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LIAPUNOV EXPONENTS FOR HIGHER-ORDER LINEAR
DIFFERENTIAL EQUATIONS WHOSE CHARACTERISTIC

EQUATIONS HAVE VARIABLE REAL ROOTS

MICHAEL I. GIL’

Abstract. We consider the linear differential equation
nX

k=0

ak(t)x(n−k)(t) = 0 t ≥ 0, n ≥ 2,

where a0(t) ≡ 1, ak(t) are continuous bounded functions. Assuming that all

the roots of the polynomial zn + a1(t)zn−1 + · · · + an(t) are real and satisfy
the inequality rk(t) < γ for t ≥ 0 and k = 1, . . . , n, we prove that the solutions

of the above equation satisfy |x(t)| ≤ const eγt for t ≥ 0.

1. Introduction and statement of the main result

Consider the scalar equation
n∑

k=0

ak(t)Dn−kx(t) = 0, t > 0, (1.1)

where Dkx(t) := dkx(t)
dtk , a0(t) ≡ 1, and ak(t) are continuous functions defined and

bounded on [0,∞) for k = 1, . . . , n. As initial conditions, we have

x(k)(0) = x0k (x0k ∈ R; k = 0, . . . , n− 1). (1.2)

A solution of problem (1.1)–(1.2) is a function x(t) having continuous derivatives
up to order n and satisfying (1.1) and (1.2) for all t > 0. Put

P (z, t) =
n∑

k=0

ak(t)zn−k (z ∈ C).

Levin [12, Section 5] proved the following result, among other remarkable results:
Suppose that the roots r1(t), . . . , rn(t) of P (z, t) for each t ≥ 0 are real and satisfy

ν0 ≤ r1(t) < ν1 ≤ r2(t) < ν2 ≤ · · · < νn−1 ≤ rn(t) ≤ γ (t ≥ 0), (1.3)
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where νj (j = 0, . . . , n − 1) and γ are constants. Then any solution x(t) of (1.1)
satisfies the inequality

|x(t)| ≤ const eγt (t ≥ 0). (1.4)
This result is very useful for various applications, see for instance [6, 7, 13] and
references therein. The aim of this paper is to prove the following theorem.

Theorem 1.1. Assume that all the roots rk(t) of polynomial P (z, t) for each t ≥ 0
are real and

rk(t) < γ (t ≥ 0; k = 1, . . . , n) (1.5)
with a constant γ < ∞. Then any solution x(t) of (1.1) satisfies inequality (1.4).

This theorem is proved in the next section. Condition (1.5) is weaker than (1.3),
since (1.3) does not allow the roots to intersect.

Theorem 1.1 supplements the very interesting recent investigations of asymptotic
behavior of solutions of differential equations, cf. [1, 4, 3, 9, 11, 15].

Clearly, Theorem 1.1 gives us the exponential stability conditions. Note that
the problem of stability analysis of various linear differential equations continues to
attract the attention of many specialists despite its long history [5, 8, 10, 14, 16].
It is still one of the most burning problems of the theory of differential equations.
The basic method for the stability analysis of differential equations is the direct Li-
apunov method. By this method many very strong results are obtained, but finding
Liapunov’s functions is often connected with serious mathematical difficulties. At
the same time, Theorem 1.1, gives us the exact explicit stability conditions.

2. Proof of Theorem 1.1

Put R+ := [0,∞) and denote by C(R+) the Banach space of functions continuous
and bounded on R+ with the sup norm ‖ · ‖. Let us consider the nonhomogeneous
equation

n∑
k=0

ak(t)Dn−kv(t) = f(t), t > 0, (2.1)

where f ∈ C(R+) and with the zero initial conditions

v(k)(0) = 0 (k = 0, 1, . . . , n− 1). (2.2)

Introduce the set

Dom(L) := {w ∈ C(R+) : w(k) ∈ C(R+), w(k)(0) = 0 (k = 0, 1, . . . , n− 1)}.

Lemma 2.1. Under the hypothesis of Theorem 1.1, with γ < 0, problem (2.1)–(2.2)
has a unique solution v ∈ Dom(L). Moreover,

‖v‖ ≤ ‖f‖
|γ|n

.

Proof. For w in Dom(L), define the operator

Lw(t) := P (t,D)w =
n∑

k=0

ak(t)Dn−kw(t).

So that (2.1) can be written as Lv(t) = f(t). Since the coefficients of equation (2.1)
are bounded, the roots of P (z, t) are bounded on R+. Thus,

rk(t) ≥ −α (t ≥ 0; k = 1, 2, . . . , n)
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for a finite positive number α. On Dom(L) also define the operator L0 by

L0f(t) := (D + α)nf(t) = (
d

dt
+ α)nf(t).

Then the inverses to L and L0 satisfy the relations

L−1 = L−1
0 L0L

−1 = L−1
0 (LL−1

0 )−1. (2.3)

Below we check that L0 and LL−1
0 are really invertible. By the Laplace transform

for any y ∈ C(R+) we have

L−1
0 y(t) =

1
2πi

∫ i∞

−i∞

eλtỹ(λ)
(λ + α)n

dλ

where ỹ is the Laplace transform of y. So

f0(t) := (LL−1
0 y)(t) =

1
2πi

∫ i∞

−i∞

eλtP (λ, t)ỹ(λ)dλ

(λ + α)n
.

Hence,

f0(t) =
1

2πi

∫ i∞

−i∞
eλtỹ(λ)

n∏
k=1

λ− rk(t)
λ + α

dλ.

Put

F (t, ν) =
1

2πi

∫ i∞

−i∞
eλtỹ(λ)

n∏
k=1

λ− rk(ν)
λ + α

dλ (t, ν ≥ 0).

Thus F (t, t) = f0(t). We can write out

F (t, ν) =
1

2πi

∫ i∞

−i∞
eλtỹ1(λ, ν)

λ− r1(ν)
λ + α

dλ

where

ỹj(λ, ν) :=
n∏

k=j+1

λ− rk(ν)
λ + α

ỹ(λ) = ỹj+1(λ, ν)
λ− rj+1(ν)

λ + α

where j < n, and ỹn(λ, ν) ≡ ỹ(λ). So

ỹj(λ, ν) = ỹj+1(λ, ν)
(
1− α + rj+1(ν)

λ + α

)
.

Let yj(t, ν) (j < n) be the Laplace original of ỹj(λ, ν) with respect to λ. Then by
the convolution property,

F (t, ν) = y1(t, ν)− (α + r1(t))
∫ t

0

e−α(t−s)y1(s, ν)ds (2.4)

and

yj(t, ν) = yj+1(t, ν)− (α + rj+1(ν))
∫ t

0

e−α(t−s)yj+1(s, ν)ds (2.5)

for j = 1, . . . , n− 1. Besides yn(t, ν) ≡ y(t). Put

β = −γ = |γ|.

Then −rj(ν) > β (ν ≥ 0) and

|yj(t, ν)| ≥ |yj+1(t, ν)| − (α− β)
∫ t

0

e−α(t−s)|yj+1(s, ν)|ds. (2.6)
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Thus, with the notation

ηj := sup
t≥0

|yj(t, t)| (j < n), ηn := sup
t≥0

|y(t)| = ‖y‖

we have

ηj+1 ≤ ηj + (α− β)ηj+1 sup
t≥0

∫ t

0

e−α(t−s)ds = ηj +
(α− β)ηj+1

α
.

Consequently,
ηj+1 ≤

α

β
ηj (j = 1, . . . , n− 1; n ≥ 2).

Thus taking into account that F (t, t) = f0(t), according to (2.4) and (2.5), we arrive
at

‖y‖ = ηn ≤
ηn−1α

β
≤ ηn−2α

2

β2
≤ · · · ≤ η1

αn−1

βn−1
≤ ‖f0‖

αn

βn
.

But LL−1
0 y = f0. Consequently, y = (LL−1

0 )−1f0 and we get the inequality
αn

βn
‖f0‖ ≥ ‖(LL−1

0 )−1f0‖

for an arbitrary f0 ∈ C(R+). So

‖(LL−1
0 )−1‖ ≤ αn

βn
. (2.7)

Furthermore, take into account that

L−1
0 y(t) =

1
2πi

∫ i∞

−i∞

eλtỹ(λ)
(λ + α)n

dλ =
∫ t

0

Q̃(t− s)y(s)ds (y ∈ C(R+)),

where

Q̃(t) =
1

2πi

∫ i∞

−i∞

eλt

(λ + α)n
dλ (n ≥ 2).

By the Cauchy formula for derivatives, we have

Q̃(t) =
tn−1

(n− 1)!
e−αt (t ≥ 0).

Hence,

‖L−1
0 y‖ = sup

t≥0
|
∫ t

0

Q̃(t− s)y(s)ds|

≤ ‖y‖ sup
t≥0

∫ t

0

(t− s)n−1

(n− 1)!
e−α(t−s)ds

= ‖y‖
∫ ∞

0

sn−1

(n− 1)!
e−αsds

= ‖y‖ 1
αn

(y ∈ C(R+)).

So
‖L−1

0 ‖ ≤ 1
αn

.

Now (2.3) and (2.7) imply

‖L−1‖ ≤ ‖L−1
0 ‖‖(LL−1

0 )−1‖ ≤ 1
βn

.
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Since β = |γ|, this proves the required result. �

Lemma 2.2. Under the hypothesis of Theorem 1.1 with γ < 0, a solution x(t) of
(1.1)–(1.2) satisfies the inequality

|x(t)| ≤ M2‖x̂0‖n (t ≥ 0).

where ‖x̂0‖n is an arbitrary norm of the initial vector x̂0 = (x00, . . . , x0n−1) and
the constant M2 does not depend on the initial vector.

Proof. Put

g(t) =
n−1∑
k=0

vktke−ct

with a positive c < |γ| and real constants vk, k ≥ 1, v0 = x00. Clearly

g′(t) =
n−1∑
k=0

vk(−ctk + ktk−1)e−ct, g′(0) = −v0c + v1,

g(j)(t) = e−ct
n−1∑
k=0

vk

j∑
l=0

Cl
j(−c)j−l k!

(k − l)!
tk−l (j = 2, . . . , n− 1)

where Ck
j are the binomial coefficients. So

g(j)(0) =
j∑

k=0

vkk!Ck
j (−c)j−k (j = 2, . . . , n− 1).

Then solving the recursion equation
j∑

k=0

vkk!Ck
j (−c)j−k = x0j

with respect to vk, we get

g(j)(0) = x0j (j = 0, . . . , n− 1).

Now put in (1.1) x(t) = v(t) + g(t). Then v is a solution of problem (2.1), (2.2)
with

f(t) = −P (D, t)g(t).
It is clear that all derivatives of g are bounded. Since ak(t) are bounded, simple
calculations show that ‖f‖ ≤ const ‖x̂0‖n. But by the previous lemma ‖v‖ ≤
const ‖f‖, and therefore,

‖x‖ ≤ ‖v‖+ ‖g‖ ≤ const ‖x̂0‖n,

as claimed. �

Proof of Theorem 1.1. In (1.1) put

x(t) = w(t) exp[bt] (2.8)

with a real constant b. Evidently,
n∑

k=0

an−k(t)Dkebtw = ebt
n∑

k=0

an−k(t)
k∑

j=0

Cj
kbk−jDjw = ebt

n∑
k=0

an−k(t)(D + b)kw.

So w satisfies the equation
P (D + b, t)w = 0. (2.9)
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Take b = γ + ε with a positive ε small enough. Under (1.4) the roots r̃j(t) of
P (z + b, t) satisfy the inequality r̃j(t) ≤ γ − b = −ε. The previous lemma asserts
that any solution w of equation (2.9) is bounded on R+. Now (2.8) proves the
theorem. �

References
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