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CONTINUOUS VERSION OF FILIPPOV’S THEOREM FOR A
STURM-LIOUVILLE TYPE DIFFERENTIAL INCLUSION

AURELIAN CERNEA

Abstract. Using Bressan-Colombo results, concerning the existence of con-

tinuous selections of lower semicontinuous multifunctions with decomposable
values, we prove a continuous version of Filippov’s theorem for a Sturm-

Liuoville differential inclusion. This result allows to obtain a continuous selec-

tion of the solution set of the problem considered.

1. Introduction

In this paper we study second-order differential inclusions of the form

(p(t)x′(t))′ ∈ F (t, x(t)) a. e. in [0, T ]), x(0) = x0, x′(0) = x1, (1.1)

where F : [0, T ]×X → P(X) is a set-valued map, X is a separable Banach space,
x0, x1 ∈ X and p : [0, T ] → (0,∞) is continuous.

In some recent papers [6, 9] several existence results for problem (1.1) are ob-
tained using fixed point techniques. In [5] it is shown that Filippov’s ideas [8] can
be suitably adapted in order to prove the existence of mild solutions to problem
(1.1).

The aim of this paper is to prove the existence of solutions continuously de-
pending on a parameter for the problem (1.1). Our result may be interpreted as
a continuous variant of the celebrated Filippov’s theorem [8] for problem (1.1).
In addition, as usual at a Filippov existence type theorem, our result provides an
estimate between the starting ”quasi” solution and the solution of the differential
inclusion. At the same time we obtain a continuous selection of the solution set of
problem (1.1)

The key tool in the proof of our theorem is a result of Bressan and Colombo
[2] concerning the existence of continuous selections of lower semicontinuous mul-
tifunctions with decomposable values. The proof follows the general ideas as in
[1, 3, 4, 7, 10], where similar results are obtained for other classes of differential
inclusions.

The paper is organized as follows: in Section 2 we present the notations, defini-
tions and the preliminary results to be used in the sequel and in Section 3 we prove
our results.
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2. Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue mea-
surable subsets of I. Let X be a real separable Banach space with the norm | · |.
Denote by P(X) the family of all nonempty subsets of X and by B(X) the family
of all Borel subsets of X. If A ⊂ I then χA : I → {0, 1} denotes the characteristic
function of A. For any subset A ⊂ X we denote by cl(A) the closure of A.

As usual, we denote by C(I,X) the Banach space of all continuous functions
x : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,X) the
Banach space of all (Bochner) integrable functions x(.) : I → X endowed with the
norm |x(.)|1 =

∫ T

0
|x(t)|dt.

We recall first several preliminary results we shall use in the sequel.

Lemma 2.1 ([11]). Let u : I → X be measurable and let G : I → P(X) be a
measurable closed-valued multifunction. Then, for every measurable function r :
I → (0,∞), there exists a measurable selection g : I → X of G(·) (i.e. such that
g(t) ∈ G(t) a.e. (I)) such that

|u(t)− g(t)| < d(u(t), G(t)) + r(t) a.e. in (I),

where the distance between a point x ∈ X and a subset A ⊂ X is defined as usual
by d(x,A) = inf{|x− a| : a ∈ A}.

Definition 2.2. A subset D ⊂ L1(I,X) is said to be decomposable if for any
u(·), v(·) ∈ D and any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.
We denote by D(I,X) the family of all decomposable closed subsets of L1(I,X).

Next (S, d) is a separable metric space; we recall that a multifunction G(·) : S →
P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C ⊂ X,
the subset {s ∈ S;G(s) ⊂ C} is closed.

Lemma 2.3 ([2]). Let F ∗ : I×S → P(X) be a closed-valued L(I)⊗B(S)-measurable
multifunction such that F ∗(t, .) is l.s.c. for any t ∈ I. Then the multifunction
G : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X) : v(t) ∈ F ∗(t, s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
q : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ q(s)(t) a.e. in (I), ∀s ∈ S.

Lemma 2.4 ([2]). Let G(.) : S → D(I,X) be a l.s.c. multifunction with closed
decomposable values and let φ(.) : S → L1(I,X), ψ : S → L1(I,R) be continuous
such that the multifunction H : S → D(I,X) defined by

H(s) = cl{v ∈ G(s) : |v(t)− φ(s)(t)| < ψ(s)(t) a. e. (I)}

has nonempty values. Then H(.) has a continuous selection, i.e. there exists a
continuous mapping h : S → L1(I,X) such that

h(s) ∈ H(s) ∀s ∈ S.

Consider F : I ×X → P(X) a set-valued map, x0, x1 ∈ X and p : I → (0,∞) a
continuous mapping that defined the Cauchy problem (1.1).
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A continuous mapping x ∈ C(I,X) is called a solution of problem (1.1) if there
exists a (Bochner) integrable function f ∈ L1(I,X) such that:

f(t) ∈ F (t, x(t)) a.e. (I), (2.1)

x(t) = x0 + p(0)x1

∫ t

0

1
p(s)

ds+
∫ t

0

1
p(s)

∫ s

0

f(u)du ds ∀t ∈ I. (2.2)

Note that, if we denote G(t) :=
∫ t

0
1

p(s) , t ∈ I, then (2.2) may be rewrite as

x(t) = x0 + p(0)x1G(t) +
∫ t

0

G(t− u)f(u)du ∀t ∈ I, (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if (2.1) and (2.2) are
satisfied.

We shall use the following notation for the solution sets of (1.1).

S(x0, x1) = {x : x is a solution of (1.1)}. (2.4)

3. The main results

To establish our continuous version of Filippov theorem for problem (1.1) we
need the following hypotheses.

Hypothesis 3.1. (i) F : I × X → P(X) has nonempty closed values and is
L(I)⊗ B(X) measurable.

(ii) There exists L(.) ∈ L1(I,R+) such that, for almost all t ∈ I, F (t, .) is
L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ X,
where dH(., .) is the Hausdorff distance

d(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}

Hypothesis 3.2. (i) S is a separable metric space and a, b : S → X, c(.) :
S → (0,∞) are continuous mappings.

(ii) There exists the continuous mappings g(.), q(.) : S → L1(I,X), y : S →
C(I,X) such that

(p(t)(y(s))′(t))′ = g(s)(t) ∀s ∈ S, t ∈ I,
d(g(s)(t), F (t, y(s)(t)) ≤ q(s)(t) a.e. (I), ∀ s ∈ S.

Let M := supt∈I
1

p(t) . Note that |G(t)| ≤ Mt for all t ∈ I. For the next result,

we use the following notation: m(t) =
∫ t

0
L(u)du and

ξ(s)(t) = eMTm(t)
(
tMTc(s) + |a(s)− y(s)(0)|+MTp(0)|b(s)− (y(s))′(0)|

)
+MT

∫ t

0

q(s)(u)eMT (m(t)−m(u))du.

(3.1)

Theorem 3.3. Assume that Hypotheses 3.1 and 3.2 are satisfied. Then there exist
the continuous mappings x : S → C(I,X), f : S → L1(I,X) such that for any
s ∈ S, (x(s)(.), f(s)(.)) is a trajectory-selection pair of

(p(t)x′(t))′ ∈ F (t, x(t)), x(0) = a(s), x′(0) = b(s)
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and

|x(s)(t)− y(s)(t)| ≤ ξ(s)(t) ∀(t, s) ∈ I × S, (3.2)

|f(s)(t)− g(s)(t)| ≤ L(t)ξ(s)(t) + q(s)(t) + c(s) a.e. (I), ∀s ∈ S. (3.3)

Proof. We make the following notations εn(s) = c(s)n+1
n+2 , n = 0, 1, ..., d(s) =

|a(s)− y(s)(0)|+MTp(0)|b(s)− (y(s))′(0)|,

qn(s)(t) = (MT )n

∫ t

0

q(s)(u)
(m(t)−m(u))n−1

(n− 1)!
du

+ (MT )(n−1) (m(t))n−1

(n− 1)!
(MTtεn(s) + d(s)), n ≥ 1.

Set also x0(s)(t) = y(s)(t), ∀s ∈ S.
We consider the multifunctions G0(.),H0(.) defined, respectively, by

G0(s) = {v ∈ L1(I,X) : v(t) ∈ F (t, y(s)(t)) a.e. (I)},
H0(s) = cl{v ∈ G0(s) : |v(t)− g(s)(t)| < q(s)(t) + ε0(s)}.

Since d(g(s)(t), F (t, y(s)(t)) ≤ q(s)(t) < q(s)(t)+ε0(s), according with Lemma 2.1,
the set H0(s) is not empty.

Set F ∗
0 (t, s) = F (t, y(s)(t)) and note that

d(0, F ∗
0 (t, s)) ≤ |g(s)(t)|+ q(s)(t) = q∗(s)(t)

and q∗(.) : S → L1(I,X) is continuous.
Applying now Lemmas 2.3 and 2.4 we obtain the existence of a continuous se-

lection f0 of H0, i.e. such that

f0(s)(t) ∈ F (t, y(s)(t)) a.e. (I), ∀s ∈ S,
|f0(s)(t)− g(s)(t)| ≤ q0(s)(t) = q(s)(t) + ε0(s) ∀s ∈ S, t ∈ I.

We define x1(s)(t) = a(s) + p(0)G(t)b(s) +
∫ t

0
G(t− u)f0(s)(u)du and one has

|x1(s)(t)− x0(s)(t)|

≤ |a(s)− y(s)(0)|+MTp(0)|b(s)− (y(s))′(0)|+MT

∫ t

0

|f0(s)(u)− g(s)(u)|du

≤ d(s) +MT

∫ t

0

q0(s)(u)(u)du+MTtε0(s) ≤ q1(s)(t).

We shall construct, using the same idea as in [7], two sequences of approximations
fn : S → L1(I,X), xn : S → C(I,X) with the following properties

(a) fn(.) : S → L1(I,X), xn(.) : S → C(I,X) are continuous.
(b) fn(s)(t) ∈ F (t, xn(s)(t)), a.e. (I), s ∈ S.
(c) |fn(s)(t)− fn−1(s)(t)| ≤ L(t)qn(s)(t), a.e. (I), s ∈ S.
(d) xn+1(s)(t) = a(s) + p(0)G(t)b(s) +

∫ t

0
G(t− u)fn(s)(u)du, ∀t ∈ I, s ∈ S.
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Suppose we have already constructed fi(.), xi(.) satisfying (a)-(c) and define xn+1(.)
as in (d). From (c) and (d) one has

|xn+1(s)(t)− xn(s)(t)|

≤MT

∫ t

0

|fn(s)(u)− fn−1(s)(u)|du

≤MT

∫ t

0

L(u)qn(s)(u)du

= (MT )n+1

∫ t

0

q(s)(u)
(m(t)−m(u))n

n)!
du+ (MT )n (m(t))n

n!
(MTtεn(s) + d(s))

< qn+1(s)(t).
(3.4)

On the other hand,

d(fn(s)(t), F (t, xn+1(s)(t)) ≤ L(t)|xn+1(s)(t)− xn(s)(t)| < L(t)qn+1(s)(t). (3.5)

Consider the following multifunctions for any s ∈ S

Gn+1(s) = {v ∈ L1(I,X) : v(t) ∈ F (t, xn+1(s)(t)) a.e. (I)},
Hn+1(s) = cl{v ∈ Gn+1(s) : |v(t)− fn(s)(t)| < L(t)qn+1(s)(t) a.e. (I)}.

To prove that Hn+1(s) is nonempty we note first that the real function t →
rn(s)(t) = c(s) (MT )n+1tL(t)(m(t))n

(n+2)(n+3)n! is measurable and strictly positive for any s.
Using (3.5) we get

d(fn(s)(t), F (t, xn+1(s)(t)) ≤ L(t)|xn+1(s)(t)− xn(s)(t)| − rn(s)(t)

≤ L(t)qn+1(s)(t)

and therefore according to Lemma 2.1 there exists v ∈ L1(I,X) such that v(t) ∈
F (t, xn(s)(t)) a.e. (I) and

|v(t)− fn(s)(t)| < d(fn(s)(t), F (t, xn(s)(t)) + rn(s)(t)

and hence Hn+1(s) is not empty.
Set F ∗

n+1(t, s) = F (t, xn+1(s)(t)) and note that we may write

d(0, F ∗
n+1(t, s)) ≤ L(t)|xn+1(s)(t)− xn(s)(t)|

≤ |fn(s)(t)|+ L(t)qn+1(s)(t)

= q∗n+1(s)(t) a.e. (I)

and p∗n+1 : S → L1(I,X) is continuous.
By Lemmas 2.3 and 2.4 there exists a continuous map fn+1 : S → L1(I,X) such

that

fn+1(s)(t) ∈ F (t, xn+1(s)(t)) a.e. (I),∀s ∈ S,
|fn+1(s)(t)− fn(s)(t)| ≤ L(t)qn+1(s)(t) a.e. (I),∀s ∈ S.

From (3.4) and (d) we obtain

|xn+1(s)(.)− xn(s)(.)|C ≤MT |fn+1(s)(.)− fn(s)(.)|1

≤ (MTm(T ))n

n!
(MT |q(s)(.)|1 +MT 2c(s) + d(s)).

(3.6)
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Therefore fn(s)(.), xn(s)(.) are Cauchy sequences in the Banach space L1(I,X)
and C(I,X), respectively. Let f(.) : S → L1(I,X), x(.) : S → C(I,X) be their
limits. The function s → MT |q(s)(.)|1 + MT 2c(s) + d(s) is continuous, hence
locally bounded. Therefore (3.6) implies that for every s′ ∈ S the sequence fn(s′)(.)
satisfies the Cauchy condition uniformly with respect to s′ on some neighborhood
of s. Hence, s→ f(s)(.) is continuous from S into L1(I,X).

From (3.6), as before, xn(s)(.) is Cauchy in C(I,X) locally uniformly with re-
spect to s. So, s→ x(s)(.) is continuous from S into C(I,X). On the other hand,
since xn(s)(.) converges uniformly to x(s)(.) and

d(fn(s)(t), F (t, x(s)(t)) ≤ L(t)|fn(s)(t)− x(s)(t)| a.e. (I), ∀s ∈ S

passing to the limit along a subsequence of fn(.) converging pointwise to f(.) we
obtain

f(s)(t) ∈ F (t, x(s)(t)) a.e. (I), ∀s ∈ S.

Passing to the limit in d) we obtain

x(s)(t) = a(s) + p(0)G(t)b(s) +
∫ t

0

G(t− u)f(s)(u)du.

By adding inequalities (c) for all n and using the fact that
∑

i≥1 qi(s)(t) ≤ ξ(s)(t)
we obtain

|fn+1(s)(t)− g(s)(t)| ≤
n∑

l=0

|fl+1(s)(u)− fl(s)(u)|+ |f0(s)(t)− g(s)(t)|

≤
n∑

l=0

L(t)ql+1(s)(t) + q(s)(t) + ε0(s)

≤ L(t)ξ(s)(t) + q(s)(t) + c(s).

(3.7)

Similarly, by adding (3.4) we get

|xn+1(s)(t)− y(s)(t)| ≤
n∑

l=0

ql(s)(t) ≤ ξ(s)(t). (3.8)

By passing to the limit in (3.7) and (3.8) we obtain (3.2) and (3.3), respectively.
Theorem 3.3 allows to obtain the next corollary which is a general result con-

cerning continuous selections of the solution set of problem (1.1).

Hypothesis 3.4. Hypothesis 3.1 is satisfied and there exists q0 ∈ L1(I,R+) such
that d(0, F (t, 0)) ≤ q0(t) a.e. (I).

Theorem 3.5. Assume that Hypothesis 3.4 are satisfied. Then there exists a func-
tion x : I ×X2 → X such that

(a) x(., (ξ, η)) ∈ S(ξ, η), ∀(ξ, η) ∈ X2.
(b) (ξ, η) → x(., (ξ, η)) is continuous from X2 into C(I,X).

Proof. We take S = X × X, a(ξ, η) = ξ, b(ξ, η) = η for all (ξ, η) ∈ X × X,
c : X ×X → (0,∞) an arbitrary continuous function, g(.) = 0, y = 0, q(ξ, η)(t) =
q0(t) ∀(ξ, η) ∈ X × X, t ∈ I and we apply Theorem 3.3 in order to obtain the
conclusion of the theorem. �
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