]. When the impulses are realized at fixed moments the
results are easier to obtain by means of the corresponding results in the continuous
case. In the investigation of the impulsive functional differential equations with
variable impulsive perturbations there arise a number of difficulties related to the
phenomena of “beating” of the solutions, bifurcation, loss of the property of auton-
omy, etc. The wider application, however, of these type of equations requires the
formulation of effective criteria for stability of their solutions.

In the present paper the problem of global stability of sets with respect to systems
of impulsive functional differential equations with variable impulsive perturbations
is considered by means of Lyapunov’s direct method. We use the piecewise con-
tinuous Lyapunov’s functions. Moreover, the technique of investigation essentially
depends on the choice of minimal subsets of a suitable space of piecewise continu-
ous functions, by the elements of which the derivatives of Lyapunov’s functions are
estimated [10, 12]. It is well known that Lyapunov-Razumikhin function method
has been widely used in the treatment of the stability of functional differential
equations without impulses [6, 7, 8].

2. Statement of the problem, preliminary notes and definitions

Let Rn be the n-dimensional Euclidean space with norm | · |, scalar product 〈., .〉
and distance d(·, ·); R+ = [0,∞); R = (−∞,∞).
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Let t0 ∈ R, r > 0. Consider the system of impulsive functional differential
equations

ẋ(t) = f(t, xt), t 6= τk(x(t)),

∆x(t) = Ik(x(t− 0)), t = τk(x(t)), k = 1, 2, . . . ,
(2.1)

where f : (t0,∞)×D → Rn; D = {φ : [−r, 0] → Rn, φ(t) is continuous everywhere
except at finite number of points t̃ at which φ(t̃−0) and φ(t̃+0) exist and φ(t̃−0) =
φ(t̃)}; Ik : Rn → Rn, k = 1, 2, . . . ; τk : Rn → (t0,∞); ∆x(t) = x(t + 0) − x(t − 0)
and for t > t0, xt ∈ D is defined by xt = x(t+ s), −r ≤ s ≤ 0.

Let τ0(x) ≡ t0 for x ∈ Rn. We shall assume that:
(a) τk ∈ C[Rn, (t0,∞)], k = 1, 2, . . . .
(b) t0 < τ1(x) < τ2(x) < . . . , x ∈ Rn.
(c) τk(x) →∞ as k →∞ uniformly on x ∈ Rn.

Assuming that (a), (b) and (c) are fulfilled, we introduce the notation:

Gk =
{
(t, x) ∈ [t0,∞)× Rn : τk−1(x) < t < τk(x)

}
, k = 1, 2, . . . ,

σk =
{

(t, x) ∈ [t0,∞)× Rn : t = τk(x)
}

;

i.e., σk, k = 1, 2, . . . are hypersurfaces of the equations t = τk(x(t)).
Let ϕ0 ∈ D. Denote by x(t) = x(t; t0, ϕ0) the solution of (2.1) satisfying the

initial conditions
x(t; t0, ϕ0) = ϕ0(t− t0), t0 − r ≤ t ≤ t0,

x(t0 + 0; t0, ϕ0) = ϕ0(0)
(2.2)

and by J+(t0, ϕ0) - the maximal interval of the type (t0, β), at which the solution
x(t; t0, ϕ0) is defined. The precise description of the solution x(t; t0, ϕ0) of (2.1),
(2.2) is given in [4, 14].

Let M ⊂ [t0 − r,∞)× Rn. Introduce the following notation: M(t) = {x ∈ Rn :
(t, x) ∈M, t ∈ (t0,∞)}; M0(t) = {x ∈ Rn : (t, x) ∈M, t ∈ [t0 − r, t0]};
d(x,M(t)) = infy∈M(t) |x− y| is the distance between x ∈ Rn and M(t);
M(t, ε) = {x ∈ Rn : d(x,M(t)) < ε} (ε > 0) is an ε- neighbourhood of M(t);
C0 = C[[−r, 0],Rn]; d0(ϕ,M0(t)) = maxt∈[t0−r,t0] d(ϕ(t− t0),M0(t)), ϕ ∈ C0;
M0(t, ε) = {ϕ ∈ C0 : d0(ϕ,M0(t)) < ε};
Sα = {x ∈ Rn : |x| < α}, α > 0; Sα = {x ∈ Rn : |x| ≤ α};
Sα(C0) = {ϕ ∈ C0 : ||ϕ|| ≤ α}, where ||ϕ|| = maxt∈[t0−r,t0] |ϕ(t − t0)| is the norm
of the function ϕ ∈ C0;
K = {a ∈ C[R+, R+] : a(r) is strictly increasing and a(0) = 0};
CK = {a ∈ C[(t0,∞)×R+, R+] : a(t, .) ∈ K for any fixed t ∈ (t0,∞)};
K∗ = {a ∈ C[R+ ×R+, R+] : a(., s) ∈ K for any fixed s ∈ R+}.

We also introduce the following conditions:
(H1) M(t) 6= ∅ for t ∈ (t0,∞).
(H2) M0(t) 6= ∅ for t ∈ [t0 − r, t0].
(H3) For any compact subset F of (t0,∞) × Rn there exists a constant K > 0

depending on F such that if (t, x), (t′, x) ∈ F , then the following inequality
is valid

|d(x,M(t))− d(x,M(t′))| ≤ K|t− t′|.
(H4) The integral curves of the (2.1) meet successively each one of the hypersur-

faces σ1, σ2, . . . . exactly once.
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Condition (H4) guarantees absence of the phenomenon “beating” of the solutions to
the (2.1); i.e., a phenomenon when a given integral curve meets more than once or
infinitely many times one and the same hypersurface. Efficient sufficient conditions
which guarantee the absence of “beating” of the solutions of such systems are given
in [1].

Let t1, t2, . . . (t0 < t1 < t2 < . . . ) be the moments in which the integral curve
(t, x(t; t0, ϕ0)) of the (2.1), (2.2) meets the hypersurfaces σk, k = 1, 2, . . . .

We shall assume existence of solutions of (2.1) for all t > t0. Note that [1, 2, 9]
if f ∈ C[(t0,∞) × D,Rn], the function f is Lipschitz continuous with respect to
its second argument in (t0,∞) × D uniformly on t ∈ (t0,∞), |f(t, x̃)| ≤ L < ∞
for(t, x̃) ∈ (t0,∞)×D, L > 0, for any k = 1, 2, . . . the following inequality is valid
|Ik(x1)−Ik(x2)| ≤ c|x1−x2|, x1, x2 ∈ Rn, c > 0, and (H4) are met, then tk →∞
as k →∞ and J+(t0, ϕ0) = (t0,∞).

Definition 2.1. The solutions of (2.1) are said to be uniformly M -bounded if

(∀η > 0)(∃β = β(η) > 0)(∀t0 ∈ R)(∀α > 0)

(∀ϕ0 ∈ Sα(C0) ∩M0(t, η))(∀t > t0) : x(t; t0, ϕ0) ∈M(t, β);

Definition 2.2. The set M is said to be
(a) stable with respect to (2.1) if

(∀t0 ∈ R)(∀α > 0)(∀ε > 0)(∃δ = δ(t0, α, ε) > 0)

(∀ϕ0 ∈ Sα(C0) ∩M0(t, δ))(∀t > t0) : x(t; t0, ϕ0) ∈M(t, ε);

(b) uniformly stable with respect to (2.1) if the number δ from point (a) de-
pends only on ε;

(c) uniformly globally attractive with respect to (2.1) if

(∀η > 0)(∀ε > 0)(∃σ = σ(η, ε) > 0)

(∀t0 ∈ R)(∀α > 0)(∀ϕ0 ∈ Sα(C0) ∩M0(t, η))

(∀t ≥ t0 + σ) : x(t; t0, ϕ0) ∈M(t, ε);

(d) uniformly globally asymptotically stable with respect to (2.1) if M is a
uniformly stable and uniformly globally attractive set of (2.1) and if the
solutions of (2.1) are uniformly M -bounded.

Also we introduce the notations: I = [t0 − r,∞); I0 = [t0,∞). In the further
considerations we shall use the class V0 of piecewise continuous auxiliary functions
V : I0 × Rn → R+ which are analogues of Lyapunov’s functions.

Definition 2.3. We say that the function V : [t0,∞)×Rn → R+, belongs to the
class V0 if the following conditions are fulfilled:

(1) The function V is continuous in ∪∞k=1Gk and locally Lipschitz continuous
with respect to its second argument x on each of the sets Gk, k = 1, 2, . . . .

(2) V (t, x) = 0 for (t, x) ∈ M , t ≥ t0 and V (t, x) > 0 for (t, x) ∈ {[t0,∞) ×
Rn} \M .

(3) For each k = 1, 2, . . . and (t∗0, x
∗
0) ∈ σk there exist the finite limits

V (t∗0 − 0, x∗0) = lim
(t,x)→(t∗0 ,x∗0), (t,x)∈Gk

V (t, x),

V (t∗0 + 0, x∗0) = lim
(t,x)→(t∗0 ,x∗0), (t,x)∈Gk+1

V (t, x)
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(4) For each k = 1, 2, . . . the following equalities are valid

V (t∗0 − 0, x∗0) = V (t∗0, x
∗
0).

(5) For each k = 1, 2, . . . the following inequalities are valid

V (t+ 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk(x(t)), k = 1, 2, . . . (2.3)

Let J ⊂ R be an interval. Define the following classes of functions:
PC[J,Rn] = {σ : J → Rn : σ(t) is continuous everywhere except some points tk at
which σ(tk − 0) and σ(tk + 0) exist and σ(tk − 0) = σ(tk), k = 1, 2, . . . };
PC1[J,Rn] = {σ ∈ PC[J,Rn] : σ(t) is continuously differentiable everywhere

except some points tk at which σ̇(tk − 0) and σ̇(tk + 0) exist and σ̇(tk − 0) = σ̇(tk),
k = 1, 2, . . . };
Ω1 = {x ∈ PC[I0,Rn] : V (s, x(s)) ≤ V (t, x(t)), t− r ≤ s ≤ t, t ∈ I0, V ∈ V0}.

Let V ∈ V0. For x ∈ PC[I0,Rn] and t ∈ I0, t 6= tk(x(t)), k = 1, 2, . . . we define
the function

D−V (t, x(t)) = lim
h→0−

inf h−1[V (t+ h, x(t) + hf(t, xt))− V (t, x(t))].

Definition 2.4 ([2]). Let λ : (t0,∞) → R+ be measurable. Then we say that λ(t)
is integrally positive if

∫
J
λ(t)dt = ∞ whenever J =

⋃∞
k=1[αk, βk], αk < βk < αk+1

and βk − αk ≥ θ > 0, k = 1, 2, . . . .

In the proof of the main results we shall use the following lemma.

Lemma 2.5 ([14]). Let (H4) and the following conditions hold:
(1) The solution x = x(t; t0, ϕ0) of the problem (2.1), (2.2) is such that x ∈

PC[I, Sρ] ∩ PC1[I0, Sρ].
(2) g ∈ PC[[t0,∞)×R+, R] and g(t, 0) = 0 for t ∈ [t0,∞).
(3) Bk ∈ C[R+, R+], Bk(0) = 0 and ψk(u) = u+Bk(u) are nondecreasing with

respect to u, k = 1, 2, . . . .
(4) The maximal solution u+(t; t0, u0) of the problem

u̇(t) = g(t, u(t)), t > t0, t 6= tk, k = 1, 2, . . . ,

u(t0 + 0) = u0 ≥ 0,

∆u(tk) = Bk(u(tk)), k = 1, 2, . . .

is defined in the interval [t0,∞).
(5) The function V ∈ V0, V : I0 × Sρ → R+ is such that V (t0 + 0, ϕ0(0)) ≤ u0

and the inequalities

D−V (t, x(t)) ≤ g(t, V (t, x(t))), t 6= τk(x(t)), k = 1, 2, . . .

V (t+ 0, x(t) + Ik(x(t))) ≤ Bk(V (t, x(t))), t = τk(x(t)), k = 1, 2, . . .

are valid for each t ∈ I0 and x ∈ Ω1.
Then V (t, x(t; t0, ϕ0)) ≤ u+(t; t0, u0), t ∈ I0.

Corollary 2.6. Let the condition (H4) be satisfies and the function V ∈ V0 be such
that the inequality

D−V (t, x(t)) ≤ 0, t 6= τk(x(t)), k = 1, 2, . . .

is valid for each t > t0 and x ∈ Ω1. Then V (t, x(t; t0, ϕ0)) ≤ V (t0, ϕ0(t0)), t ∈
[t0,∞).
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3. Main results

Theorem 3.1. Assume that (H1)-(H4) and the following conditions are met:
(1) The functions V ∈ V0 and a, b ∈ K are such that

a(d(x,M(t))) ≤ V (t, x) ≤ b(d(x,M(t))),

for (t, x) ∈ [t0,∞)× Rn and a(r) →∞ as r →∞ .
(2) The inequality

D−V (t, x(t)) ≤ −p(t)c(d(x(t),M(t))), t 6= τk(x(t)), k = 1, 2 . . .

is valid for any t > t0, x ∈ Ω1, V ∈ V0, p : [t0,∞) → (0,∞), c ∈ K.
(3)

∫∞
0
p(s)c[b−1(η)]ds = ∞ for each sufficiently small value of η > 0.

Then the set M is uniformly globally asymptotically stable with respect to (2.1).

Proof. Let ε > 0. Choose δ = δ(ε) > 0, δ < ε so that b(δ) < a(ε). Let α > 0 be
arbitrary, ϕ0 ∈ Sα(C0) ∩M0(t, δ) and x(t) = x(t; t0, ϕ0). From conditions 1 and 2,
and (2.3) it follows that for t ∈ J+(t0, ϕ0),

a(d(x(t; t0, ϕ0),M(t))) ≤ V (t, x(t))

≤ V (t0, ϕ0(t0))

≤ b(d(ϕ0(t0),M0(t0)))

≤ b(d0(ϕ0,M0(t)))

< b(δ) < a(ε).

Since J+(t0, ϕ0) = (t0,∞), then x(t) ∈ M(t, ε) for all t > t0. This proves that the
set M is uniformly stable.

Now let η > 0 and ε > 0 be given and let the number σ = σ(η, ε) > 0 be chosen
so that ∫ t0+σ

t0

p(s)c[b−1(
a(ε)
2

)]ds > b(η). (3.1)

(This is possible in view of condition 3).
Let α > 0 be arbitrary, ϕ0 ∈ Sα(C0) ∩M0(t, η) and x(t) = x(t; t0, ϕ0). Assume

that for any t ∈ [t0, t0 + σ],

d(x(t),M(t)) ≥ b−1(
a(ε)
2

).

Then by condition 2 and (3.1), it follows that∫ t0+σ

t0

D−V (s, x(s))ds ≤ −
∫ t0+σ

t0

p(s)c[b−1(
a(ε)
2

)]ds < −b(η). (3.2)

On the other hand, if t0 + σ ∈ (τr, τr+1], then from (2.3) we obtain∫ t0+σ

t0

D−V (s, x(s))ds

=
r∑

k=1

∫ τk

τk−1

D−V (s, x(s))ds+
∫ t0+σ

τr

D−V (s, x(s))ds

=
r∑

k=1

[V (τk, x(τk))− V (τk−1 + 0, x(τk−1 + 0))] + V (t0 + σ, x(t0 + σ))

− V (τr + 0, x(τr + 0)) ≥ V (t0 + σ, x(t0 + σ))− V (t0, ϕ0(t0)),
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whence, in view of (3.2) and condition 2, it follows that V (t0 + σ, x(t0 + σ)) < 0,
which contradicts condition 1.

The contradiction obtained shows that there exists t∗ ∈ [t0, t0 + σ], such that

d(x(t∗),M(t∗)) < b−1(
a(ε)
2

).

Then for t ≥ t∗ (hence for any t ≥ t0 + σ as well) the following inequalities are
valid

a(d(x(t),M(t))) ≤ V (t, x(t))

≤ V (t∗ + 0, x(t∗ + 0))

≤ b(d(x(t∗),M(t∗)))

<
a(ε)
2

< a(ε).

Hence x(t) ∈M(t, ε) for t ≥ t0 + σ; i.e., the set M is uniformly globally attractive
with respect to (2.1).

Finally we shall prove that the solutions of (2.1) are uniformly M -bounded. Let
η > 0 and let β = β(η) > 0 be such that a(β) > γb(η). Choose arbitrary α > 0,
ϕ0 ∈ Sα(C0) ∩M0(t, η) and let x(t) = x(t; t0, ϕ0). Then for t > t0,

a(d(x(t),M(t))) ≤ V (t, x(t))

≤ V (t0, ϕ0(t0))

≤ γb(d(ϕ0(t0),M0(t0)))

≤ γb(d0(ϕ0,M0(t)))

≤ γb(η) < a(β).

Hence x(t) ∈M(t, β) for t > t0. �

Theorem 3.2. Assume that (H1)–(H4) and Condition 1 of Theorem 3.1 are met.
Also assume that there exists an integrally positive function λ(t) such that

D−V (t, x(t)) ≤ −λ(t)c(d(x(t),M(t))), t 6= τk(x(t)), k = 1, 2 . . .

holds for any t > t0, x ∈ Ω1, V ∈ V0 and c ∈ K. Then the set M is uniformly
globally asymptotically stable with respect to (2.1).

Proof. The fact that the set M is uniformly stable with respect to the (2.1) and
the uniform M -boundedness of the solutions of (2.1) are proved as in the proof of
Theorem 3.1.

Now we shall prove that the set M is uniformly globally attractive with respect
to the (2.1). Let again ε > 0 and η > 0 be given. Choose the number δ = δ(ε) > 0
so that b(δ) < a(ε).

We shall prove that there exists σ = σ(ε, η) > 0 such that for any solution
x(t) = x(t; t0, ϕ0) of (2.1) for which t0 ∈ R, ϕ0 ∈ Sα(C0)∩M0(t, η) (α > 0 -
arbitrary) and for any t∗ ∈ [t0, t0 + σ],

d(x(t∗),M(t∗)) < δ(ε). (3.3)

Suppose that this is not true. Then for any σ > 0 there exists a solution x(t) =
x(t; t0, ϕ0) of (2.1) for which t0 ∈ R, ϕ0 ∈ Sα(C0)∩M0(t, η), α > 0, such that

d(x(t),M(t)) ≥ δ(ε), (3.4)
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for t ∈ [t0, to + σ]. From the third condition in this theorem and (2.3) it follows
that

V (t, x(t))− V (t0, ϕ0(t0)) ≤
∫

t0

t

D−V (s, x(s))ds

≤ −
∫ t

t0

λ(s)c(d(x(s),M(s)))ds, t > t0.

From the properties of the function V (t, x(t)) in the interval (t0,∞) it follows that
there exists the finite limit

lim
t→∞

V (t, x(t)) = v0 ≥ 0. (3.5)

Then from condition 1 of Theorem 3.1, (3.4)-(3.5) it follows that∫ ∞

t0

λ(t)c(d(x(t),M(t)))dt ≤ b(η)− v0.

From the integral positivity of the function λ(t) it follows that the number σ can
be chosen so that ∫ t0+σ

t0

λ(t)dt >
b(η)− v0 + 1

c(δ(ε))
.

Then

b(η)− v0 ≥
∫

t0

∞
λ(t)c(d(x(t),M(t)))dt

≥
∫

t0

t0+σ

λ(t)c(d(x(t),M(t)))dt

≥ c(δ(ε))
∫ t0+σ

t0

λ(t)dt

> b(η)− v0 + 1.

The contradiction obtained shows that there exists a positive constant σ = σ(ε, η)
such that for any solution x(t) = x(t; t0, ϕ0) of (2.1) for which t0 ∈ R, ϕ0 ∈
Sα(C0)∩M0(t, η), α > 0, there exists t∗ ∈ [t0, t0 + σ] such that (3.3) holds. Then
for t ≥ t∗ (hence for any t ≥ t0 + σ as well) the following inequalities are valid

a(d(x(t),M(t))) ≤ V (t, x(t))

≤ V (t∗ + 0, x(t∗ + 0))

≤ b(d(x(t∗),M(t∗)))

< b(δ) < a(ε),

which proves that the set M is uniformly globally attractive with respect to (2.1).
�
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4. An example

We shall use Theorem 3.2 to prove the global uniform asymptotic stability of a
set with respect to the system

ẋ(t) =

{
A(t)x(t) +B(t)x(t− h(t)), x(t) > 0, t 6= τk(x(t)),
0, x(t) ≤ 0, t 6= τk(x(t));

∆x(t) =

{
Ckx(t), x(t) > 0, t = τk(x(t)),
0, x(t) ≤ 0, t = τk(x(t)),

(4.1)

where t > t0; x ∈ PC[(t0,∞),Rn]; A(t) and B(t) are (n × n) matrix-valued func-
tions, Ck, k = 1, 2, . . . are (n× n) matrices; h ∈ C[(t0,∞), R+].

Such systems seem to have application, among other things, in the study of ac-
tive suspension height control. In the interest of improving the overall performance
of automotive vehicles, in recent years, suspension incorporating active components
have been developed. The designs may cover a spectrum of of performance capa-
bilities, but the active components alter only the vertical force reactions of the
suspensions, not the kinematics. The conventional passive suspensions consist of
usual components with spring and damping properties, which are time-invariant.
The interest in active or semi-active suspensions derives from the potential for im-
provements to vehicle ride performance with no compromise or enhancement in
handling. The full active suspensions incorporate actuators to generate the desired
forces in the suspension. They actuators are normally hydraulic cylinders.

Let τ = inft≥t0(t − h(t)) and ϕ1 ∈ C[[τ, t0],Rn]. Denote by x(t) = x(t; t0, ϕ1)
the solution of system (4.1) satisfying the initial condition

x(t; t0, ϕ1) = ϕ1(t), τ ≤ t ≤ t0, (4.2)

and by J+(t0, ϕ1) - the maximal interval of the type (t0, β), at which the solution
x(t; t0, ϕ1) is defined.

Theorem 4.1. Let (H4) and the following conditions hold:
(1) The matrix functions A(t) and B(t) are continuous for t ∈ (t0,∞).
(2) t− h(t) →∞ as t→∞.
(3) For each k = 1, 2, . . . the elements of the matrix Ck are nonnegative.
(4) There exists a continuous real (n × n) matrix D(t), t ∈ (t0,∞), which is

symmetric, positive definite, differentiable for t 6= τk(x(t)), k = 1, 2, . . .
and such that for each k = 1, 2 . . . ,

xT [AT (t)D(t) +D(t)A(t) + Ḋ(t)]x ≤ −c(t)|x|2, x ∈ Rn, t 6= τk(x(t)), (4.3)

xT [CT
k D(t) +D(t)Ck + CT

k D(t)Ck]x ≤ 0, t = τk(x(t)), (4.4)

where c(t) > 0 is a continuous function.
(5) There exists an integrally positive function λ(t) such that

d(t) = c(t)−max{α(t)λ(t), β(t)λ(t)} ≥ 0, (4.5)

2β1/2(t)
α1/2(t− h(t))

|D(t)B(t)| ≤ d(t), (4.6)

where α(t) and β(t) are respectively the smallest and the greatest eigenvalues
of matrix D(t).
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Then the set M = [τ−t0,∞)×{x ∈ Rn : x ≤ 0} is uniformly globally asymptotically
stable with respect to system (4.1).

Proof. Consider the function

V (t, x) =

{
xTD(t)x, for x > 0,
0, for x ≤ 0.

From the condition that D(t) is real symmetric matrix it follows that for x ∈ Rn

and x 6= 0 it holds

α(t)|x|2 ≤ xTD(t)x ≤ β(t)|x|2. (4.7)

From thins inequalities it follows that condition 1 of Theorem 3.1 is satisfied.
For the chosen function V (t, x) the set Ω1 is

Ω1 = {x ∈ PC[I0,Rn] : xT (s)D(s)x(s) ≤ xT (t)D(t)x(t), τ ≤ s ≤ t, t ∈ I0}.

For t > t0 and x ∈ Ω1 the following inequalities are valid:

α(t− h(t))|x(t− h(t))|2 ≤ xT (t− h(t))D(t− h(t))x(t− h(t))

≤ xT (t)D(t)x(t) ≤ β(t)|x(t)|2,

from which we obtain the estimate

|x(t− h(t))| ≤ β1/2(t)
α1/2(t− h(t))

|x(t)|. (4.8)

Let t 6= τk(x(t)) and x ∈ Ω1. ¿From (4.3), (4.5), (4.6) and (4.8), we have

D−V (t, x(t)) =

{
−c(t)|x(t)|2 + 2|D(t)B(t)||x(t)||x(t− h(t))|, x(t) > 0,
0, x(t) ≤ 0

≤

{
−[c(t)− d(t)]|x(t)|2, x(t) > 0,
0, x(t) ≤ 0

≤ −λ(t)V (t, x(t)).

Let t = τk(x(t)). Then from (4.4) we have

V (t+ 0, x(t) + Ckx(t))

=

{
(xT (t) + xT (t)CT

k )D(t)(x(t) + Ckx(t)), x > 0,
0, x(t) ≤ 0

=

{
xT (t)D(t)x(t) + xT (t)[CT

k D(t) +D(t)Ck + CT
k D(t)Ck]x(t), x(t) > 0,

0, x(t) ≤ 0

≤ V (t, x(t)).

Thus we have checked that all the conditions of Theorem 3.2 are satisfied. Hence
the set M = [τ − t0,∞) × {x ∈ Rn : x ≤ 0} is uniformly globally asymptotically
stable with respect to system (4.1). �
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