Electronic Journal of Differential Equations, Vol. 2008(2008), No. 52, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR A FOURTH-ORDER BOUNDARY-VALUE PROBLEM

YANG LIU

Abstract

In this paper, we use the lower and upper solution method to obtain an existence theorem for the fourth-order boundary-value problem $$
\begin{gathered} u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), \quad 0<t<1, \\ u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=0, \quad u^{\prime \prime \prime}(1)=g\left(\int_{0}^{1} u^{\prime \prime}(t) d \theta(t)\right), \end{gathered}
$$ where $f:[0,1] \times \mathbb{R}^{4} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and may be nonlinear, and $\int_{0}^{1} u^{\prime \prime}(t) d \theta(t)$ denotes the Riemann-Stieltjes integral.

1. Introduction

It is well known that the bending of an elastic beam can be described with fourth-order boundary-value problems. Recently, many authors have investigated the existence of solutions for fourth-order boundary-value problems subject to a variety of boundary-value conditions, see for example [1, 3, 4, 6, 7,

Very recently, Bai [2] used the lower and upper solution method to obtain the existence of solutions for the problem

$$
\begin{gathered}
u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), \quad 0<t<1, \\
u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0
\end{gathered}
$$

where $f:[0,1] \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ is increasing.
Motivated by the above-mentioned papers and the main ideas in [5], in this paper, we use the lower and upper solution method to establish the existence of solutions for the fourth-order boundary-value problem

$$
\begin{gather*}
u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), \quad 0<t<1, \\
u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=0, \quad u^{\prime \prime \prime}(1)=g\left(\int_{0}^{1} u^{\prime \prime}(t) d \theta(t)\right), \tag{1.1}
\end{gather*}
$$

where $f:[0,1] \times \mathbb{R}^{4} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and may be nonlinear. $\theta:[0,1] \rightarrow \mathbb{R}$ is increasing nonconstant function defined on $[0,1]$ and $\theta(0)=0$.

[^0]If $g(x)=x, x \in \mathbb{R}$, then the problem 1.1 educes a three-point boundary-value problem by applying the following property of the Riemann-Stieltjes integral.
Lemma 1.1. Assume that
(1) $u(t)$ is a bounded function value on $C^{2}[a, b]$, i.e., there exist $c, C \in \mathbb{R}$ such that $c \leq u^{\prime \prime}(t) \leq C, \forall t \in[a, b]$;
(2) $\theta(t)$ is increasing on $[a, b]$;
(3) the Riemann-Stieltjes integral $\int_{a}^{b} u^{\prime \prime}(t) d \theta(t)$ exists.

Then there is a number $v \in \mathbb{R}$ with $c \leq v \leq C$ such that

$$
\int_{a}^{b} u^{\prime \prime}(t) d \theta(t)=v(\theta(b)-\theta(a))
$$

For any continuous solution $u(t)$ of 1.1, by Lemma 1.1, there exists $\eta \in(0,1)$ such that

$$
\int_{a}^{b} u^{\prime \prime}(t) d \theta(t)=u^{\prime \prime}(\eta)(\theta(1)-\theta(0))=u^{\prime \prime}(\eta) \theta(1)
$$

Let $\sigma=\theta(1)$ and $g(x)=x, x \in \mathbb{R}$. Then problem (1.1) can be rewritten as the three-point boundary-value problem

$$
\begin{gather*}
u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), \quad 0<t<1 \\
u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=0, \quad u^{\prime \prime \prime}(1)=\sigma u^{\prime \prime}(\eta) \tag{1.2}
\end{gather*}
$$

The paper is organized as follows. In the next section, we present some preliminaries and lemmas. Section 3 is devote to our main results.

2. Preliminaries

Definition 2.1. Let $\alpha \in C^{3}[0,1] \cap C^{4}(0,1)$. We say α is a lower solution of 1.1) if

$$
\begin{gathered}
\alpha^{(4)}(t) \leq f\left(t, \alpha(t), \alpha^{\prime}(t), \alpha^{\prime \prime}(t), \alpha^{\prime \prime \prime}(t)\right), \quad 0<t<1, \\
\alpha(0) \leq 0, \quad \alpha^{\prime}(1) \leq 0 \\
\alpha^{\prime \prime}(0) \geq 0, \quad \alpha^{\prime \prime \prime}(1) \geq g\left(\int_{0}^{1} \alpha^{\prime \prime}(t) d \theta(t)\right) .
\end{gathered}
$$

Similarly, $\beta \in C^{3}[0,1] \cap C^{4}(0,1)$ is an upper solution of 1.1 , if β satisfies similar inequalities in the reverse order.

If we denote by $k(t, s)$ the Green's function of

$$
\begin{gather*}
-u^{\prime \prime}(t)=0, \quad 0<t<1, \\
u(0)=u^{\prime}(1)=0, \tag{2.1}
\end{gather*}
$$

then

$$
k(t, s)= \begin{cases}t, & 0 \leq t \leq s \leq 1 \\ s, & 0 \leq s \leq t \leq 1\end{cases}
$$

Setting $-u^{\prime \prime}=v$, by standard calculation, we get

$$
\begin{gathered}
u(t)=\int_{0}^{1} k(t, s) v(s) d s=:(A v)(t) \\
u^{\prime}(t)=\int_{t}^{1} v(s) d s=:(B v)(t)
\end{gathered}
$$

Obviously, A, B are monotone increasing operators.
We assume that g is an odd function on \mathbb{R}. Then problem 1.1 is equivalent to the following integral-differential boundary-value problem

$$
\begin{gather*}
-v^{\prime \prime}(t)=f\left(t,(A v)(t),(B v)(t),-v(t),-v^{\prime}(t)\right), \quad 0<t<1 \\
v(0)=0, \quad v^{\prime}(1)=g\left(\int_{0}^{1} v(t) d \theta(t)\right) \tag{2.2}
\end{gather*}
$$

For $v \in C[0,1]$, we define the operator \hat{f} by

$$
\hat{f}\left(v(t), v^{\prime}(t)\right)=f\left(t,(A v)(t),(B v)(t),-v(t),-v^{\prime}(t)\right)
$$

Then (2.2) is equivalent to

$$
\begin{align*}
& -v^{\prime \prime}(t)=\hat{f}\left(v(t), v^{\prime}(t)\right), \quad 0<t<1 \\
& v(0)=0, \quad v^{\prime}(1)=g\left(\int_{0}^{1} v(t) d \theta(t)\right) . \tag{2.3}
\end{align*}
$$

Suppose α, β are the lower and upper solutions of BVP (1.1) such that $\alpha^{\prime \prime} \geq \beta^{\prime \prime}$ and let $\psi=-\beta^{\prime \prime}, \phi=-\alpha^{\prime \prime}$. Then we have

$$
\begin{aligned}
& -\phi^{\prime \prime}(t) \leq \hat{f}\left(\phi(t), \phi^{\prime}(t)\right), \quad \phi(0) \leq 0, \quad \phi^{\prime}(1) \leq g\left(\int_{0}^{1} \phi(t) d \theta(t)\right) \\
& -\psi^{\prime \prime}(t) \geq \hat{f}\left(\psi(t), \psi^{\prime}(t)\right), \quad \psi(0) \geq 0, \quad \psi^{\prime}(1) \geq g\left(\int_{0}^{1} \psi(t) d \theta(t)\right)
\end{aligned}
$$

Since A, B are monotone continuous operators, there exists M such that

$$
M=\sup _{\phi \leq v \leq \psi}\left\{\|A v\|_{\infty},\|B v\|_{\infty}\right\}>0
$$

Definition $2.2([2])$. Let $f \in C\left([0,1] \times \mathbb{R}^{4}, \mathbb{R}\right), \phi, \psi \in C([0,1], \mathbb{R})$ and $\phi(t) \leq$ $\psi(t), t \in[0,1]$. We say that $f\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfies a Nagumo-type condition with respect to ϕ, ψ if there exists a positive continuous function $h(s)$ on $[0, \infty)$ satisfying

$$
\begin{equation*}
\left|f\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right| \leq h\left(\left|x_{4}\right|\right) \tag{2.4}
\end{equation*}
$$

for all $\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right) \in[0,1] \times[-M, M]^{2} \times[\phi(t), \psi(t)] \times \mathbb{R}$, and

$$
\begin{equation*}
\int_{\lambda}^{\infty} \frac{s}{h(s)} d s>\max _{0 \leq t \leq 1} \psi(t)-\min _{0 \leq t \leq 1} \phi(t) \tag{2.5}
\end{equation*}
$$

where $\lambda=\max \{|\psi(1)-\phi(0)|,|\psi(0)-\phi(1)|\}$.
Lemma 2.3. Suppose f satisfies the Nagumo-type condition with respect to $\phi, \psi \in$ $C^{2}[0,1]$ and $\phi \leq \psi$. If $B V P$ 2.3) has a solution $v(t)$ such that $\phi(t) \leq v(t) \leq \psi(t)$, then there exists $N>0$ such that $\left|v^{\prime}(t)\right| \leq N$, for $t \in[0,1]$.

The proof of the above lemma is similar to that in [2], therefore, we omit it.

3. Main Results

Theorem 3.1. Suppose α, β are lower and upper solutions to $B V P$ 1.1 such that $\alpha^{\prime \prime}(t) \geq \beta^{\prime \prime}(t)$ and f satisfies a Nagumo-type condition with respect to $\alpha^{\prime \prime}, \beta^{\prime \prime}$. In addition, we assume that g is odd, continuous and increasing on \mathbb{R}, θ is increasing on $[0,1]$ and $\theta(0)=0$. Then $B V P$ 1.1 has a solution $u(t)$ such that

$$
\alpha(t) \leq u(t) \leq \beta(t), \quad \alpha^{\prime \prime}(t) \geq u^{\prime \prime}(t) \geq \beta^{\prime \prime}(t)
$$

Proof. Since f satisfies the Nagumo-type condition with respect to $\phi=-\alpha^{\prime \prime}, \psi=$ $-\beta^{\prime \prime}$, there exists a constant $N>0$ depending on ϕ, ψ, h such that

$$
\begin{equation*}
\int_{\lambda}^{N} \frac{s}{h(s)} d s>\max _{0 \leq t \leq 1} \psi(t)-\min _{0 \leq t \leq 1} \phi(t) \tag{3.1}
\end{equation*}
$$

Take $C>\max \left\{N,\left\|\phi^{\prime}\right\|,\left\|\psi^{\prime}\right\|\right\}$ and $p\left(v^{\prime}\right)=\max \left\{-C, \min \left\{v^{\prime}, C\right\}\right\}$. By modifying \hat{f} and g with respect to ϕ, ψ, we aim at obtaining a second-order boundary-value problem and reformulating the new problem as an integral equation. We show that solutions of the modified problem lie in the region where \hat{f}, g are unmodified and hence are solutions of problem 2.3). Let $\varepsilon>0$ be a fixed small number and $F\left(v(t), v^{\prime}(t)\right), G\left(\int_{0}^{1} v(t) d \theta(t)\right)$ are the modifications of $\hat{f}\left(v(t), v^{\prime}(t)\right)$ and $g\left(\int_{0}^{1} v(t) d \theta(t)\right)$ as follows

$$
\begin{aligned}
& F\left(v(t), v^{\prime}(t)\right) \\
& = \begin{cases}\hat{f}\left(\psi(t), \psi^{\prime}(t)\right)+\frac{v(t)-\psi(t)}{1+|v(t)-\psi(t)|}, & \text { if } v(t) \geq \psi(t)+\varepsilon, \\
\hat{f}\left(\psi(t), p\left(v^{\prime}\right)\right)+\left[\hat{f}\left(\psi(t), \psi^{\prime}(t)\right)-\hat{f}\left(\psi(t), p\left(v^{\prime}(t)\right)\right)\right. \\
\left.+\frac{v(t)-\psi(t)}{1+|v(t)-\psi(t)|}\right] \times \frac{v(t)-\psi(t)}{\varepsilon}, & \text { if } \psi(t) \leq v(t)<\psi(t)+\varepsilon, \\
\hat{f}\left(v(t), p\left(v^{\prime}(t)\right),\right. & \text { if } \phi(t) \leq v(t) \leq \psi(t), \\
\hat{f}\left(\phi(t), p\left(v^{\prime}(t)\right)\right)+\left[\hat{f}\left(\phi(t), \phi^{\prime}(t)\right)-\hat{f}\left(\phi(t), p\left(v^{\prime}(t)\right)\right)\right. & \\
\left.+\frac{\phi(t)-v(t)}{1+\mid \phi(t)-v(t)]}\right] \times \frac{\phi(t)-v(t)}{\varepsilon}, & \text { if } \phi(t)-\varepsilon<v(t) \leq \phi(t), \\
\hat{f}\left(\phi(t), \phi^{\prime}(t)\right)+\frac{\phi(t)-v(t)}{1+|\phi(t)-v(t)|}, & \text { if } v(t) \leq \phi(t)-\varepsilon,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& G\left(\int_{0}^{1} v(t) d \theta(t)\right) \\
& = \begin{cases}g\left(\int_{0}^{1} \psi(t) d \theta(t)\right)+\frac{\int_{0}^{1} v(t) d \theta(t)-\int_{0}^{1} \psi(t) d \theta(t)}{1+\left|\int_{0}^{1} v(t) d \theta(t)-\int_{0}^{1} \psi(t) d \theta(t)\right|}, & \text { if } v(t)>\psi(t), \\
g\left(\int_{0}^{1} v(t) d \theta(t)\right), & \text { if } \phi(t) \leq v(t) \leq \psi(t), \\
g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)+\frac{\int_{0}^{1} \phi(t) d \theta(t)-\int_{0}^{1} v(t) d \theta(t)}{1+\left|\int_{0}^{1} \phi(t) d \theta(t)-\int_{0}^{1} v(t) d \theta(t)\right|}, & \text { if } v(t)<\phi(t)\end{cases}
\end{aligned}
$$

Obviously, $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $G: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and bounded. Consider the modified problem

$$
\begin{align*}
& -v^{\prime \prime}(t)=F\left(v(t), v^{\prime}(t)\right), \quad 0<t<1 \\
& v(0)=0, \quad v^{\prime}(1)=G\left(\int_{0}^{1} v(t) d \theta(t)\right) . \tag{3.2}
\end{align*}
$$

Then, the BVP (3.2) is equivalent to the integral equation

$$
\begin{equation*}
v(t)=G\left(\int_{0}^{1} v(t) d \theta(t)\right) t+\int_{0}^{1} k(t, s) F\left(v(s), v^{\prime}(s)\right) d s \tag{3.3}
\end{equation*}
$$

Since F and G are continuous and bounded, there exist $M>C, m>0$ such that

$$
\begin{aligned}
& \left|F\left(v(t), v^{\prime}(t)\right)\right|<M \quad \text { on } \quad \mathbb{R} \times \mathbb{R} \\
& \left|G\left(\int_{0}^{1} v(t) d \theta(t)\right)\right|<m \quad \text { on } \quad \mathbb{R}
\end{aligned}
$$

Choose $\tilde{M} \geq \delta+m+M$ and consider the open bounded and convex set

$$
\Omega=\left\{v \in C^{1}[0,1]:\|v\|<\tilde{M},\left\|v^{\prime}\right\|<\tilde{M}\right\}
$$

Define $\tilde{F}: C^{1}[0,1] \times \mathbb{R} \rightarrow C[0,1]$ and $\tilde{G}: C^{1}[0,1] \rightarrow C[0,1]$ by

$$
\begin{gathered}
\tilde{F}(v)(t)=\int_{0}^{1} k(t, s) F\left(v(s), v^{\prime}(s)\right) d s \\
\tilde{G}(v)(t)=G\left(\int_{0}^{1} v(t) d \theta(t)\right) t
\end{gathered}
$$

It is obvious that \tilde{F}, \tilde{G} are compact. Let $\tilde{T}=\tilde{G}+\tilde{F}$, it is easy to see that 3.2 is equivalent to the fixed point equation

$$
\begin{equation*}
\tilde{T} v=v \tag{3.4}
\end{equation*}
$$

Then, it follows from Schauder fixed point theorem that the integral equation (3.4) has a fixed point v_{*}. In other words, the BVP $\left(3.2\right.$ has a solution v_{*}. Also, from the definitions of ϕ, ψ, F and G and the choice of C, we have

$$
\begin{gathered}
-\phi^{\prime \prime}(t) \leq \hat{f}\left(\phi(t), \phi^{\prime}(t)\right)=F\left(\phi(t), \phi^{\prime}(t)\right), \quad 0 \leq t \leq 1 \\
\phi(0) \leq 0, \quad \phi^{\prime}(1) \leq g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)=G\left(\int_{0}^{1} \phi(t) d \theta(t)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
-\psi^{\prime \prime}(t) \geq \hat{f}\left(\psi(t), \psi^{\prime}(t)\right)=F\left(\psi(t), \psi^{\prime}(t)\right), \quad 0 \leq t \leq 1 \\
\psi(0) \geq 0, \quad \psi^{\prime}(1) \geq g\left(\int_{0}^{1} \psi(t) d \theta(t)\right)=G\left(\int_{0}^{1} \psi(t) d \theta(t)\right)
\end{gathered}
$$

That is, ϕ and ψ are the lower and upper solutions of 3.2 .
We claim that the solution v_{*} of (3.2) satisfies $\phi(t) \leq v_{*}(t) \leq \psi(t)$ for $t \in[0,1]$. We only prove $\phi(t) \leq v_{*}(t), t \in[0,1]$, the other part is proved in a similar way. Let $w(t)=\phi(t)-v_{*}(t)$ for $t \in[0,1]$. Assume that $w\left(t_{0}\right)=\max _{0 \leq t \leq 1} w(t)>0$. We divide the proof into three cases.
Case 1. $t_{0}=0$. Then we have $w(0)=\phi(0)-v_{*}(0)=\phi(0)>0$. It contradict the definition of ϕ.
Case 2. $t_{0}=1$. Then $w(1)>0$ and $w^{\prime}(1) \geq 0$. The boundary value conditions of (3.2) imply

$$
w^{\prime}(1)=\phi^{\prime}(1)-v_{*}^{\prime}(1) \leq g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)-G\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right)
$$

If $v_{*}(t)<\phi(t)$, then

$$
\begin{aligned}
G\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right) & =g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)+\frac{\int_{0}^{1} \phi(t) d \theta(t)-\int_{0}^{1} v_{*}(t) d \theta(t)}{1+\int_{0}^{1} \phi(t) d \theta(t)-\int_{0}^{1} v_{*}(t) d \theta(t)} \\
& >g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)
\end{aligned}
$$

which implies $w^{\prime}(1)<0$. It is a contradiction. If $v_{*}(t)>\psi(t)$, then

$$
\begin{aligned}
G\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right) & =g\left(\int_{0}^{1} \psi(t) d \theta(t)\right)+\frac{\int_{0}^{1} v_{*}(t) d \theta(t)-\int_{0}^{1} \psi(t) d \theta(t)}{1+\int_{0}^{1} v_{*}(t) d \theta(t)-\int_{0}^{1} \psi(t) d \theta(t)} \\
& >g\left(\int_{0}^{1} \psi(t) d \theta(t)\right) \\
& \geq g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)
\end{aligned}
$$

we can also get $w^{\prime}(1)<0$, which is a contradiction. Hence, $\phi(t) \leq v_{*}(t) \leq \psi(t)$. So

$$
G\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right)=g\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right) \geq g\left(\int_{0}^{1} \phi(t) d \theta(t)\right)
$$

which implies $w^{\prime}(1) \leq 0$. If $w^{\prime}(1)<0$, it is a contradiction. So we have $w^{\prime}(1)=0$. Since $t_{0} \neq 0$, there exists $t_{1} \in[0,1)$ such that $w\left(t_{1}\right)=0$ and $w(t)>0$ on $\left(t_{1}, 1\right]$. Then for each $t \in\left[t_{1}, 1\right]$, we have

$$
w^{\prime \prime}(t)=\phi^{\prime \prime}(t)-v_{*}^{\prime \prime}(t) \geq-\hat{f}\left(\phi(t), \phi^{\prime}(t)\right)+\left[\hat{f}\left(\phi(t), \phi^{\prime}(t)\right)+\frac{w(t)}{1+w(t)}\right]>0
$$

Thus, by $w^{\prime}(1)=0$, we get $w^{\prime}(t) \leq 0 \quad$ on $\quad\left[t_{1}, 1\right]$, which implies that w is decreasing on $\left[t_{1}, 1\right]$ and hence $w(1) \leq 0$, it is a contradiction.
Case 3. $t_{0} \in(0,1)$. Then, we have $w^{\prime}\left(t_{0}\right)=0$ and $w^{\prime \prime}\left(t_{0}\right) \leq 0$. However, for $0<w\left(t_{0}\right)<\varepsilon$, we have

$$
\begin{aligned}
w^{\prime \prime}\left(t_{0}\right) & =\phi^{\prime \prime}\left(t_{0}\right)-v_{*}^{\prime \prime}\left(t_{0}\right) \\
& \geq-\hat{f}\left(\phi\left(t_{0}\right), \phi^{\prime}\left(t_{0}\right)\right)+F\left(v_{*}\left(t_{0}\right), v_{*}^{\prime}\left(t_{0}\right)\right) \\
& =\frac{w^{2}\left(t_{0}\right)}{\left(1+w\left(t_{0}\right)\right) \varepsilon}>0
\end{aligned}
$$

a contradiction. For $w\left(t_{0}\right) \geq \varepsilon$, we obtain

$$
w^{\prime \prime}\left(t_{0}\right)=\phi^{\prime \prime}\left(t_{0}\right)-v_{*}^{\prime \prime}\left(t_{0}\right) \geq \frac{w\left(t_{0}\right)}{1+w\left(t_{0}\right)}>0
$$

it is also a contradiction. Thus, $\phi(t) \leq v_{*}(t), t \in[0,1]$. By the similar discussion, we can get $v_{*}(t) \leq \psi(t)$.

According to the Lemma 2.3 and the choice of C, for the solution v_{*} of 3.2 with $\phi(t) \leq v_{*}(t) \leq \psi(t), t \in[0,1]$, we have

$$
\left|v_{*}^{\prime}(t)\right| \leq N<C .
$$

Thus,

$$
\begin{aligned}
F\left(v_{*}(t), v_{*}^{\prime}(t)\right) & =\hat{f}\left(v_{*}(t), v_{*}^{\prime}(t)\right), \\
G\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right) & =g\left(\int_{0}^{1} v_{*}(t) d \theta(t)\right)
\end{aligned}
$$

Hence, the solution v_{*} of (3.2) with $\phi(t) \leq v_{*}(t) \leq \psi(t), t \in[0,1]$, is a solution of (2.3). The proof is complete.

Using the Theorem 3.1, we can prove the following result.

Corollory 3.2. Suppose α, β are lower and upper solutions to (1.2) such that $\alpha^{\prime \prime}(t) \geq \beta^{\prime \prime}(t)$ and f satisfies a Nagumo-type condition with respect to $\alpha^{\prime \prime}, \beta^{\prime \prime}$. Then 1.2) has a solution $u(t)$ such that

$$
\alpha(t) \leq u(t) \leq \beta(t), \quad \alpha^{\prime \prime}(t) \geq u^{\prime \prime}(t) \geq \beta^{\prime \prime}(t)
$$

References

[1] C. Bai, D. Yang, H. Zhu; Existence of solutions for fourth order differential equation with four-point boundary conditions, Appl. Math. Lett., 20 (2007) 1131-1136.
[2] Z. Bai; The upper and lower solution method for some fourth-order boundary-value problem, Nonlinear Anal., 67 (2007) 1704-1709.
[3] Z. Bai, H. Wang; On positive solutions of some nonlinear fourth-order beam equations, J. Math. Appl., 270 (2002) 357-368.
[4] A. Cabada, J.Á. Cid, L. Sanchez; Positivity and lower and upper solutions for fourth order boundary-value problems, Nonlinear Anal., 67 (2007) 1599-1612.
[5] R. A. Khan, M. Rafique; Existence and multiplicity results for some three-point boundaryvalue problems, Nonlinear Anal., 66 (2007) 1686-1697.
[6] B. Liu; Positive solutions of fourth-order two point boundary-value problems, Appl. Math. Comput., 148 (2004) 407-420.
[7] F. Li, Q. Zhang, Z. Liang; Existence and multiplicity of solutions of a kind of fourth-order boundary-value problem, Nonlinear Anal., 16 (2005) 803-816.

Yang Liu
Department of Mathematics, Yanbian University, Yanji, Jilin 133000, China.
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223300, China
E-mail address: liuyang19830206@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 34B15.
 Key words and phrases. Fourth-order boundary-value problem; upper and lower solution; Riemann-Stieltjies integral; Nagumo-type condition.
 (C) 2008 Texas State University - San Marcos.

 Submitted October 19, 2007. Published April 10, 2008.

