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CONTINUOUS VERSION OF FILIPPOV’S THEOREM FOR A
STURM-LIOUVILLE TYPE DIFFERENTIAL INCLUSION

AURELIAN CERNEA

ABSTRACT. Using Bressan-Colombo results, concerning the existence of con-
tinuous selections of lower semicontinuous multifunctions with decomposable
values, we prove a continuous version of Filippov’s theorem for a Sturm-
Liuoville differential inclusion. This result allows to obtain a continuous selec-
tion of the solution set of the problem considered.

1. INTRODUCTION

In this paper we study second-order differential inclusions of the form
(p(t)2' (1)) € F(t,z(t)) a.e. in[0,T]), x(0) =z, 2'(0)=a, (1.1)

where F': [0,7] x X — P(X) is a set-valued map, X is a separable Banach space,
xo, 21 € X and p: [0,T] — (0, 00) is continuous.

In some recent papers [6, @] several existence results for problem are ob-
tained using fixed point techniques. In [5] it is shown that Filippov’s ideas [§] can
be suitably adapted in order to prove the existence of mild solutions to problem
().

The aim of this paper is to prove the existence of solutions continuously de-
pending on a parameter for the problem . Our result may be interpreted as
a continuous variant of the celebrated Filippov’s theorem [8] for problem (L.I).
In addition, as usual at a Filippov existence type theorem, our result provides an
estimate between the starting ”quasi” solution and the solution of the differential
inclusion. At the same time we obtain a continuous selection of the solution set of
problem

The key tool in the proof of our theorem is a result of Bressan and Colombo
[2] concerning the existence of continuous selections of lower semicontinuous mul-
tifunctions with decomposable values. The proof follows the general ideas as in
[1 3[4, [7, [10], where similar results are obtained for other classes of differential
inclusions.

The paper is organized as follows: in Section 2 we present the notations, defini-
tions and the preliminary results to be used in the sequel and in Section 3 we prove
our results.
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2. PRELIMINARIES

Let T > 0, I := [0,T] and denote by £(I) the o-algebra of all Lebesgue mea-
surable subsets of I. Let X be a real separable Banach space with the norm | - |.
Denote by P(X) the family of all nonempty subsets of X and by B(X) the family
of all Borel subsets of X. If A C I then x4 : I — {0,1} denotes the characteristic
function of A. For any subset A C X we denote by cl(A) the closure of A.

As usual, we denote by C(I,X) the Banach space of all continuous functions
z : I — X endowed with the norm |z(.)|¢ = sup,c;|z(t)| and by L'(I,X) the
Banach space of all (Bochner) integrable functions z(.) : I — X endowed with the

T
norm |z(.)|y = [y |=(t)|dt.
We recall first several preliminary results we shall use in the sequel.

Lemma 2.1 ([II]). Let u : I — X be measurable and let G : I — P(X) be a
measurable closed-valued multifunction. Then, for every measurable function r :

I — (0,00), there exists a measurable selection g : I — X of G(-) (i.e. such that
g(t) € G(t) a.e. (1)) such that

lu(t) — g(t)] < d(u(t),G(t)) +r(t) a.e in (I),
where the distance between a point x € X and a subset A C X is defined as usual
by d(z, A) = inf{|z — a| : a € A}.

Definition 2.2. A subset D C L'(I,X) is said to be decomposable if for any
u(-),v(-) € D and any subset A € £(I) one has uxa + vxp € D, where B = I'\ A.
We denote by D(I, X) the family of all decomposable closed subsets of L(I, X).

Next (5, d) is a separable metric space; we recall that a multifunction G(-) : § —
P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C' C X,
the subset {s € S;G(s) C C} is closed.

Lemma 2.3 ([2]). Let F* : IxS — P(X) be a closed-valued L(I)®@B(S)-measurable
multifunction such that F*(t,.) is l.s.c. for any t € I. Then the multifunction
G:S—D(I,X) defined by

G(s) ={ve LI, X):v(t) € F*(t,s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
q:S — LY(I,X) such that

d(0, F*(t,s)) <q(s)(t) a.e. in(I), Vs € S.

Lemma 2.4 ([2]). Let G(.) : S — D(I,X) be a ls.c. multifunction with closed
decomposable values and let ¢(.) : S — LY(I,X), ¢ : S — L*(I,R) be continuous
such that the multifunction H : S — D(I, X) defined by

H(s) =cl{v e G(s) : |v(t) — ¢(s)(¥)] < ¥(s)(t) a. e. (I)}

has nonempty values. Then H(.) has a continuous selection, i.e. there exists a
continuous mapping h : S — LY(I,X) such that

h(s) € H(s) Vse€S.

Consider F': I x X — P(X) a set-valued map, xg,z1 € X and p: I — (0,00) a
continuous mapping that defined the Cauchy problem (L.1J).
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A continuous mapping x € C(I, X) is called a solution of problem (1.1]) if there
exists a (Bochner) integrable function f € L!(I, X) such that:

f(t) € F(t,z(t)) ae. (I), (2.1)
z(t) = o —I—p(O)J:l/O }%s)ds + L/ fu)duds Vtel. (2.2)

Note that, if we denote G(t) := f t € I, then may be rewrite as

(S)7
x(t) = xo + p(0)x1G(t) / Gt —w)f(u)du Vtel, (2.3)

We shall call (z(.), f(.)) a trajectory-selection pair of if [2.1) and (2.2) are
satisfied.

We shall use the following notation for the solution sets of (1.1)).
S(zg,21) = {z : x is a solution of (1.1)}. (2.4)

3. THE MAIN RESULTS

To establish our continuous version of Filippov theorem for problem (1.1)) we
need the following hypotheses.

Hypothesis 3.1. (i) F: I x X — P(X) has nonempty closed values and is
L(I) @ B(X) measurable.
(ii) There exists L(.) € L'(I,R;) such that, for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

du(F(t ), F(t,y)) < L)z —y| Yo,y € X,
where dg (., .) is the Hausdorff distance
d(A, B) = max{d*(A, B),d"(B,A)}, d"(A,B)=sup{d(a,B);a € A}

Hypothesis 3.2. (i) S is a separable metric space and a,b: S — X, ¢(.) :
S — (0,00) are continuous mappings.
(ii) There exists the continuous mappings g(.),q(.) : S — LY(I,X), y : S —
C(I,X) such that

(P()(y(s))' (1) = g(s)(t) Vse S tel,
d(g(s)(t), F(t,y(s)(t)) < q(s)(t) a.e. (I),VseS.
Let M := sup;¢; (t) Note that \G( )] < Mt for all ¢t € I. For the next result,

we use the following notation: m(t fo u)du and
£(5)(t) = T (1M Te(s) + Jals) — y(s)(0)] + MTp(0)[b(s) ~ (y(s))'(0)])

¢
+MT/ q(s)(u)eMTm®=mw) gy,
0
(3.1)

Theorem 3.3. Assume that Hypotheses 3.1 and 3.2 are satisfied. Then there exist
the continuous mappings x : S — C(I,X), f : S — LY(I,X) such that for any
se S, (x(s)), f(s)() is a trajectory-selection pair of

(p()a'(t))" € F(t,2(t), (0) =a(s), 2'(0)=b(s)
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and

E(s)(t) V(t,s)eIx S, (3.2)
q(s)(t) +c(s) ae (I),VseS. (3.3)

Proof. We make the following notations e,(s) = ¢(s)2, n = 0,1, ..., d(s) =
la(s) — y(s)(0)] + MT'p(0)|b(s) — (y(s5))'(0)],

— ()"

n—1)! du

e [ ()
4 (3)(t) = (MT) / afe) ) 5

+ (MT)(”I)%(MT%”(S) +d(s)), n>1.

Set also zo(s)(t) = y(s)(t), Vs € S.
We consider the multifunctions G(.), Ho(.) defined, respectively, by

Go(s) ={v e LYI,X) :v(t) € F(t,y(s)(t)) ae. (I)},
Ho(s) = cl{v € Go(s) : [v(t) = g(s)(t)] < q(s)(t) +€0(s)}-

Since d(g(s)(t), F(t,y(s)(t)) < q(s)(t) < q(s)(t)+¢eo(s), according with Lemmal[2.1]
the set Hy(s) is not empty.

Set F(t,s) = F(t,y(s)(t)) and note that

d(0, Fg (2, 5)) < 1g9(s)(t)| + a(s)(t) = ¢"(s)(t)

and ¢*(.) : S — LY(I,X) is continuous.
Applying now Lemmas and [2.4] we obtain the existence of a continuous se-
lection fy of Hy, i.e. such that

fo(s)(t) € F(t,y(s)(1))
t t) =

a.e.(I), Vs € S,
[fo(8)(t) —g(s)()] < qo(s)(t) = q(s)(t) + €0

(5) VseS, tel
We define a1 (s)(t) = a(s) + p(0)G()b(s) + [ G(t —u) fo(s)(u)du and one has
|z1(s)(t) = zo(s)(1)]

< la(s) — y(s)(0)] + MTp(0)[b(s) — (y(s))"(0)| + MT /Ot | fo(s)(u) — g(s)(u)|du

<d(s)+ MT/O qo(s)(w)(u)du + MTteo(s) < q1(s)(t).

We shall construct, using the same idea as in [7], two sequences of approximations
fn:S— LYI,X), z,:S — C(I, X) with the following properties

(a) fu(): S—>L1(I X), zp(.) : S — C(I,X) are continuous.
(b) fu(s)(t) € F(t, xn(s)(1)), ae. (I), s € S.

(©) [fa(s)(t) = faa(s)(t <L() ()(t)ae (1), s €S.

) 0)G

t
)
(d) Zas1()(1) = als) + pO)G(E)b(s) + [ G(t — ) fu(s)(u)du, V2 € 1,5 € .
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Suppose we have already constructed f;(.), z;(.) satisfying (a)-(c) and define z,,41(.)
as in (d). From (c) and (d) one has

e (5)(E) — 2 (3)(0)
< MT / () () = Fat () (w)ldu

< M7 [ L, () )

oyt [ ) = m
— (MT) / () () LD = )"
< gn+1 (3)(t)

On the other hand,
d(fn(s)(t), F(t, 2n41(s)(t)) < L(t)|@n11(5)(t) — 2n(s)(t)| < L(t)qn+1(s)(¢). (3.5)

Consider the following multifunctions for any s € S
Gri1(s) ={ve LI, X) :v(t) € F(t,zn1(s)(t)) ae. (1)},
Hyy1(s) = cl{v € Gnia(s) « [o(t) = fu(s) ()] < L(t)gn+1(s)(t) a-e. (I)}.
To prove that H,;1(s) is nonempty we note first that the real function ¢ —
ra(8)(t) = c(s) (MT)" P L () (m()"

(n+2)(n+3)n!
Using (3.5) we get

d(fu(5)(t), F(t 2nt1(5) (1)) < L(B)[2nt1(s)(t) = 2als) ()] = rals)(t)
< L(t)gn+1(s)(t)
and therefore according to Lemma there exists v € L'(I, X) such that v(t) €
F(t,zn(s)(t)) a.e. (I) and
[0(t) = fu(s) ()] < d(fn(s)(E), F (8 2n(s)(8)) + rals)(t)

and hence H,,11(s) is not empty.
Set Fr 1 (t,s) = F'(t,rn11(s)(t)) and note that we may write

(0, Fyiy1 (t,8)) < L(8)][ent1(s)(t) — 2n(s)(1)]
< [fn(8) (O] + L) gnia(s)(1)
= G (s)(t) ae ()

and p}, ., : S — L'(I, X) is continuous.

By Lemmas [2.3| and [2.4| there exists a continuous map f,41 : S — L'(I, X) such
that

is measurable and strictly positive for any s.

fat1(8)(t) € F(t,xpni1(s)(t)) ae. (I),Vs e S,
| fatr1(8)(#) = fu(s)®)] < L) gni1(s)(t) a.e.(I),Vs € S.
From and (d) we obtain
[Zn41(s)() = 2n(s) (e < MT[fnia(s)() = fuls) ()l
m 3.6
< QITMEN 3 pyg(e) s+ MT2ee) + ).
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Therefore f,,(s)(.), x,(s)(.) are Cauchy sequences in the Banach space L'(I, X)
and C(I, X), respectively. Let f(.): S — L'(I,X), z(.) : S — C(I,X) be their
limits. The function s — MT|q(s)(.)|1 + MT?c(s) + d(s) is continuous, hence
locally bounded. Therefore implies that for every s’ € S the sequence f,,(s')(.)
satisfies the Cauchy condition uniformly with respect to s’ on some neighborhood
of s. Hence, s — f(s)(.) is continuous from S into L*(I, X).

From (B.6), as before, z,,(s)(.) is Cauchy in C(I, X) locally uniformly with re-
spect to s. So, s — x(s)(.) is continuous from S into C'(I, X). On the other hand,
since 2, (s)(.) converges uniformly to x(s)(.) and

d(fn(8) (), F(t,2(5) (1)) < L(B)[ fn(s)(t) = 2(s)(t)|  a.e. (1), Vs € S

passing to the limit along a subsequence of f,(.) converging pointwise to f(.) we
obtain

f(s)(t) € F(t,z(s)(t)) a.e. (I),VseS.
Passing to the limit in d) we obtain

z(s)(t) = a(s) + p(0)G(t)b(s) + /0 Gt —u)f(s)(u)du.

By adding inequalities (c) for all n and using the fact that Y., ¢:(s)(t) < &(s)(t)
we obtain -

[far1(8)(8) = g(8) ()] < D 1 fira () (w) = fuls)(w)] + | fo(s)(t) — 9(s)(t)]
=0

n .7
<D L@ (s)(t) + () (1) + eo(s) G0
1=0
< L(t)E(s)(t) + a(s)(t) + c(s).
Similarly, by adding we get
[2nr1(5)(8) = y()()] < D auls)(t) < E()(D). (3.8)
1=0

By passing to the limit in (3.7) and (3.8]) we obtain (3.2)) and (3.3)), respectively.

Theorem allows to obtain the next corollary which is a general result con-
cerning continuous selections of the solution set of problem (|1.1]).

Hypothesis 3.4. Hypothesis is satisfied and there exists qo € L'(I,R,) such
that d(0, F'(¢,0)) < qo(¢) a.e. (I).

Theorem 3.5. Assume that Hypothesis[3.4) are satisfied. Then there exists a func-
tion x : I x X% — X such that

(a) z(., (& m) € S(&,m), V(& n) € X2
(b) (&,m) — x(., (&,n)) is continuous from X2 into C(I,X).

Proof. We take S = X x X, a(&,n) = &, b(&,n) = n for all (§,7) € X x X,
¢: X x X — (0,00) an arbitrary continuous function, g(.) =0, y =0, q(§,n)(t) =
qo(t) V(&,m) € X x X, t € I and we apply Theorem in order to obtain the
conclusion of the theorem. (]
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