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A NOTE ON LOCAL SMOOTHING EFFECTS FOR THE
UNITARY GROUP ASSOCIATED WITH THE KDV EQUATION

XAVIER CARVAJAL

Abstract. In this note we show interesting local smoothing effects for the
unitary group associated to Korteweg-de Vries type equation. Our main tools

are the Hardy-Littlewood-Sobolev and Hausdorff-Young inequalities. Using

our local smoothing effect and a dual version, we estimate the growth of the
norm of solutions of the complex modified KdV equation.

1. Introduction

In this note we describe some results on local smoothing effects for solutions of
the initial value problem (IVP)

∂tu + b∂3
xu = 0,

u(x, 0) = u0(x).
(1.1)

We define the unitary group U(t)u0 as the solution of the linear initial-value problem
(1.1), in this way

Û(t)u0(ξ) = eit(bξ3)û0(ξ). (1.2)

Kenig et al. [3] (see also [1] and [4]) proved the following local smoothing effect

‖∂xU(t′)u0‖L∞x L2
t
≤ ‖∂xU(t′)u0‖L∞x L2

t
≤ c‖u0‖L2 . (1.3)

They also proved that∥∥∂2
x

∫ t

0

U(t− t′)f(t′, x)dt′
∥∥

L∞x L2
t
≤ c‖f‖L1

xL2
t . (1.4)

In this work we obtain a local smoothing effect (Theorem 1.1), more general than
local smoothing effect (1.3). We also consider the IVP for the complex modified
Korteweg-de Vries type equation:

∂tu + b∂3
xu + γ∂x(|u|2u) = 0,

u(x, 0) = u0(x),
(1.5)

where u is a complex valued function and b, γ are real parameters with bγ 6= 0.
Using our local smoothing effect we also proved an interesting result on growth

norms (Theorem 1.2).
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The flow associated with (1.5) leads to the quantity

I1(u) =
∫

R
|u(x, t)|2dx, (1.6)

which is conserved in time. Also, when b ·γ 6= 0 we have the time invariant quantity

I2(u) = k1

∫
R
|∂xu(x, t)|2dx + k2

∫
R
|u(x, t)|4dx, (1.7)

where k1 = 3bγ and k2 = −3γ2/2. The main results in this work are stated as
follows.

Theorem 1.1. Let U(t)u0 be the solution of the linear problem associated to (1.1)
and let p ≥ 2 and 1/p + 1/q = 1.
If 2 < p < ∞ and 4/q − 2 < s < 1/q + 1 then

‖∂xU(t′)u0‖L∞x L
p
t
≤ cp,s(1 + t)1/p‖Dsu0‖Lq .

If p = 2 and 0 ≤ s < 3/2, then

‖∂xU(t′)u0‖L∞x L2
t
≤ cst

s/3‖Dsu0‖L2 . (1.8)

If p = ∞ and 3/2 < s, then

‖∂xU(t′)u0‖L∞x L∞t ≤ cs‖u0‖Hs . (1.9)

Theorem 1.2. Let u ∈ C(R,H2(R)) be solution of (1.5) and T > 0. Then for all
t ∈ (0, T ) there exist a function δ = δ(‖u‖L2

xL∞T , ‖u‖L∞T Ḣ1/4) such that

‖u(t)‖Ḣθ ≤ ‖u0‖Ḣθ + δt‖u0‖3L2 , (1.10)

where 0 ≤ θ ≤ 1.

The notation used here is standard in partial differential equations. We will use
the Lebesgue space-time Lp

xLq
τ endowed with the norm

‖f‖Lp
xLq

τ
=

∥∥‖f‖Lq
τ

∥∥
Lp

x
=

( ∫
R

( ∫ τ

0

|f(x, t)|qdt
)p/q

dx
)1/p

.

We will use the notation ‖f‖Lp
xLq

t
when the integration in the time variable is on

the whole real line. The notation ‖u‖Lp is used when there is no doubt about the
variable of integration.

2. Smoothing Local Effects

In this section we prove new smoothing local effects for the unitary group associ-
ated with the Korteweg-de Vries equation (Theorem 1.1), which will be fundamental
in the proof of Theorem 1.2.

Linear Estimates. The next lemma is a preliminary result to be used in the proof
of Theorem 1.2.

Lemma 2.1. Let u(x, t′) = U(t′)u0(x) be the solution of (1.1). We have the
maximal function estimates

‖U(t′)u0‖L4
xL∞t

≤ c‖D1/4u0‖L2 , (2.1)

and for s > 3/4 and ρ > 3/4

‖U(t′)u0‖L2
xL∞t ≤ c(1 + t)ρ‖u0‖Hs . (2.2)
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and ∥∥∂2
x

∫ t

0

U(t− t′)f(t′, x)dt′
∥∥

L∞x L2
τ
≤ c‖f‖L1

xL2
τ
. (2.3)

Proof. The proof of (2.1) and (2.2) can be found in [3]. To prove (2.3), let τ > 0
and g(t′, τ, x) = f(t′, x)χ[0,τ ](t′). Then∥∥∂2

x

∫ t

0

U(t− t′)f(t′, x)dt′
∥∥

L∞x L2
τ

=
∥∥( ∫ τ

0

∣∣∂2
x

∫ t

0

U(t− t′)g(t′, τ, x)dt′
∣∣2dt

)1/2∥∥
L∞x

≤
∥∥( ∫

R

∣∣∂2
x

∫ t

0

U(t− t′)g(t′, τ, x)dt′
∣∣2dt

)1/2∥∥
L∞x

=
∥∥∂2

x

∫ t

0

U(t− t′)g(t′, τ, x)dt′
∥∥

L∞x L2
t ,

and by inequality (1.4) we obtain (2.3). �

Proof of Theorem 1.1. Let ϕ ∈ C∞0 with ϕ(t′) = 1 in [−t, t], 0 ≤ ϕ(t′) ≤ 1 and
suppϕ ⊂ [−2t, 2t], then

‖∂xU(t′)u0‖L∞x L
p
t
≤ ‖ϕ(t′)∂xU(t′)u0‖L∞x Lp

t
.

Using duality, we consider g ∈ Lq, ‖g‖Lq = 1 and the expression

I(x, t) :=
∣∣ ∫

R
g(t′)ϕ(t′)∂xU(t′)u0dt′

∣∣.
Now using the change of variable t′ = −t′ we can assume that

I(x, t) :=
∣∣ ∫

R
g(t′)ϕ(t′)∂xU(−t′)u0dt′

∣∣.
Fubinni Theorem and the definition of group U(t), shows that

I(x, t) =
∣∣ ∫

R
g(t′)ϕ(t′)

∫
R

eixξ−iξ3t′iξû0(ξ)dξdt′
∣∣

=
∣∣ ∫

R
eixξξû0(ξ)

( ∫
R

g(t′)ϕ(t′)e−iξ3t′dt′
)
dξ

∣∣
=

∣∣ ∫
R

û0(ξ)ξeixξϕ̂g(ξ3)dξ
∣∣,

(2.4)

and by Plancherel’s equality, Hölder inequality and Hausdorff-Young inequality we
have

I(x, t) =
∣∣ ∫

R
|ξ|sû0(ξ)

ξeixξ

|ξ|s
ϕ̂g(ξ3)dξ

∣∣
=

∣∣ ∫
R

Dsu0(y)F
(ξeixξ

|ξ|s
ϕ̂g(ξ3)

)
(y)dy

∣∣
≤ ‖Dsu0‖Lq

∥∥F(ξeixξ

|ξ|s
ϕ̂g(ξ3)

)
(y)

∥∥
Lp

≤ ‖Dsu0‖Lq

∥∥ξeixξ

|ξ|s
ϕ̂g(ξ3)

∥∥
Lq .

(2.5)

Now, we make the change of variable y = ξ3 to obtain:∥∥∥ξeixξ

|ξ|s
ϕ̂g(ξ3)

∥∥∥q

Lq
=

1
3

∫
R

|ϕ̂g(y)|qdy

|y|α
, (2.6)
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where α = (2− (1− s)q)/3. Note that if p = q = 2 and s = 0, then α = 0, therefore
in this case

I(x, t) ≤ c‖u0‖L2‖ϕg‖L2 ≤ c‖u0‖L2‖g‖L2 = c‖u0‖L2 ,

and in this case we obtain (1.8).
If p = q = 2 and 0 < s < 3/2, then 0 < α = 2s/3 < 1, using properties of the

Fourier transform and the Hardy-Littlewood-Sobolev inequality it is not hard to
deduce the following string of inequalities∫

R

|ϕ̂g(y)|2

|y|2s/3
dy =

∫
R
|ϕ̂g(y)|2

∣∣ 1̂
|x|1−s/3

(y)
∣∣2dy

≤
∥∥(ϕg) ∗ 1

|x|1−s/3

∥∥2

L2

≤ cs‖ϕg‖2L6/(3+2s)

≤ cs‖ϕ‖2L3/s‖g‖2L2

≤ cst
2s/3‖g‖2L2 .

(2.7)

If p > 2 and 4/q−2 < s < 1/q+1, then 0 < α < 1 (observe that 4/q−2 > 1−2/q),
we can write the integral in (2.6) as follows∫

R

|ϕ̂g(y)|qdy

|y|α
=

∫
|y|≤1

|ϕ̂g(y)|qdy

|y|α
+

∫
|y|>1

|ϕ̂g(y)|qdy

|y|α
:= Iq

1 + Iq
2 ,

hence
Iq
1 ≤ cs,q‖ϕ̂g‖q

L∞ ≤ cs,q‖ϕg‖q
L1 ≤ cs,q‖ϕ‖q

Lp‖g‖q
Lq ≤ cs,qt

q/p,

note that s > 4/q− 2 implies αp/(p− q) > 1, therefore using Hölder inequality and
Hausdorf-Young inequality in Iq

2 we obtain

Iq
2 ≤ ‖ϕ̂g‖q

Lp

( ∫
|y|>1

dy

|y|αp/(p−q)

)1−q/p

≤ cs,q‖ϕg‖q
Lq ≤ cs,q‖g‖q

Lq .

If p = ∞ and s > 3/2, then (2.4) gives

I(x, t) ≤ ‖ϕ̂g‖L∞‖û0(ξ)ξ‖L1 ≤ cs‖g‖L1‖u0‖Hs .

Note that, for s > 1/2 using immersion we also have

‖∂xU(t′)u0‖L∞t L∞x ≤ cs‖∂xU(t′)u0‖Hs ≤ cs‖u0‖Hs+1 .

Hence we have finished the proof of Theorem 1.1. �

Corollary 2.2. Let 0 ≤ s ≤ 1 and u0 ∈ L2. Then

‖Ds
xU(t′)u0‖L∞x L2

t
≤ cst

(1−s)/3‖u0‖L2 . (2.8)

The proof of the above corollary follows from (1.8).

Corollary 2.3. Let f ∈ L1
xL2

t and U(t′) be as in (1.2). Then for 0 ≤ s ≤ 1 we
have ∥∥Ds

x

∫ t

0

U(t− t′)f(x, t′)dt′
∥∥

L2
x
≤ cst

(1−s)/3‖f‖L1
xL2

t
. (2.9)
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Proof. Inequality (2.9) follows from (2.8) and a duality argument. In fact, by
Plancherel identity, definition of the group U(t) and (2.8), we have for ‖g‖L2 = 1:∫

R

(
Ds

x

∫ t

0

U(−t′)f(x, t′)dt′
)
g(x)dx =

∫ t

0

∫
R

f(x, t′)Ds
xU(t′)g(x)dxdt′

≤ ‖f‖L1
xL2

t
‖Ds

xU(t′)g(x)‖L∞x L2
t

≤ ct(1−s)/3‖f‖L1
xL2

t
‖g‖L2 .

�

Proof of Theorem 1.2. The next lemma is used in the proof.

Lemma 2.4. Let u ∈ C(R,H2) be the solution of (1.5). Then

‖u‖L2
xL∞t ≤ c(1 + t)3/4+‖u(0)‖H3/4+ + c(1 + t)3/4+

∫ t

0

(‖u(t′)‖H1/2+‖u(t′)‖2H2

+ ‖u(t′)‖2H1/2+‖u(t′)‖H2)dt′.

(2.10)

Proof. To prove the first inequality we rely on the integral equation form

u(t) = U(t)u0 − γ

∫ t

0

U(t− τ)
(
∂x(|u|2u)

)
(τ),

the linear estimate (2.2) show that if u(0) ∈ H2 then for any t > 0,

‖u‖L2
xL∞t ≤ c(1 + t)3/4+‖u(0)‖H3/4+

+ c(1 + t)3/4+

∫ t

0

(‖|u|2u(t′)‖L2
x

+ ‖∂2
x(|u|2u)(t′)‖L2

x
)dt′,

(2.11)

using the immersions ‖u(t)‖L∞x ≤ c‖u(t)‖H1/2+ , ‖u(t)‖L4
x
≤ c‖u(t)‖Ḣ1/4 it follows

that

‖|u|2u(t′)‖L2
x
≤ ‖u(t′)‖L∞x ‖u

2(t′)‖L2
x
≤ c‖u(t′)‖H1/2+‖u(t′)‖2L4

x
< ∞, (2.12)

and using Leibniz rule, it is easy to see that

‖∂2
x(|u|2u)(t′)‖L2

x
≤ c‖uu2

x(t′)‖L2
x

+ c‖u2uxx(t′)‖L2
x

≤ c‖u(t′)‖H1/2+‖u(t′)‖2H2 + c‖u(t′)‖2H1/2+‖u(t′)‖H2 < ∞.

Hence combining this inequality and (2.11), we obtain (2.10). �

Lemma 2.5. Let u ∈ C(R,H2(R)) be solution of (1.5) and 0 ≤ s ≤ 1. Then

‖Ds
xu(t)‖L2

x
≤ ‖Dsu0‖L2

+ ct(1−s)/3‖u‖2L2
xL∞t

(
‖u0‖L2 + t1/2‖u‖2L∞t Ḣ1/4‖u‖L2

xL∞t

)
.

(2.13)

Proof. Without loss of generality we restrict our attention to the real case u ∈ R.
The equivalent integral equation is

u(t) = U(t)u0 − γ

∫ t

0

U(t− τ)
(
∂x(u3)

)
(τ)dτ =: U(t)u0 + z(t). (2.14)
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Let Γ(t) = ‖u‖L2
xL∞t . From (2.14), Corollary 2.3 and Hölder inequality, we have

‖Ds
xu(t)‖L2

x
≤ ‖Ds

xU(t)u0‖L2
x

+ ‖Ds
xz(t)‖L2

x

≤ ‖Dsu0‖L2 + ct(1−s)/3‖u2ux‖L1
xL2

t

≤ ‖Dsu0‖L2 + ct(1−s)/3Γ(t)2‖ux‖L∞x L2
t
.

(2.15)

Using (1.3), (2.3) and Hölder inequality, we obtain

‖∂xu‖L∞x L2
t
≤ ‖∂xU(t′)u0‖L∞x L2

t
+ ‖∂xz‖L∞x L2

t

≤ c‖u0‖L2 + c‖u3‖L1
xL2

t

≤ c‖u0‖L2 + c‖u‖2L4
xL4

t
Γ(t)

≤ c‖u0‖L2 + ct1/2‖u‖2L∞t L4
x
Γ(t)

≤ c‖u0‖L2 + ct1/2‖u‖2L∞T Ḣ1/4Γ(t),

(2.16)

where in the last inequality we use immersion ‖u‖L4
x
≤ ‖u‖Ḣ1/4 . As a consequence

of (2.15) and (2.16) we have (2.13). Thus the proof is complete. �

Proof of Theorem 1.2. Let T > 0. Then there is a δ0 = δ0(T ) > 0 such that

‖u‖L2
xL∞([τ1,τ2]) < 2‖u0‖L2 , for all τ1, τ2 ∈ [0, T ], |τ1 − τ2| ≤ δ0. (2.17)

To verify this we use contradiction, we suppose that for all n there exist τn
1 , τn

2 ∈
[0, T ], |τn

1 − τn
2 | < 1/n and

‖u‖L2
xL∞([τn

1 ,τn
2 ]) ≥ 2‖u0‖L2 . (2.18)

Since (τn
1 ) and (τn

2 ) are bounded sequences, we can suppose that there exist a
τ ∈ [0, T ] such that limn→∞ τn

1 = limn→∞ τn
2 = τ , using Lemma 2.4 and Lebesgue’s

Dominated Convergence Theorem, we have that

‖u‖L2
xL∞([τn

1 ,τn
2 ]) → ‖u(τ)‖L2 = ‖u0‖L2 as n →∞;

however, this contradicts the relation (2.18).
Let 0 ≤ tk ≤ t be a sequence with t0 = 0, tk+1 − tk = δ0 and let n ≈ t/δ0 such

that tn ≤ t < tn+1. By Lemma 2.5 and (2.17), it follows that

‖Ds
xu(tk)‖L2

x
≤ ‖Ds

xu(tk−1)‖L2 + cδ
(1−s)/3
0 ‖u‖2L2

xL∞([tk−1,tk])‖u0‖L2

+ δ
(1−s)/3+1/2
0 ‖u‖2L∞T Ḣ1/4‖u‖3L2

xL∞([tk−1,tk])

≤ ‖Ds
xu(tk−1)‖L2 + cδ

(1−s)/3
0 ‖u0‖3L2(1 + δ

1/2
0 ‖u‖2L∞T Ḣ1/4),

similarly we have

‖Ds
xu(t)‖L2

x
≤ ‖Ds

xu(tn)‖L2 + cδ
(1−s)/3
0 ‖u0‖3L2(1 + δ

1/2
0 ‖u‖2L∞T Ḣ1/4); (2.19)
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therefore,

‖Ds
xu(tn)‖L2

x
− ‖Dsu(0)‖L2

x
=

n∑
k=1

(
‖Ds

xu(tk)‖L2
x
− ‖Ds

xu(tk−1)‖L2

)
≤

n∑
k=1

cδ
(1−s)/3
0 ‖u0‖3L2(1 + δ

1/2
0 ‖u‖2L∞T Ḣ1/4)

≤ ct‖u0‖3L2

(1 + δ
1/2
0 ‖u‖2L∞T Ḣ1/4)

δ
(2+s)/3
0

,

so that we conclude

‖Ds
xu(tn)‖L2

x
≤ ‖Dsu(0)‖L2 + ct‖u0‖3L2

(1 + δ
1/2
0 ‖u‖2L∞T Ḣ1/4)

δ
(2+s)/3
0

, (2.20)

combining (2.19) and (2.20) we obtain

‖Ds
xu(t)‖L2

x
≤ ‖Dsu(0)‖L2 + ‖u0‖3L2

c(t + δ0)

δ
(2+s)/3
0

(1 + δ
1/2
0 ‖u‖2L∞T Ḣ1/4).

This completes the proof. �
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Universitária, Ilha do Fundão, Caixa Postal 68530 21941-972 Rio de Janeiro, RJ, Brasil

E-mail address: carvajal@im.ufrj.br


	1. Introduction
	2. Smoothing Local Effects
	Linear Estimates
	Proof of Theorem 1.2

	References

