Electronic Journal of Differential Equations, Vol. 2008(2008), No. 52, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR A FOURTH-ORDER BOUNDARY-VALUE PROBLEM

YANG LIU

ABSTRACT. In this paper, we use the lower and upper solution method to obtain an existence theorem for the fourth-order boundary-value problem

$$u^{(4)}(t) = f(t, u(t), u'(t), u''(t), u'''(t)), \quad 0 < t < 1,$$

$$u(0) = u'(1) = u''(0) = 0, \quad u'''(1) = g\left(\int_0^1 u''(t)d\theta(t)\right),$$

where $f:[0,1] \times \mathbb{R}^4 \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ are continuous and may be nonlinear, and $\int_0^1 u''(t) d\theta(t)$ denotes the Riemann-Stieltjes integral.

1. INTRODUCTION

It is well known that the bending of an elastic beam can be described with fourth-order boundary-value problems. Recently, many authors have investigated the existence of solutions for fourth-order boundary-value problems subject to a variety of boundary-value conditions, see for example [1, 3, 4, 6, 7].

Very recently, Bai [2] used the lower and upper solution method to obtain the existence of solutions for the problem

$$\begin{split} u^{(4)}(t) &= f(t, u(t), u'(t), u''(t), u'''(t)), \quad 0 < t < 1, \\ u(0) &= u'(1) = u''(0) = u'''(1) = 0, \end{split}$$

where $f: [0,1] \times \mathbb{R}^4 \to \mathbb{R}$ is increasing.

Motivated by the above-mentioned papers and the main ideas in [5], in this paper, we use the lower and upper solution method to establish the existence of solutions for the fourth-order boundary-value problem

$$u^{(4)}(t) = f(t, u(t), u'(t), u''(t)), \quad 0 < t < 1,$$

$$u(0) = u'(1) = u''(0) = 0, \quad u'''(1) = g\left(\int_0^1 u''(t)d\theta(t)\right),$$

(1.1)

where $f : [0,1] \times \mathbb{R}^4 \to \mathbb{R}, g : \mathbb{R} \to \mathbb{R}$ are continuous and may be nonlinear. $\theta : [0,1] \to \mathbb{R}$ is increasing nonconstant function defined on [0,1] and $\theta(0) = 0$.

²⁰⁰⁰ Mathematics Subject Classification. 34B15.

Key words and phrases. Fourth-order boundary-value problem; upper and lower solution; Riemann-Stieltjies integral; Nagumo-type condition.

^{©2008} Texas State University - San Marcos.

Submitted October 19, 2007. Published April 10, 2008.

If $g(x) = x, x \in \mathbb{R}$, then the problem (1.1) educes a three-point boundary-value problem by applying the following property of the Riemann-Stieltjes integral.

Lemma 1.1. Assume that

- (1) u(t) is a bounded function value on $C^2[a, b]$, i.e., there exist $c, C \in \mathbb{R}$ such that $c \leq u''(t) \leq C, \forall t \in [a, b];$
- (2) $\theta(t)$ is increasing on [a, b];
- (3) the Riemann-Stieltjes integral $\int_a^b u''(t)d\theta(t)$ exists.

Then there is a number $v \in \mathbb{R}$ with $c \leq v \leq C$ such that

$$\int_{a}^{b} u''(t)d\theta(t) = v(\theta(b) - \theta(a)).$$

For any continuous solution u(t) of (1.1), by Lemma 1.1, there exists $\eta \in (0, 1)$ such that

$$\int_{a}^{b} u''(t)d\theta(t) = u''(\eta)(\theta(1) - \theta(0)) = u''(\eta)\theta(1).$$

Let $\sigma = \theta(1)$ and $g(x) = x, x \in \mathbb{R}$. Then problem (1.1) can be rewritten as the three-point boundary-value problem

$$u^{(4)}(t) = f(t, u(t), u'(t), u''(t), u'''(t)), \quad 0 < t < 1,$$

$$u(0) = u'(1) = u''(0) = 0, \quad u'''(1) = \sigma u''(\eta),$$
(1.2)

The paper is organized as follows. In the next section, we present some preliminaries and lemmas. Section 3 is devote to our main results.

2. Preliminaries

Definition 2.1. Let $\alpha \in C^3[0,1] \cap C^4(0,1)$. We say α is a lower solution of (1.1) if

$$\begin{aligned} \alpha^{(4)}(t) &\leq f(t, \alpha(t), \alpha'(t), \alpha''(t), \alpha'''(t)), \quad 0 < t < 1, \\ \alpha(0) &\leq 0, \quad \alpha'(1) \leq 0, \\ \alpha''(0) &\geq 0, \quad \alpha'''(1) \geq g(\int_0^1 \alpha''(t) d\theta(t)). \end{aligned}$$

Similarly, $\beta \in C^3[0,1] \cap C^4(0,1)$ is an upper solution of (1.1), if β satisfies similar inequalities in the reverse order.

If we denote by k(t, s) the Green's function of

$$-u''(t) = 0, \quad 0 < t < 1,$$

$$u(0) = u'(1) = 0,$$

(2.1)

then

$$k(t,s) = \begin{cases} t, & 0 \le t \le s \le 1, \\ s, & 0 \le s \le t \le 1. \end{cases}$$

Setting -u'' = v, by standard calculation, we get

$$u(t) = \int_0^1 k(t, s)v(s)ds =: (Av)(t),$$
$$u'(t) = \int_t^1 v(s)ds =: (Bv)(t).$$

EJDE-2008/52

Obviously, A, B are monotone increasing operators.

We assume that g is an odd function on \mathbb{R} . Then problem (1.1) is equivalent to the following integral-differential boundary-value problem

$$-v''(t) = f(t, (Av)(t), (Bv)(t), -v(t), -v'(t)), \quad 0 < t < 1,$$

$$v(0) = 0, \quad v'(1) = g(\int_0^1 v(t)d\theta(t)).$$

(2.2)

For $v \in C[0, 1]$, we define the operator \hat{f} by

$$\hat{f}(v(t), v'(t)) = f(t, (Av)(t), (Bv)(t), -v(t), -v'(t)).$$

Then (2.2) is equivalent to

$$-v''(t) = \hat{f}(v(t), v'(t)), \quad 0 < t < 1,$$

$$v(0) = 0, \quad v'(1) = g(\int_0^1 v(t)d\theta(t)).$$
 (2.3)

Suppose α, β are the lower and upper solutions of BVP (1.1) such that $\alpha'' \ge \beta''$ and let $\psi = -\beta'', \phi = -\alpha''$. Then we have

$$-\phi''(t) \le \hat{f}(\phi(t), \phi'(t)), \quad \phi(0) \le 0, \quad \phi'(1) \le g(\int_0^1 \phi(t)d\theta(t)),$$
$$-\psi''(t) \ge \hat{f}(\psi(t), \psi'(t)), \quad \psi(0) \ge 0, \quad \psi'(1) \ge g(\int_0^1 \psi(t)d\theta(t)).$$

Since A, B are monotone continuous operators, there exists M such that

$$M = \sup_{\phi \le v \le \psi} \{ \|Av\|_{\infty}, \|Bv\|_{\infty} \} > 0.$$

Definition 2.2 ([2]). Let $f \in C([0,1] \times \mathbb{R}^4, \mathbb{R})$, $\phi, \psi \in C([0,1], \mathbb{R})$ and $\phi(t) \leq \psi(t), t \in [0,1]$. We say that $f(t, x_1, x_2, x_3, x_4)$ satisfies a Nagumo-type condition with respect to ϕ, ψ if there exists a positive continuous function h(s) on $[0, \infty)$ satisfying

$$|f(t, x_1, x_2, x_3, x_4)| \le h(|x_4|), \tag{2.4}$$

for all $(t, x_1, x_2, x_3, x_4) \in [0, 1] \times [-M, M]^2 \times [\phi(t), \psi(t)] \times \mathbb{R}$, and

$$\int_{\lambda}^{\infty} \frac{s}{h(s)} ds > \max_{0 \le t \le 1} \psi(t) - \min_{0 \le t \le 1} \phi(t), \tag{2.5}$$

where $\lambda = \max\{|\psi(1) - \phi(0)|, |\psi(0) - \phi(1)|\}.$

Lemma 2.3. Suppose f satisfies the Nagumo-type condition with respect to $\phi, \psi \in C^2[0,1]$ and $\phi \leq \psi$. If BVP (2.3) has a solution v(t) such that $\phi(t) \leq v(t) \leq \psi(t)$, then there exists N > 0 such that $|v'(t)| \leq N$, for $t \in [0,1]$.

The proof of the above lemma is similar to that in [2], therefore, we omit it.

3. Main results

Theorem 3.1. Suppose α, β are lower and upper solutions to BVP (1.1) such that $\alpha''(t) \geq \beta''(t)$ and f satisfies a Nagumo-type condition with respect to α'', β'' . In addition, we assume that g is odd, continuous and increasing on \mathbb{R} , θ is increasing on [0, 1] and $\theta(0) = 0$. Then BVP (1.1) has a solution u(t) such that

$$\alpha(t) \le u(t) \le \beta(t), \quad \alpha''(t) \ge u''(t) \ge \beta''(t).$$

Proof. Since f satisfies the Nagumo-type condition with respect to $\phi = -\alpha'', \psi = -\beta''$, there exists a constant N > 0 depending on ϕ, ψ, h such that

Y. LIU

$$\int_{\lambda}^{N} \frac{s}{h(s)} ds > \max_{0 \le t \le 1} \psi(t) - \min_{0 \le t \le 1} \phi(t).$$

$$(3.1)$$

Take $C > \max\{N, \|\phi'\|, \|\psi'\|\}$ and $p(v') = \max\{-C, \min\{v', C\}\}$. By modifying \hat{f} and g with respect to ϕ, ψ , we aim at obtaining a second-order boundary-value problem and reformulating the new problem as an integral equation. We show that solutions of the modified problem lie in the region where \hat{f}, g are unmodified and hence are solutions of problem (2.3). Let $\varepsilon > 0$ be a fixed small number and $F(v(t), v'(t)), G(\int_0^1 v(t)d\theta(t))$ are the modifications of $\hat{f}(v(t), v'(t))$ and $g(\int_0^1 v(t)d\theta(t))$ as follows

$$\begin{split} F(v(t),v'(t)) &= \begin{cases} \hat{f}(\psi(t),\psi'(t)) + \frac{v(t) - \psi(t)}{1 + |v(t) - \psi(t)|}, & \text{if } v(t) \geq \psi(t) + \varepsilon, \\ \hat{f}(\psi(t),p(v')) + [\hat{f}(\psi(t),\psi'(t)) - \hat{f}(\psi(t),p(v'(t))) \\ + \frac{v(t) - \psi(t)}{1 + |v(t) - \psi(t)|}] \times \frac{v(t) - \psi(t)}{\varepsilon}, & \text{if } \psi(t) \leq v(t) < \psi(t) + \varepsilon \\ \hat{f}(v(t),p(v'(t))), & \text{if } \phi(t) \leq v(t) \leq \psi(t), \\ \hat{f}(\phi(t),p(v'(t))) + [\hat{f}(\phi(t),\phi'(t)) - \hat{f}(\phi(t),p(v'(t))) \\ + \frac{\phi(t) - v(t)}{1 + |\phi(t) - v(t)|}] \times \frac{\phi(t) - v(t)}{\varepsilon}, & \text{if } \phi(t) - \varepsilon < v(t) \leq \phi(t), \\ \hat{f}(\phi(t),\phi'(t)) + \frac{\phi(t) - v(t)}{\varepsilon}, & \text{if } v(t) \leq \phi(t) - \varepsilon, \end{cases} \end{split}$$

and

$$\begin{split} G\Big(\int_{0}^{1} v(t)d\theta(t)\Big) \\ &= \begin{cases} g(\int_{0}^{1} \psi(t)d\theta(t)) + \frac{\int_{0}^{1} v(t)d\theta(t) - \int_{0}^{1} \psi(t)d\theta(t)}{1 + |\int_{0}^{1} v(t)d\theta(t) - \int_{0}^{1} \psi(t)d\theta(t)|}, & \text{if } v(t) > \psi(t), \\ g(\int_{0}^{1} v(t)d\theta(t)), & \text{if } \phi(t) \le v(t) \le \psi(t), \\ g(\int_{0}^{1} \phi(t)d\theta(t)) + \frac{\int_{0}^{1} \phi(t)d\theta(t) - \int_{0}^{1} v(t)d\theta(t)}{1 + |\int_{0}^{1} \phi(t)d\theta(t) - \int_{0}^{1} v(t)d\theta(t)|}, & \text{if } v(t) < \phi(t). \end{cases}$$

Obviously, $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ are continuous and bounded. Consider the modified problem

$$-v''(t) = F(v(t), v'(t)), \quad 0 < t < 1,$$

$$v(0) = 0, \quad v'(1) = G(\int_0^1 v(t)d\theta(t)).$$
 (3.2)

Then, the BVP (3.2) is equivalent to the integral equation

$$v(t) = G(\int_0^1 v(t)d\theta(t))t + \int_0^1 k(t,s)F(v(s),v'(s))ds.$$
 (3.3)

Since F and G are continuous and bounded, there exist M > C, m > 0 such that

$$|F(v(t), v'(t))| < M \quad \text{on} \quad \mathbb{R} \times \mathbb{R},$$
$$|G(\int_0^1 v(t)d\theta(t))| < m \quad \text{on} \quad \mathbb{R}.$$

EJDE-2008/52

 $\mathbf{5}$

Choose $\tilde{M} \ge \delta + m + M$ and consider the open bounded and convex set

$$\Omega = \{ v \in C^1[0,1] : \|v\| < \tilde{M}, \|v'\| < \tilde{M} \}.$$

Define $\tilde{F}:C^1[0,1]\times\mathbb{R}\to C[0,1]$ and $\tilde{G}:C^1[0,1]\to C[0,1]$ by

$$\tilde{F}(v)(t) = \int_0^1 k(t,s)F(v(s),v'(s))ds,$$
$$\tilde{G}(v)(t) = G(\int_0^1 v(t)d\theta(t))t.$$

It is obvious that \tilde{F}, \tilde{G} are compact. Let $\tilde{T} = \tilde{G} + \tilde{F}$, it is easy to see that (3.2) is equivalent to the fixed point equation

$$\tilde{T}v = v. \tag{3.4}$$

Then, it follows from Schauder fixed point theorem that the integral equation (3.4) has a fixed point v_* . In other words, the BVP (3.2) has a solution v_* . Also, from the definitions of ϕ, ψ, F and G and the choice of C, we have

$$-\phi''(t) \le \hat{f}(\phi(t), \phi'(t)) = F(\phi(t), \phi'(t)), \quad 0 \le t \le 1,$$

$$\phi(0) \le 0, \quad \phi'(1) \le g(\int_0^1 \phi(t)d\theta(t)) = G(\int_0^1 \phi(t)d\theta(t))$$

and

$$-\psi''(t) \ge \hat{f}(\psi(t), \psi'(t)) = F(\psi(t), \psi'(t)), \quad 0 \le t \le 1,$$

$$\psi(0) \ge 0, \quad \psi'(1) \ge g(\int_0^1 \psi(t) d\theta(t)) = G(\int_0^1 \psi(t) d\theta(t)).$$

That is, ϕ and ψ are the lower and upper solutions of (3.2).

We claim that the solution v_* of (3.2) satisfies $\phi(t) \leq v_*(t) \leq \psi(t)$ for $t \in [0, 1]$. We only prove $\phi(t) \leq v_*(t)$, $t \in [0, 1]$, the other part is proved in a similar way. Let $w(t) = \phi(t) - v_*(t)$ for $t \in [0, 1]$. Assume that $w(t_0) = \max_{0 \leq t \leq 1} w(t) > 0$. We divide the proof into three cases.

Case 1. $t_0 = 0$. Then we have $w(0) = \phi(0) - v_*(0) = \phi(0) > 0$. It contradict the definition of ϕ .

Case 2. $t_0 = 1$. Then w(1) > 0 and $w'(1) \ge 0$. The boundary value conditions of (3.2) imply

$$w'(1) = \phi'(1) - v_*'(1) \le g(\int_0^1 \phi(t)d\theta(t)) - G(\int_0^1 v_*(t)d\theta(t)).$$

If $v_*(t) < \phi(t)$, then

$$\begin{split} G(\int_0^1 v_*(t)d\theta(t)) &= g(\int_0^1 \phi(t)d\theta(t)) + \frac{\int_0^1 \phi(t)d\theta(t) - \int_0^1 v_*(t)d\theta(t)}{1 + \int_0^1 \phi(t)d\theta(t) - \int_0^1 v_*(t)d\theta(t)} \\ &> g(\int_0^1 \phi(t)d\theta(t)), \end{split}$$

which implies w'(1) < 0. It is a contradiction. If $v_*(t) > \psi(t)$, then

$$\begin{split} G(\int_{0}^{1} v_{*}(t) d\theta(t)) &= g(\int_{0}^{1} \psi(t) d\theta(t)) + \frac{\int_{0}^{1} v_{*}(t) d\theta(t) - \int_{0}^{1} \psi(t) d\theta(t)}{1 + \int_{0}^{1} v_{*}(t) d\theta(t) - \int_{0}^{1} \psi(t) d\theta(t)} \\ &> g(\int_{0}^{1} \psi(t) d\theta(t)) \\ &\geq g(\int_{0}^{1} \phi(t) d\theta(t)), \end{split}$$

we can also get w'(1) < 0, which is a contradiction. Hence, $\phi(t) \le v_*(t) \le \psi(t)$. So

$$G(\int_{0}^{1} v_{*}(t)d\theta(t)) = g(\int_{0}^{1} v_{*}(t)d\theta(t)) \ge g(\int_{0}^{1} \phi(t)d\theta(t)),$$

which implies $w'(1) \leq 0$. If w'(1) < 0, it is a contradiction. So we have w'(1) = 0. Since $t_0 \neq 0$, there exists $t_1 \in [0,1)$ such that $w(t_1) = 0$ and w(t) > 0 on $(t_1,1]$. Then for each $t \in [t_1,1]$, we have

$$w''(t) = \phi''(t) - v_*''(t) \ge -\hat{f}(\phi(t), \phi'(t)) + \left[\hat{f}(\phi(t), \phi'(t)) + \frac{w(t)}{1 + w(t)}\right] > 0.$$

Thus, by w'(1) = 0, we get $w'(t) \le 0$ on $[t_1, 1]$, which implies that w is decreasing on $[t_1, 1]$ and hence $w(1) \le 0$, it is a contradiction.

Case 3. $t_0 \in (0,1)$. Then, we have $w'(t_0) = 0$ and $w''(t_0) \leq 0$. However, for $0 < w(t_0) < \varepsilon$, we have

$$w''(t_0) = \phi''(t_0) - v_*''(t_0)$$

$$\geq -\hat{f}(\phi(t_0), \phi'(t_0)) + F(v_*(t_0), v_*'(t_0))$$

$$= \frac{w^2(t_0)}{(1+w(t_0))\varepsilon} > 0,$$

a contradiction. For $w(t_0) \geq \varepsilon$, we obtain

$$w''(t_0) = \phi''(t_0) - v_*''(t_0) \ge \frac{w(t_0)}{1 + w(t_0)} > 0,$$

it is also a contradiction. Thus, $\phi(t) \leq v_*(t), t \in [0, 1]$. By the similar discussion, we can get $v_*(t) \leq \psi(t)$.

According to the Lemma 2.3 and the choice of C, for the solution v_* of (3.2) with $\phi(t) \leq v_*(t) \leq \psi(t), t \in [0, 1]$, we have

$$|v_*'(t)| \le N < C$$

Thus,

$$F(v_*(t), v_*'(t)) = \hat{f}(v_*(t), v_*'(t)),$$

$$G(\int_0^1 v_*(t)d\theta(t)) = g(\int_0^1 v_*(t)d\theta(t)).$$

Hence, the solution v_* of (3.2) with $\phi(t) \leq v_*(t) \leq \psi(t), t \in [0, 1]$, is a solution of (2.3). The proof is complete.

Using the Theorem 3.1, we can prove the following result.

EJDE-2008/52

$$\alpha(t) \le u(t) \le \beta(t), \quad \alpha''(t) \ge u''(t) \ge \beta''(t).$$

References

- C. Bai, D. Yang, H. Zhu; Existence of solutions for fourth order differential equation with four-point boundary conditions, Appl. Math. Lett., 20 (2007) 1131-1136.
- [2] Z. Bai; The upper and lower solution method for some fourth-order boundary-value problem, Nonlinear Anal., 67 (2007) 1704-1709.
- [3] Z. Bai, H. Wang; On positive solutions of some nonlinear fourth-order beam equations, J. Math. Appl., 270 (2002) 357-368.
- [4] A. Cabada, J.Á. Cid, L. Sanchez; Positivity and lower and upper solutions for fourth order boundary-value problems, Nonlinear Anal., 67 (2007) 1599-1612.
- [5] R. A. Khan, M. Rafique; Existence and multiplicity results for some three-point boundaryvalue problems, Nonlinear Anal., 66 (2007) 1686-1697.
- [6] B. Liu; Positive solutions of fourth-order two point boundary-value problems, Appl. Math. Comput., 148 (2004) 407-420.
- [7] F. Li, Q. Zhang, Z. Liang; Existence and multiplicity of solutions of a kind of fourth-order boundary-value problem, Nonlinear Anal., 16 (2005) 803-816.

Yang Liu

DEPARTMENT OF MATHEMATICS, YANBIAN UNIVERSITY, YANJI, JILIN 133000, CHINA.

DEPARTMENT OF MATHEMATICS, HUAIYIN TEACHERS COLLEGE, HUAIAN, JIANGSU 223300, CHINA *E-mail address*: liuyang19830206@yahoo.com.cn