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EXISTENCE OF SOLUTIONS FOR A FOURTH-ORDER
BOUNDARY-VALUE PROBLEM

YANG LIU

Abstract. In this paper, we use the lower and upper solution method to

obtain an existence theorem for the fourth-order boundary-value problem

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0, u′′′(1) = g
` Z 1

0
u′′(t)dθ(t)

´
,

where f : [0, 1] × R4 → R, g : R → R are continuous and may be nonlinear,

and
R 1
0 u′′(t)dθ(t) denotes the Riemann-Stieltjes integral.

1. Introduction

It is well known that the bending of an elastic beam can be described with
fourth-order boundary-value problems. Recently, many authors have investigated
the existence of solutions for fourth-order boundary-value problems subject to a
variety of boundary-value conditions, see for example [1, 3, 4, 6, 7].

Very recently, Bai [2] used the lower and upper solution method to obtain the
existence of solutions for the problem

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′′(1) = 0,

where f : [0, 1]× R4 → R is increasing.
Motivated by the above-mentioned papers and the main ideas in [5], in this

paper, we use the lower and upper solution method to establish the existence of
solutions for the fourth-order boundary-value problem

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0, u′′′(1) = g
( ∫ 1

0

u′′(t)dθ(t)
)
,

(1.1)

where f : [0, 1] × R4 → R, g : R → R are continuous and may be nonlinear.
θ : [0, 1] → R is increasing nonconstant function defined on [0,1] and θ(0) = 0.
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If g(x) = x, x ∈ R, then the problem (1.1) educes a three-point boundary-value
problem by applying the following property of the Riemann-Stieltjes integral.

Lemma 1.1. Assume that
(1) u(t) is a bounded function value on C2[a, b], i.e., there exist c, C ∈ R such

that c ≤ u′′(t) ≤ C, ∀t ∈ [a, b];
(2) θ(t) is increasing on [a, b];
(3) the Riemann-Stieltjes integral

∫ b
a
u′′(t)dθ(t) exists.

Then there is a number v ∈ R with c ≤ v ≤ C such that∫ b

a

u′′(t)dθ(t) = v(θ(b)− θ(a)).

For any continuous solution u(t) of (1.1), by Lemma 1.1, there exists η ∈ (0, 1)
such that ∫ b

a

u′′(t)dθ(t) = u′′(η)(θ(1)− θ(0)) = u′′(η)θ(1).

Let σ = θ(1) and g(x) = x, x ∈ R. Then problem (1.1) can be rewritten as the
three-point boundary-value problem

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0, u′′′(1) = σu′′(η),
(1.2)

The paper is organized as follows. In the next section, we present some prelimi-
naries and lemmas. Section 3 is devote to our main results.

2. Preliminaries

Definition 2.1. Let α ∈ C3[0, 1] ∩ C4(0, 1). We say α is a lower solution of (1.1)
if

α(4)(t) ≤ f(t, α(t), α′(t), α′′(t), α′′′(t)), 0 < t < 1,

α(0) ≤ 0, α′(1) ≤ 0,

α′′(0) ≥ 0, α′′′(1) ≥ g(
∫ 1

0

α′′(t)dθ(t)).

Similarly, β ∈ C3[0, 1] ∩ C4(0, 1) is an upper solution of (1.1), if β satisfies similar
inequalities in the reverse order.

If we denote by k(t, s) the Green’s function of

−u′′(t) = 0, 0 < t < 1,

u(0) = u′(1) = 0,
(2.1)

then

k(t, s) =

{
t, 0 ≤ t ≤ s ≤ 1,
s, 0 ≤ s ≤ t ≤ 1.

Setting −u′′ = v, by standard calculation, we get

u(t) =
∫ 1

0

k(t, s)v(s)ds =: (Av)(t),

u′(t) =
∫ 1

t

v(s)ds =: (Bv)(t).
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Obviously, A,B are monotone increasing operators.
We assume that g is an odd function on R. Then problem (1.1) is equivalent to

the following integral-differential boundary-value problem

−v′′(t) = f(t, (Av)(t), (Bv)(t),−v(t),−v′(t)), 0 < t < 1,

v(0) = 0, v′(1) = g(
∫ 1

0

v(t)dθ(t)).
(2.2)

For v ∈ C[0, 1], we define the operator f̂ by

f̂(v(t), v′(t)) = f(t, (Av)(t), (Bv)(t),−v(t),−v′(t)).
Then (2.2) is equivalent to

−v′′(t) = f̂(v(t), v′(t)), 0 < t < 1,

v(0) = 0, v′(1) = g(
∫ 1

0

v(t)dθ(t)).
(2.3)

Suppose α, β are the lower and upper solutions of BVP (1.1) such that α′′ ≥ β′′

and let ψ = −β′′, φ = −α′′. Then we have

−φ′′(t) ≤ f̂(φ(t), φ′(t)), φ(0) ≤ 0, φ′(1) ≤ g(
∫ 1

0

φ(t)dθ(t)),

−ψ′′(t) ≥ f̂(ψ(t), ψ′(t)), ψ(0) ≥ 0, ψ′(1) ≥ g(
∫ 1

0

ψ(t)dθ(t)).

Since A,B are monotone continuous operators, there exists M such that

M = sup
φ≤v≤ψ

{‖Av‖∞, ‖Bv‖∞} > 0.

Definition 2.2 ([2]). Let f ∈ C([0, 1] × R4,R), φ, ψ ∈ C([0, 1],R) and φ(t) ≤
ψ(t), t ∈ [0, 1]. We say that f(t, x1, x2, x3, x4) satisfies a Nagumo-type condition
with respect to φ, ψ if there exists a positive continuous function h(s) on [0,∞)
satisfying

|f(t, x1, x2, x3, x4)| ≤ h(|x4|), (2.4)
for all (t, x1, x2, x3, x4) ∈ [0, 1]× [−M,M ]2 × [φ(t), ψ(t)]× R, and∫ ∞

λ

s

h(s)
ds > max

0≤t≤1
ψ(t)− min

0≤t≤1
φ(t), (2.5)

where λ = max{|ψ(1)− φ(0)|, |ψ(0)− φ(1)|}.

Lemma 2.3. Suppose f satisfies the Nagumo-type condition with respect to φ, ψ ∈
C2[0, 1] and φ ≤ ψ. If BVP (2.3) has a solution v(t) such that φ(t) ≤ v(t) ≤ ψ(t),
then there exists N > 0 such that |v′(t)| ≤ N , for t ∈ [0, 1].

The proof of the above lemma is similar to that in [2], therefore, we omit it.

3. Main results

Theorem 3.1. Suppose α, β are lower and upper solutions to BVP (1.1) such that
α′′(t) ≥ β′′(t) and f satisfies a Nagumo-type condition with respect to α′′, β′′. In
addition, we assume that g is odd, continuous and increasing on R, θ is increasing
on [0, 1] and θ(0) = 0. Then BVP (1.1) has a solution u(t) such that

α(t) ≤ u(t) ≤ β(t), α′′(t) ≥ u′′(t) ≥ β′′(t).
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Proof. Since f satisfies the Nagumo-type condition with respect to φ = −α′′, ψ =
−β′′, there exists a constant N > 0 depending on φ, ψ, h such that∫ N

λ

s

h(s)
ds > max

0≤t≤1
ψ(t)− min

0≤t≤1
φ(t). (3.1)

Take C > max{N, ‖φ′‖, ‖ψ′‖} and p(v′) = max{−C,min{v′, C}}. By modifying
f̂ and g with respect to φ, ψ, we aim at obtaining a second-order boundary-value
problem and reformulating the new problem as an integral equation. We show
that solutions of the modified problem lie in the region where f̂ , g are unmodi-
fied and hence are solutions of problem (2.3). Let ε > 0 be a fixed small num-
ber and F (v(t), v′(t)), G(

∫ 1

0
v(t)dθ(t)) are the modifications of f̂(v(t), v′(t)) and

g(
∫ 1

0
v(t)dθ(t)) as follows

F (v(t), v′(t))

=



f̂(ψ(t), ψ′(t)) + v(t)−ψ(t)
1+|v(t)−ψ(t)| , if v(t) ≥ ψ(t) + ε,

f̂(ψ(t), p(v′)) + [f̂(ψ(t), ψ′(t))− f̂(ψ(t), p(v′(t)))
+ v(t)−ψ(t)

1+|v(t)−ψ(t)| ]×
v(t)−ψ(t)

ε , if ψ(t) ≤ v(t) < ψ(t) + ε,

f̂(v(t), p(v′(t))), if φ(t) ≤ v(t) ≤ ψ(t),

f̂(φ(t), p(v′(t))) + [f̂(φ(t), φ′(t))− f̂(φ(t), p(v′(t)))
+ φ(t)−v(t)

1+|φ(t)−v(t)| ]×
φ(t)−v(t)

ε , if φ(t)− ε < v(t) ≤ φ(t),

f̂(φ(t), φ′(t)) + φ(t)−v(t)
1+|φ(t)−v(t)| , if v(t) ≤ φ(t)− ε,

and

G
( ∫ 1

0

v(t)dθ(t)
)

=


g(

∫ 1

0
ψ(t)dθ(t)) +

R 1
0 v(t)dθ(t)−

R 1
0 ψ(t)dθ(t)

1+|
R 1
0 v(t)dθ(t)−

R 1
0 ψ(t)dθ(t)| , if v(t) > ψ(t),

g(
∫ 1

0
v(t)dθ(t)), if φ(t) ≤ v(t) ≤ ψ(t),

g(
∫ 1

0
φ(t)dθ(t)) +

R 1
0 φ(t)dθ(t)−

R 1
0 v(t)dθ(t)

1+|
R 1
0 φ(t)dθ(t)−

R 1
0 v(t)dθ(t)|

, if v(t) < φ(t).

Obviously, F : R× R → R and G : R → R are continuous and bounded. Consider
the modified problem

−v′′(t) = F (v(t), v′(t)), 0 < t < 1,

v(0) = 0, v′(1) = G(
∫ 1

0

v(t)dθ(t)).
(3.2)

Then, the BVP (3.2) is equivalent to the integral equation

v(t) = G(
∫ 1

0

v(t)dθ(t))t+
∫ 1

0

k(t, s)F (v(s), v′(s))ds. (3.3)

Since F and G are continuous and bounded, there exist M > C, m > 0 such that

|F (v(t), v′(t))| < M on R× R,

|G(
∫ 1

0

v(t)dθ(t))| < m on R.
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Choose M̃ ≥ δ +m+M and consider the open bounded and convex set

Ω = {v ∈ C1[0, 1] : ‖v‖ < M̃, ‖v′‖ < M̃}.

Define F̃ : C1[0, 1]× R → C[0, 1] and G̃ : C1[0, 1] → C[0, 1] by

F̃ (v)(t) =
∫ 1

0

k(t, s)F (v(s), v′(s))ds,

G̃(v)(t) = G(
∫ 1

0

v(t)dθ(t))t.

It is obvious that F̃ , G̃ are compact. Let T̃ = G̃+ F̃ , it is easy to see that (3.2) is
equivalent to the fixed point equation

T̃ v = v. (3.4)

Then, it follows from Schauder fixed point theorem that the integral equation (3.4)
has a fixed point v∗. In other words, the BVP (3.2) has a solution v∗. Also, from
the definitions of φ, ψ, F and G and the choice of C, we have

−φ′′(t) ≤ f̂(φ(t), φ′(t)) = F (φ(t), φ′(t)), 0 ≤ t ≤ 1,

φ(0) ≤ 0, φ′(1) ≤ g(
∫ 1

0

φ(t)dθ(t)) = G(
∫ 1

0

φ(t)dθ(t))

and

−ψ′′(t) ≥ f̂(ψ(t), ψ′(t)) = F (ψ(t), ψ′(t)), 0 ≤ t ≤ 1,

ψ(0) ≥ 0, ψ′(1) ≥ g(
∫ 1

0

ψ(t)dθ(t)) = G(
∫ 1

0

ψ(t)dθ(t)).

That is, φ and ψ are the lower and upper solutions of (3.2).
We claim that the solution v∗ of (3.2) satisfies φ(t) ≤ v∗(t) ≤ ψ(t) for t ∈ [0, 1].

We only prove φ(t) ≤ v∗(t), t ∈ [0, 1], the other part is proved in a similar way. Let
w(t) = φ(t) − v∗(t) for t ∈ [0, 1]. Assume that w(t0) = max

0≤t≤1
w(t) > 0. We divide

the proof into three cases.

Case 1. t0 = 0. Then we have w(0) = φ(0)− v∗(0) = φ(0) > 0. It contradict the
definition of φ.

Case 2. t0 = 1. Then w(1) > 0 and w′(1) ≥ 0. The boundary value conditions of
(3.2) imply

w′(1) = φ′(1)− v∗
′(1) ≤ g(

∫ 1

0

φ(t)dθ(t))−G(
∫ 1

0

v∗(t)dθ(t)).

If v∗(t) < φ(t), then

G(
∫ 1

0

v∗(t)dθ(t)) = g(
∫ 1

0

φ(t)dθ(t)) +

∫ 1

0
φ(t)dθ(t)−

∫ 1

0
v∗(t)dθ(t)

1 +
∫ 1

0
φ(t)dθ(t)−

∫ 1

0
v∗(t)dθ(t)

> g(
∫ 1

0

φ(t)dθ(t)),
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which implies w′(1) < 0. It is a contradiction. If v∗(t) > ψ(t), then

G(
∫ 1

0

v∗(t)dθ(t)) = g(
∫ 1

0

ψ(t)dθ(t)) +

∫ 1

0
v∗(t)dθ(t)−

∫ 1

0
ψ(t)dθ(t)

1 +
∫ 1

0
v∗(t)dθ(t)−

∫ 1

0
ψ(t)dθ(t)

> g(
∫ 1

0

ψ(t)dθ(t))

≥ g(
∫ 1

0

φ(t)dθ(t)),

we can also get w′(1) < 0, which is a contradiction. Hence, φ(t) ≤ v∗(t) ≤ ψ(t). So

G(
∫ 1

0

v∗(t)dθ(t)) = g(
∫ 1

0

v∗(t)dθ(t)) ≥ g(
∫ 1

0

φ(t)dθ(t)),

which implies w′(1) ≤ 0. If w′(1) < 0, it is a contradiction. So we have w′(1) = 0.
Since t0 6= 0, there exists t1 ∈ [0, 1) such that w(t1) = 0 and w(t) > 0 on (t1, 1].
Then for each t ∈ [t1, 1], we have

w′′(t) = φ′′(t)− v∗
′′(t) ≥ −f̂(φ(t), φ′(t)) +

[
f̂(φ(t), φ′(t)) +

w(t)
1 + w(t)

]
> 0.

Thus, by w′(1) = 0, we get w′(t) ≤ 0 on [t1, 1], which implies that w is decreasing
on [t1, 1] and hence w(1) ≤ 0, it is a contradiction.
Case 3. t0 ∈ (0, 1). Then, we have w′(t0) = 0 and w′′(t0) ≤ 0. However, for
0 < w(t0) < ε, we have

w′′(t0) = φ′′(t0)− v∗
′′(t0)

≥ −f̂(φ(t0), φ′(t0)) + F (v∗(t0), v∗′(t0))

=
w2(t0)

(1 + w(t0))ε
> 0,

a contradiction. For w(t0) ≥ ε, we obtain

w′′(t0) = φ′′(t0)− v∗
′′(t0) ≥

w(t0)
1 + w(t0)

> 0,

it is also a contradiction. Thus, φ(t) ≤ v∗(t), t ∈ [0, 1]. By the similar discussion,
we can get v∗(t) ≤ ψ(t).

According to the Lemma 2.3 and the choice of C, for the solution v∗ of (3.2)
with φ(t) ≤ v∗(t) ≤ ψ(t), t ∈ [0, 1], we have

|v∗′(t)| ≤ N < C.

Thus,

F (v∗(t), v∗′(t)) = f̂(v∗(t), v∗′(t)),

G(
∫ 1

0

v∗(t)dθ(t)) = g(
∫ 1

0

v∗(t)dθ(t)).

Hence, the solution v∗ of (3.2) with φ(t) ≤ v∗(t) ≤ ψ(t), t ∈ [0, 1], is a solution of
(2.3). The proof is complete. �

Using the Theorem 3.1, we can prove the following result.
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Corollory 3.2. Suppose α, β are lower and upper solutions to (1.2) such that
α′′(t) ≥ β′′(t) and f satisfies a Nagumo-type condition with respect to α′′, β′′. Then
(1.2) has a solution u(t) such that

α(t) ≤ u(t) ≤ β(t), α′′(t) ≥ u′′(t) ≥ β′′(t).
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