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POSITIVE ALMOST AUTOMORPHIC SOLUTIONS FOR SOME
NONLINEAR DELAY INTEGRAL EQUATIONS

WEI LONG, HUI-SHENG DING

Abstract. This paper is concerned with some nonlinear delay integral equa-
tions arising in an epidemic problem. We establish a new existence and unique-

ness theorem about positive almost automorphic solutions for delay integral

equations. Our theorem is a generalizations of some known results. An exam-
ple is given to illustrate our results.

1. Introduction

In this paper, we consider the delay integral equation

x(t) =
∫ t

t−τ(t)

f(s, x(s))ds, (1.1)

which is a model arising in the spread of some infectious disease.
Let us briefly describe the meaning of (1.1) in the context of epidemics. The

number τ(t) can be interpreted as the duration of infectivity, x(t) is the population
at time t of infectious individuals, f(t, x(t)) is the instantaneous rate of infection,
and f(t, x(t))dt is the fraction of individuals infected within the period [t, t+ dt].

Since the work of Cooke and Kaplan [3], the delay integral equation (1.1) has
been of great interest for many authors (see some nice work, e.g., [12, 10, 13, 16, 8]
and references therein). Especially, there is a larger literature about the existence
of periodic and almost periodic solutions to (1.1). The existence of positive almost
periodic solutions to (1.1) was first investigated by Fink and Gatica [10] in the case
of τ(t) ≡ τ . Afterwards, Torrejón [16] considered the same problem in the case that
the delay τ(t) is state-dependent. This probelm was also studied in [8] by means
of Hilbert projective metric.

On the other hand, since Bochner [1] introduced the concept of almost au-
tomorphy, almost automorphic functions turns out to be an important gener-
alization of almost periodic functions. Now, almost automorphic functions and
their applications have been of great interest for many mathematicians. Recently,
the study of existence of almost automorphic solutions to various equations in-
cluding linear and nonlinear evolution equations, integro-differential equations,
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functional-differential equations, etc., has attracted more and more attention (see,
e.g., [9, 11, 14, 15, 2, 5] and the references cited there). We refer the reader to
the monographs of N’Guérékata [14, 15] for the basic theory of almost automorphic
functions and their applications.

Recently, in [6], the authors discussed the existence of positive almost auto-

morphic solutions to Eq. (1.1) in the case of that f =
n∑

i=1

figi, where fi(t, ·) is

nondecreasing and gi(t, ·) is nonincreasing. Stimulated by this work, in this paper,
we will establish a new existence and uniqueness theorem about positive almost
automorphic solutions to (1.1). Our theorem generalizes related results in [6] (see
Remark 3.4). Also, we give an example to illustrate our results.

This paper is organized as follows. In Section 2, we recall some notions, basic
results, and a fixed point theorem in the cone. In Section 3, we prove our exis-
tence and uniqueness theorem of positive almost automorphic solutions. In the last
section, an example is given to illustrate our results.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers, by R the set
of real numbers, by R+ the set of positive real numbers, and by Ω a closed subset
in R. First, let’s recall some definitions and notations of almost periodicity and
almost automorphy (for more details, see [14, 15]).

Definition 2.1. A continuous function f : R → R is called almost automorphic if
for every real sequence (sm), there exists a subsequence (sn) such that

g(t) = lim
n→∞

f(t+ sn)

is well defined for each t ∈ R and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. Denote by AA(R) the set of all such functions.

Remark 2.2. A classical example of automorphic function (not almost periodic)
is

f(t) = sin
1

2 + cos t+ cos
√

2t
, t ∈ R.

Definition 2.3. A continuous function f : R×Ω → R is called almost automorphic
in t uniformly for x in compact subsets of Ω if for every compact subset K of Ω
and every real sequence (sm), there exists a subsequence (sn) such that

g(t, x) = lim
n→∞

f(t+ sn, x)

is well defined for each t ∈ R, x ∈ K and

lim
n→∞

g(t− sn, x) = f(t, x)

for each t ∈ R, x ∈ K. Denote by AA(R× Ω) the set of all such functions.

Lemma 2.4. Assume that f , g ∈ AA(R). Then the following hold true:
(a) The range Rf = {f(t) : t ∈ R} is precompact in R, and so f is bounded.
(b) f + g, f · g ∈ AA(R).
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(c) Equipped with the sup norm

‖f‖ = sup
t∈R

|f(t)|,

AA(R) turns out to be a Banach space.

For a proof of the above lemma, see [14, §2.1]. Next, let us recall some notion
about cone (for more details, see [4]) and a fixed point theorem.

Let X be a real Banach space. A closed convex set P in X is called a convex
cone if the following conditions are satisfied:

(i) if x ∈ P , then λx ∈ P for any λ ≥ 0,
(ii) if x ∈ P and −x ∈ P , then x = 0.

A cone P induces a partial ordering ≤ in X by

x ≤ y if and only if y − x ∈ P.
A cone P is called normal if there exists a constant k > 0 such that

0 ≤ x ≤ y implies that ‖x‖ ≤ k‖y‖,
where ‖ ·‖ is the norm on X. We denote by P o the interior of P . A cone P is called
a solid cone if P o 6= ∅.

Definition 2.5. Let X be a real Banach space and E ⊂ X. An operator Φ :
E × E → X is called a mixed monotone operator if Φ(x, y) is nondecreasing in
x and nonincreasing in y, i.e. xi, yi ∈ E (i=1,2), x1 ≤ x2 and y1 ≥ y2 implies
that Φ(x1, y1) ≤ Φ(x2, y2). An element x∗ ∈ E is called a fixed point of Φ if
Φ(x∗, x∗) = x∗.

In the proof of our main results, we will need the following fixed point theorem
in a cone, which is a direct corollary of [7, Theorem 2.2].

Theorem 2.6. Let P be a normal and solid cone in a real Banach space X. Suppose
that the operator A : P o × P o → P o satisfies

(A1) A : P o×P o → P o is a mixed monotone operator and there exist a constant
t0 ∈ [0, 1) and a function φ : (t0, 1) × P o × P o → (0,+∞) such that for
each x, y ∈ P o and t ∈ (t0, 1), φ(t, x, y) > t and

A(tx, t−1y) ≥ φ(t, x, y)A(x, y);

(A2) there exist x0, y0 ∈ P o such that x0 ≤ y0, x0 ≤ A(x0, y0), A(y0, x0) ≤ y0
and

inf
x,y∈[x0,y0]

φ(t, x, y) > t, ∀t ∈ (t0, 1).

Then A has a unique fixed point x∗ in [x0, y0]. Moreover, for any initial z0 ∈ [x0, y0],
the iterative sequences zn = A(zn−1, zn−1) satisfies

‖zn − x∗‖ → 0, n→∞.

3. Existence and uniqueness theorem

Throughout the rest of this paper, we assume that f admits a decomposition

f(t, x) =
n∑

i=1

fi(t, x)gi(t, x) (3.1)

for some n ∈ N. First, we list some assumptions:



4 W. LONG, H.-S. DING EJDE-2008/57

(H1) fi, gi ∈ AA(R × R+) are nonnegative functions, i = 1, 2, . . . , n, and τ ∈
AA(R) is a positive function.

(H2) For every t ∈ R, fi(t, ·) are nondecreasing and gi(t, ·) are nonincreasing in
R+, i = 1, 2, . . . , n.

(H3) For each x ∈ R+ and each i ∈ {1, 2, . . . , n}, {fi(t, ·)}t∈R and {gi(t, ·)}t∈R
are equi-continuous at x.

(H4) There exist a constant t0 ∈ [0, 1) and positive functions ϕi, ψi defined on
(t0, 1)× (0,+∞) such that

fi(t, αx) ≥ ϕi(α, x)fi(t, x), gi(t, α−1y) ≥ ψi(α, y)gi(t, y),

ϕi(α, x) > α, ψi(α, x) > α

for all x, y > 0, α ∈ (t0, 1), t ∈ R and i ∈ {1, 2, . . . , n}; moreover, for any
0 < a ≤ b < +∞,

inf
x,y∈[a,b]

ϕi(α, x)ψi(α, y) > α, α ∈ (t0, 1), i = 1, 2, . . . , n.

(H5) There exist constants d ≥ c > 0 such that

inf
t∈R

∫ t

t−τ(t)

n∑
i=1

fi(s, c)gi(s, d)ds ≥ c,

sup
t∈R

∫ t

t−τ(t)

n∑
i=1

fi(s, d)gi(s, c)ds ≤ d.

In the proof of the main results, we need the following two lemmas, which were
proved in [6].

Lemma 3.1. If f ∈ AA(R×R+), {f(t, ·)}t∈R are equi-continuous at every x ∈ R+,
x ∈ AA(R) and x(t) ≥ 0 for every t ∈ R. Then f(·, x(·)) ∈ AA(R).

Lemma 3.2. Let f ∈ AA(R) and τ ∈ AA(R), then

F (t) =
∫ t

t−τ(t)

f(s)ds ∈ AA(R).

Now we are ready to present the existence and uniqueness theorem.

Theorem 3.3. Assume that f has the form of (3.1) and (H1)-(H5) hold. Then
(1.1) has exactly one almost automorphic solution x∗ with positive infimum. More-
over, for any x0 ∈ AA(R) with c ≤ x0(t) ≤ d for all t ∈ R, the iterative sequences

xk(t) =
∫ t

t−τ(t)

n∑
i=1

fi(s, xk−1(s))gi(s, xk−1(s))ds, k = 1, 2, . . . (3.2)

satisfy ‖xk − x∗‖AA(R) → 0 (k → +∞).

Proof. Let P = {x ∈ AA(R) : x(t) ≥ 0,∀t ∈ R}. It is not difficult to verify that P
is a normal and solid cone in AA(R), and

P o = {x ∈ AA(R) : ∃ ε > 0 such that x(t) > ε,∀t ∈ R}.
We define a nonlinear operator Φ by

Φ(x, y)(t) =
∫ t

t−τ(t)

n∑
i=1

fi(s, x(s))gi(s, y(s))ds,
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where x, y ∈ P o and t ∈ R. Then by (H2), Φ is a mixed monotone operator.
Let x, y ∈ P o. It follows from (H1), (H3) and Lemma 3.1 that

fi(·, x(·)), gi(·, y(·)) ∈ AA(R), i = 1, 2, . . . , n.

Combining this with τ ∈ AA(R), Lemma 2.4 (b) and Lemma 3.2, we have Φ(x, y) ∈
AA(R). Also, since x, y ∈ P o, there exist ε,M > 0 such that x(t) ≥ ε and y(t) ≤M
for all t ∈ R. Therefore, we have

Φ(x, y)(t) ≥
∫ t

t−τ(t)

n∑
i=1

fi(s, ε)gi(s,M)ds, ∀t ∈ R. (3.3)

On the other hand, by (H5), there exist constants c, d > 0 such that

inf
t∈R

∫ t

t−τ(t)

n∑
i=1

fi(s, c)gi(s, d)ds ≥ c. (3.4)

Suppose that ε < c and M > d (the other cases are similar and easier to prove).
Taking T ∈ (t0, 1), there exist nonnegative integer k, l satisfying

t0 < T ≤ ε

cT k
< 1, t0 < T ≤ d

MT l
< 1

Set c = ε
cT k and M = d

MT l . Then c,M ∈ (t0, 1). We conclude by (3.3), (3.4) and
(H4) that

Φ(x, y)(t) ≥
∫ t

t−τ(t)

n∑
i=1

fi(s, ε)gi(s,M)ds

=
∫ t

t−τ(t)

n∑
i=1

fi(s, T kcc)gi(s,
d

T lM
)ds

≥
∫ t

t−τ(t)

n∑
i=1

ϕi(T, T k−1cc)ψi(T,
d

T l−1M
)fi(s, T k−1cc)gi(s,

d

T l−1M
)ds

≥ T 2

∫ t

t−τ(t)

n∑
i=1

fi(s, T k−1cc)gi(s,
d

T l−1M
)ds

≥ T k+l

∫ t

t−τ(t)

n∑
i=1

fi(s, cc)gi(s,
d

M
)ds

≥ T k+l

∫ t

t−τ(t)

n∑
i=1

ϕi(c, c)ψi(M,d)fi(s, c)gi(s, d)ds

≥ T k+lcM

∫ t

t−τ(t)

n∑
i=1

fi(s, c)gi(s, d)ds

≥ T k+lcMc > 0, ∀t ∈ R.

Thus Φ(x, y) ∈ P o. Therefore, Φ is from P o × P o to P o.
Suppose x, y ∈ P o and α ∈ (t0, 1). Let

a(x, y) = min{ inf
s∈R

x(s), inf
s∈R

y(s)}, b(x, y) = max{sup
s∈R

x(s), sup
s∈R

y(s)}.
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Then 0 < a(x, y) ≤ b(x, y) < +∞ and x(s), y(s) ∈ [a(x, y), b(x, y)] for all s ∈ R.
We define

φi(α, x, y) = inf
u,v∈[a(x,y),b(x,y)]

ϕi(α, u)ψi(α, v), i = 1, 2, . . . , n,

φ(α, x, y) = min
i=1,2,...,n

φi(α, x, y).

By (H4), it is easy to see that φi(α, x, y) > α (i = 1, 2, . . . , n) for each x, y ∈ P o

and α ∈ (t0, 1), which gives that φ(α, x, y) > α for each x, y ∈ P o and α ∈ (t0, 1).
Now, We deduce by (H4) that

Φ(αx, α−1y)(t) =
∫ t

t−τ(t)

n∑
i=1

fi(s, αx(s))gi(s, α−1y(s))ds

≥
∫ t

t−τ(t)

n∑
i=1

ϕi(α, x(s))ψi(α, y(s))fi(s, x(s))gi(s, y(s))ds

≥
∫ t

t−τ(t)

n∑
i=1

φi(α, x, y)fi(s, x(s))gi(s, y(s))ds

≥ φ(α, x, y)
∫ t

t−τ(t)

n∑
i=1

fi(s, x(s))gi(s, y(s))ds

= φ(α, x, y)Φ(x, y)(t),

which means that
Φ(αx, α−1y) ≥ φ(α, x, y)Φ(x, y)

for each x, y ∈ P o and α ∈ (t0, 1). Thus, the assumption (A1) in Theorem 2.6 is
satisfied.

On the other hand, by (H5), we have

Φ(c, d) ≥ c, Φ(d, c) ≤ d.

Also, it follows from (H4) that

inf
x,y∈[c,d]

φ(α, x, y) = min
i=1,...,n

inf
x,y∈[c,d]

φi(α, x, y)

= min
i=1,...,n

φi(α, c, d)

= φ(α, c, d) > α,

for each α ∈ (t0, 1). Thus, the assumption (A2) in Theorem 2.6 is satisfied.
Hence, Theorem 2.6 yields that Φ has a unique fixed point x∗ in [c, d], and for

any x0 ∈ AA(R) with c ≤ x0(t) ≤ d for all t ∈ R, the iterative sequences (3.2)
satisfy

‖xk − x∗‖AA(R) → 0, (k → +∞).

Next, let us show that x∗ is the unique fixed point of Φ in P o. Suppose y∗ ∈ P o

is a fixed point of Φ. Set

γ := sup{β > 0 : β−1y∗ ≥ x∗ ≥ βy∗}.

Then γ−1y∗ ≥ x∗ ≥ γy∗ and 0 < γ ≤ 1. Suppose 0 < γ < 1. Then there exists a
nonnegative integer m and constant δ ∈ (t0, 1) such that

t0 < δ ≤ γ

δm
< 1.
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Now, we define

α := min{δmφ(
γ

δm
, y∗, y∗), δmφ(

γ

δm
,
δm

γ
y∗,

γ

δm
y∗)}.

Then α > γ. We deduce by (H4)

x∗ = Φ(x∗, x∗) ≥ Φ(γy∗, γ−1y∗)

= Φ(δm γ

δm
y∗, δ−m δm

γ
y∗)

≥ δmΦ(
γ

δm
y∗,

δm

γ
y∗)

≥ δmφ(
γ

δm
, y∗, y∗)Φ(y∗, y∗) ≥ αy∗.

Similarly, one can show

x∗ = Φ(x∗, x∗) ≤ Φ(γ−1y∗, γy∗) ≤ α−1y∗.

From the definition of γ it follows that γ ≥ α > γ, which is a contradiction. Hence,
γ = 1. So y∗ ≥ x∗ ≥ y∗, that is, x∗ = y∗. Thus x∗ is the unique fixed point of Φ in
P o. �

Remark 3.4. It is not difficult to show that (H1)-(H5) hold provided that all the
assumptions in [6, Theorem 3.4] are satisfied. Thus, Theorem 3.3 is a generaliza-
tion of [6, Theorem 3.4], in which t0 = 0, ϕi(α, ·) is nondecreasing and ψi(α, ·) is
nonincreasing, i = 1, 2, . . . , n.

4. Examples

In this section, we give an example to illustrate our results.

Example 4.1. Let n = 1,

f1(t, x) ≡ 1 + sin2 1
2 + cos t+ cos

√
2t
, g1(t, x) ≡

x+ 1
2x

,

and τ(t) = 2 + sin t. The assumptions (H1), (H2) and (H3) are easily verified. Let

ψ1(α, y) =
α−1y + 1
α−1y + α−1

, y > 0, α ∈ (0, 1).

Then g1(t, α−1y) ≥ ψ1(α, y)g1(t, y) and ψ1(α, y) > α for each y > 0, α ∈ (0, 1) and
t ∈ R. Moreover, it is not difficult to show that ψ1(α, ·) is increasing on (0,+∞)
for each α ∈ (0, 1). Set ϕ1(α, x) ≡ 1. Then for any 0 < a ≤ b < +∞,

inf
x,y∈[a,b]

ϕ1(α, x)ψ1(α, y) = ψ1(α, a) > α, α ∈ (0, 1).

Hence (H4) is satisfied. In addition, (H5) follows from

inf
t∈R

∫ t

t−τ(t)

f1(s,
1
2
)g1(s, 10)ds ≥ 11

20
>

1
2

and

inf
t∈R

∫ t

t−τ(t)

f1(s, 10)g1(s,
1
2
)ds ≤ 9 < 10.
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Now, by Theorem 3.3, the following delay integral equation

x(t) =
∫ t

t−2−sin t

[
1 + sin2 1

2 + cos s+ cos
√

2s

]x(s) + 1
2x(s)

ds

has a unique almost automorphic solution with a positive infimum.

Note that, in Example 4.1, ψ1(α, ·) is increasing. Thus, [6, Theorem 3.4] can not
be applied to this example.
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[9] K. Ezzinbi, G. M. N’Guérékata; Massera type theorem for almost automorphic solutions of
functional differential equations of neutral type, J. Math. Anal. Appl. 316 (2006), 707–721.

[10] A. M. Fink, J. A. Gatica; Positive almost periodic solutions of some delay integral equations,

J. Differential Equations 83 (1990), 166–178.
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