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EXISTENCE AND UNIQUENESS OF NONTRIVIAL SOLUTIONS
FOR NONLINEAR HIGHER-ORDER THREE-POINT

EIGENVALUE PROBLEMS ON TIME SCALES

WEI HAN, YONGGUI KAO

Abstract. In this paper, we study a nonlinear higher-order three-point eigen-
value problems with first-order derivative on time scales. Under certain growth

conditions on the nonlinearity, sufficient conditions for existence and unique-
ness of nontrivial solutions, which are easily verifiable, are obtained by using

the Leray-Schauder nonlinear alternative. The conditions used in the paper

are different from those in [4, 10, 21]. To show applications of our main results,
we present some examples.

1. Introduction

In recent years, there has been much attention paid to the existence of positive
solution for second-order three-point and higher-order two-point boundary value
problem on time scales. On the other hand, p-Laplacian problems on time scales
have also been studied extensively, for details, see [3, 6, 9, 12, 13, 14, 15, 17, 19,
20, 21, 22, 23] and references therein. However, to the best of our knowledge, there
are not many results concerning three-point eigenvalue problems of higher-order on
time scales.

A time scale T is a nonempty closed subset of R. We make the blanket as-
sumption that 0, T are points in T. By an interval (0, T ), we always mean the
intersection of the real interval (0, T ) with the given time scale; that is (0, T ) ∩T.

Anderson [3] studied the following dynamic equation on time scales:

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ), (1.1)

u(0) = 0, αu(η) = u(T ). (1.2)

He obtained one positive solution based on the limits f0 = limu→0+
f(u)

u and f∞ =
limu→∞

f(u)
u . He also obtained at least three positive solutions. Kaufmann [15] also

studied (1.1)–(1.2) and obtained finitely many positive solutions and then countably
many positive solutions. Luo and Ma [17], discussed the following dynamic equation
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on time scales:

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ), (1.3)

u(0) = βu(η), u(T ) = αu(η). (1.4)

They obtained results for the existence of one positive solution and for the existence
of at least three positive solutions by using a fixed point theorem and the Leggett-
Williams fixed point theorem, respectively.

We would also like to mention the results of Boey and Wong [6], Zhao-Cai Hao
[12] and Sun [23]. Boey and Wong [6] studied the following two-point right focal
boundary-value problems on time scales:

(−1)n−1y∆n

(t) = (−1)p+1F (t, y, (σn−1(t))), t ∈ [a, b] ∩T. (1.5)

y∆i

(a) = 0, 0 ≤ i ≤ p− 1, (1.6)

y∆i

(σ(b)) = 0, p ≤ i ≤ n− 1, (1.7)

where n ≥ 2, 1 ≤ p ≤ n − 1 is fixed and T is a time scale. Existence criteria are
developed for triple positive solutions for the problem (1.5)–(1.7) by applying fixed
point theorems for operators on a cone. Zhao-Cai Hao [12] considered the following
fourth-order singular boundary value problems:

x(4)(t) = λf(t, x(t)), t ∈ (0, 1), (1.8)

x(0) = x(1) = 0, x′′(0) = x′′(1) = 0, (1.9)

where f ∈ C((0, 1)× (0,∞)× [0,∞)), λ > 0 is a parameter. He determined values
of λ for which there exist positive solutions of the above boundary value problems,
and for λ = 1, he gave criteria for the existence of eigenfunctions.

The present work is motivated by a recent paper Sun [23], where the following
third-order two-point boundary-value problem on time scales is considered:

u∆∆∆(t) + f(t, u(t), u∆∆(t)) = 0, t ∈ [a, σ(b)], (1.10)

u(a) = A, u(σ(b)) = B, u∆∆(a) = C, (1.11)

where a, b ∈ T and a < b. Existence of solutions and positive solutions is established
by using the Leray-Schauder fixed point theorem. However, in the existing litera-
ture, very few people have considered the case where the nonlinear term contains
the first-order derivative.

In this paper, we are concerned with the existence of nontrivial solutions of the
following higher-order three-point eigenvalue problems with the first-order deriva-
tive on time scales:

u∆n

(t) + λf(t, u(t), u∆(t)) = 0, t ∈ (0, T ), (1.12)

u(0) = αu(η), u(T ) = βu(η), (1.13)

u∆i

(0) = 0 for i = 1, 2, . . . , n− 2, (1.14)

where λ > 0 is a parameter, η ∈ (0, ρ(T )) is a constant, α, β ∈ R, f ∈ Cld([0, T ]×
R× R,R), R = (−∞,+∞), n ≥ 2.

We want to point out that when T = R and λ = 1, (1.12)–(1.14) becomes a
boundary-value problem of differential equations and has been considered in [16].

The aim of this paper is to establish simple criteria for the existence of nontrivial
solutions of the problem (1.12)–(1.14). Our results are new and different from those
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of [3, 9, 15, 17]. Particularly, we do not require any monotonicity and nonnegative
on f , which was essential for the technique used in [3, 9, 15, 17].

2. Preliminaries

For convenience, we list the following definitions which can be found in [2, 4, 7, 8].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R.
For t < supT and r > inf T, define the forward jump operator σ and backward
jump operator ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T.

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said
to be left scattered; if σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is said
to be left dense.

Definition 2.2. Fix t ∈ T. Let f : T −→ R. The delta derivative of f at the
point t is defined to be the number f∆(t) (provided it exists), with the property
that, for each ε > 0, there is a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U . Define f∆n

(t) to be the delta derivative of f∆n−1
(t); i.e., f∆n

(t) =
(f∆n−1

(t))∆.

Definition 2.3. A function f is left-dense continuous (i.e. ld-continuous), if f
is continuous at each left-dense point in T and its right-sided limit exists at each
right-dense point in T. If F∆(t) = f(t), then define the delta integral by∫ t

a

f(s)∆s = F (t)− F (a).

For the rest of this article, we denote the set of left-dense continuous func-
tions from [0, T ] × R × R to R and from [0, T ] to R by Cld([0, T ] × R × R,R) and
Cld([0, T ],R), respectively.

Let X = Cld([0, T ],R) be endowed with the ordering x ≤ y if x(t) ≤ y(t)
for all t ∈ [0, T ], and ‖u‖ = maxt∈[0,T ] |u(t)|. Now we introduce the norm in
Y = C1

ld([0, T ],R) by

‖u‖1 = ‖u‖+ ‖u∆‖ = max
t∈[0,T ]

|u(t)|+ max
t∈[0,T ]

|u∆(t)|.

Clearly, it follows that (Y, ‖u‖1) is a Banach space.

Lemma 2.4. Suppose that d = (1 − α)Tn−1 − (β − α)ηn−1 6= 0. Then for y ∈
Cld([0, T ],R), the problem

u∆n

(t) + y(t) = 0, t ∈ (0, T ), (2.1)

u(0) = αu(η), u(T ) = βu(η), (2.2)

u∆i

(0) = 0 for i = 1, 2, . . . , n− 2, (2.3)
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has a unique solution

u(t) =
1
d

[
αηn−1 + tn−1(1− α)

] ∫ T

0

(T − s)n−1

(n− 1)!
y(s)∆s−

∫ t

0

(t− s)n−1

(n− 1)!
y(s)∆s

+
1
d

[
−αTn−1 + (α− β)tn−1

] ∫ η

0

(η − s)n−1

(n− 1)!
y(s)∆s.

(2.4)

Proof. From (2.1), we have

u(t) = −
∫ t

0

(t− s)n−1

(n− 1)!
y(s)∆s+

n−1∑
i=1

Ait
i +B. (2.5)

Since u∆i

(0) = 0 for i = 1, 2, . . . , n−2, one gets Ai = 0 for i = 1, 2, . . . , n−2. Now,
we solve for An−1 and B. By u(0) = αu(η) and u(T ) = βu(η), it follows that

B = −α
∫ η

0

(η − s)n−1

(n− 1)!
y(s)∆s+ αAn−1η

n−1 + αB, (2.6)

and

−
∫ T

0

(T − s)n−1

(n− 1)!
y(s)∆s+An−1T

n−1 +B

= −β
∫ η

0

(η − s)n−1

(n− 1)!
y(s)∆s+ βAn−1η

n−1 + βB.

(2.7)

Solving the above equations (2.6) and (2.7), we get

An−1 =
1
d

[
(α− β)

∫ η

0

(η − s)n−1

(n− 1)!
y(s)∆s+ (1− α)

∫ T

0

(T − s)n−1

(n− 1)!
y(s)∆s

]
,

(2.8)

B =
α

d

[
ηn−1

∫ T

0

(T − s)n−1

(n− 1)!
y(s)∆s− Tn−1

∫ η

0

(η − s)n−1

(n− 1)!
y(s)∆s

]
. (2.9)

Substituting (2.8) and (2.9) in (2.5), one has

u(t) =
1
d
[αηn−1 + tn−1(1− α)]

∫ T

0

(T − s)n−1

(n− 1)!
y(s)∆s−

∫ t

0

(t− s)n−1

(n− 1)!
y(s)∆s

+
1
d
[−αTn−1 + (α− β)tn−1]

∫ η

0

(η − s)n−1

(n− 1)!
y(s)∆s.

It is easy to see that BVP u∆n

(t) = 0, u(0) = αu(η), u(T ) = βu(η), u∆i

(0) = 0,
for i = 1, 2, . . . , n − 2, has only the trivial solution. Thus u in (2.4) is the unique
solution of (2.1), (2.2) and (2.3). The proof is complete. �

To prove our main result, we need a useful lemma which can be found in [11].

Lemma 2.5 ([11]). Let X be a real Banach space and Ω be a bounded open subset
of X, 0 ∈ Ω, F : Ω −→ X be a completely continuous operator. Then either there
exist x ∈ ∂Ω, λ > 1 such that F (x) = λx, or there exists a fixed point x∗ ∈ Ω.
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3. Main results

For convenience, we introduce the following notation. Let

ϕ(t, s) =
(t− s)n−1

(n− 1)!
(p(s) + q(s)), ψ(t, s) =

(t− s)n−1

(n− 1)!
r(s),

M =
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ϕ(T, s)∆s+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ϕ(η, s)∆s

+
(|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ϕ(T, s)∆s+
∫ T

0

n− 1
T − s

ϕ(T, s)∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ϕ(η, s)∆s,

N =
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ψ(T, s)∆s+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ψ(η, s)∆s

+
(|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ψ(T, s)∆s+
∫ T

0

n− 1
T − s

ψ(T, s)∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ψ(η, s)∆s.

Our main result is stated as follows.

Theorem 3.1. Suppose that f(t, 0, 0) 6≡ 0, t ∈ [0, T ], d 6= 0 and there exist non-
negative functions p, q, r ∈ L1[0, T ] such that

|f(t, u, v)| ≤ p(t)|u|+ q(t)|v|+ r(t), a. e.(t, u, v) ∈ [0, T ]× R× R, (3.1)

and there exists t0 ∈ [0, T ] such that p(t0) 6= 0 or q(t0) 6= 0. Then there exists a
constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (1.12)–(1.14) has at
least one nontrivial solution u∗ ∈ C1

ld([0, T ],R).

Proof. By Lemma 2.4, the problem (1.12)–(1.14) has a solution u = u(t) if and
only if u is a solution of the operator equation

u(t) =
λ

d

[
αηn−1 + tn−1(1− α)

] ∫ T

0

(T − s)n−1

(n− 1)!
f(s, u(s), u∆(s))∆s

− λ

∫ t

0

(t− s)n−1

(n− 1)!
f(s, u(s), u∆(s))∆s

+
λ

d

[
−αTn−1 + (α− β)tn−1

] ∫ η

0

(η − s)n−1

(n− 1)!
f(s, u(s), u∆(s))∆s

=: Fu(t) .

in Y . So we need only to seek for a fixed point of F in Y . Applying Arzela-Ascoli
theorem on time scales [1] and the Lebesgue’s dominated convergence theorem on
time scales [5], we can conclude that this operator F : Y → Y is a completely
continuous operator [22].

Since |f(t, 0, 0)| ≤ r(t), a.e. t ∈ [0, T ], we know
∫ T

0
ψ(T, s)∆s > 0, from p(t0) 6= 0

or q(t0) 6= 0, we easily obtain
∫ T

0
ϕ(T, s)∆s > 0, so M > 0, N > 0. Let

m =
N

M
, Ω = {u ∈ C1

ld[0, T ] : ‖u‖1 < m}.
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Suppose u ∈ ∂Ω, µ > 1 are such that Fu = µu. Then

µm = µ‖u‖1 = ‖Fu‖1 = ‖Fu‖+ ‖(Fu)∆‖.
Since

‖Fu‖ = max
t∈[0,T ]

|Fu(t)|

≤
∣∣λ
d

[
αηn−1 + tn−1(1− α)

]∣∣ ∫ T

0

(T − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

+ max
0≤t≤T

{
λ

∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

+
∣∣λ
d

[−αTn−1 + (α− β)tn−1]
∣∣ ∫ η

0

(η − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

}
≤ λ(2|α|+ 1)Tn−1

|d|

∫ T

0

(T − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

+ λ

∫ T

0

(T − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

+
λ(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

= λ
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

(T − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

+
λ(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
|f(s, u(s), u∆(s))|∆s

≤ λ
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

(T − s)n−1

(n− 1)!
[p(s)|u(s)|+ q(s)|u∆(s)|+ r(s)]∆s

+
λ(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
[p(s)|u(s)|+ q(s)|u∆(s)|+ r(s)]∆s

≤ λ‖u‖1
{[

1 +
(2|α|+ 1)Tn−1

|d|
] ∫ T

0

(T − s)n−1

(n− 1)!
(p(s) + q(s))∆s

+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
(p(s) + q(s))∆s

}
+ λ

{[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

(T − s)n−1

(n− 1)!
r(s)∆s

+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
r(s)∆s

}
≤ λ‖u‖1

{[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ϕ(T, s)∆s

+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ϕ(η, s)∆s
}

+ λ
{[

1 +
(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ψ(T, s)∆s

+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ψ(η, s)∆s
}
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and

‖(Fu)∆‖
= max

t∈[0,T ]
|(Fu)∆(t)|

= max
t∈[0,T ]

∣∣∣λ
d

(1− α)tn−2

∫ T

0

(T − s)n−1

(n− 2)!
f(s, u(s), u∆(s))∆s

− λ

∫ t

0

(t− s)n−2

(n− 2)!
f(s, u(s), u∆(s))∆s

+
λ

d
(α− β)tn−2

∫ η

0

(η − s)n−1

(n− 2)!
f(s, u(s), u∆(s))∆s

∣∣∣
≤ λ(|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!
|f(s, u(s), u∆(s))|∆s

+ λ

∫ T

0

(T − s)n−2

(n− 2)!
|f(s, u(s), u∆(s))|∆s

+
λ(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!
|f(s, u(s), u∆(s))|∆s

≤ λ(|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!
[
p(s)|u(s)|+ q(s)|u∆(s)|+ r(s)

]
∆s

+ λ

∫ T

0

(T − s)n−2

(n− 2)!
[
p(s)|u(s)|+ q(s)|u∆(s)|+ r(s)

]
∆s

+
λ(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!
[
p(s)|u(s)|+ q(s)|u∆(s)|+ r(s)

]
∆s

≤ λ‖u‖1
{ (|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!
(p(s) + q(s))∆s

+
∫ T

0

(T − s)n−2

(n− 2)!
(p(s) + q(s))∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!
(p(s) + q(s))∆s

}
+ λ

{ (|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!
r(s)∆s+

∫ T

0

(T − s)n−2

(n− 2)!
r(s)∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!
r(s)∆s

}
= λ‖u‖1

{ (|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ϕ(T, s)∆s+
∫ T

0

n− 1
T − s

ϕ(T, s)∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ϕ(η, s)∆s
}

+ λ
{ (|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ψ(T, s)∆s+
∫ T

0

n− 1
T − s

ψ(T, s)∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ψ(η, s)∆s
}
,



8 W. HAN, Y. KAO EJDE-2008/58

then
‖Fu‖1 ≤ λ‖u‖1M + λN.

Choose λ∗ = 1
2M . Then when 0 < λ ≤ λ∗, we have

µm = µ‖u‖1 = ‖Fu‖1 ≤
1

2M
M‖u‖1 +

N

2M
.

Consequently,

µ ≤ 1
2

+
N

2mM
= 1.

This contradicts µ > 1. By Lemma 2.5, F has a fixed point u∗ ∈ Ω. Since
f(t, 0, 0) 6≡ 0, then when 0 < λ ≤ λ∗, the problem (1.12)–(1.14) has a nontrivial
solution u∗ ∈ C1

ld([0, T ],R). This completes the proof. �

If we use the following stronger condition than (3.1) to substitute (3.1), we obtain
the following Theorem.

Theorem 3.2. Suppose that f(t, 0, 0) 6≡ 0, t ∈ [0, T ], d 6= 0 and there exist non-
negative functions p, q ∈ L1[0, T ] such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ p(t)|u1 − u2|+ q(t)|v1 − v2|, (3.2)

a.e. (t, ui, vi) ∈ [0, T ]×R×R (i = 1, 2), and there exists t0 ∈ [0, T ] such that p(t0) 6=
0 or q(t0) 6= 0. Then there exists a constant λ∗ > 0 such that for any 0 < λ ≤ λ∗,
the problem (1.12)–(1.14) has unique nontrivial solution u∗ ∈ C1

ld([0, T ],R).

Proof. In fact, if u2 = v2 = 0, then we have

|f(t, u1, v1)| ≤ p(t)|u1|+ q(t)|v1|+ |f(t, 0, 0)|, a. e. (t, u1, v1) ∈ [0, T ]× R× R.

From Theorem 3.1, we know the problem (1.12)–(1.14) has a nontrivial solution
u∗ ∈ C1

ld([0, T ],R). But in this case, we prefer to concentrate on the uniqueness of
the nontrivial solution for the problem (1.12)–(1.14). Let F be given in Theorem
3.1. We shall show that F is a contraction. On the one hand,

‖Fu1 − Fu2‖
= max

t∈[0,T ]
|Fu1(t)− Fu2(t)|

= max
t∈[0,T ]

∣∣∣λ
d

[
αηn−1 + tn−1(1− α)

] ∫ T

0

(T − s)n−1

(n− 1)!
[
f(s, u1(s), u∆

1 (s))

− f(s, u2(s), u∆
2 (s))

]
∆s

− λ

∫ t

0

(t− s)n−1

(n− 1)!
[
f(s, u1(s), u∆

1 (s))− f(s, u2(s), u∆
2 (s))

]
∆s

+
λ

d

[
−αTn−1 + (α− β)tn−1

] ∫ η

0

(η − s)n−1

(n− 1)!

[
f(s, u1(s), u∆

1 (s))

− f(s, u2(s), u∆
2 (s))

}
∆s

∣∣∣
≤ λ(2|α|+ 1)Tn−1

|d|

∫ T

0

(T − s)n−1

(n− 1)!

∣∣f(s, u1(s), u∆
1 (s))− f(s, u2(s), u∆

2 (s))
∣∣ ∆s

+ λ

∫ T

0

(T − s)n−1

(n− 1)!

∣∣f(s, u1(s), u∆
1 (s))− f(s, u2(s), u∆

2 (s))
∣∣ ∆s
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+
λ(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!

∣∣f(s, u1(s), u∆
1 (s))− f(s, u2(s), u∆

2 (s))
∣∣ ∆s

≤ λ(2|α|+ 1)Tn−1

|d|

∫ T

0

(T − s)n−1

(n− 1)!
[
p(s)|u1(s)− u2(s)|+ q(s)|u∆

1 (s)− u∆
2 (s)|

]
∆s

+ λ

∫ T

0

(T − s)n−1

(n− 1)!
[
p(s)|u1(s)− u2(s)|+ q(s)|u∆

1 (s)− u∆
2 (s)|

]
∆s

+
λ(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
[
p(s)|u1(s)− u2(s)|

+ q(s)|u∆
1 (s)− u∆

2 (s)|
]
∆s

≤ λ‖u1 − u2‖1
{[ (2|α|+ 1)Tn−1

|d|
+ 1

] ∫ T

0

(T − s)n−1

(n− 1)!
(p(s) + q(s))∆s

+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

(η − s)n−1

(n− 1)!
(p(s) + q(s))∆s

}
= λ‖u1 − u2‖1

{[ (2|α|+ 1)Tn−1

|d|
+ 1

] ∫ T

0

ϕ(T, s)∆s

+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ϕ(η, s)∆s
}
.

On the other hand,

‖(Fu1)∆ − (Fu2)∆‖
= max

t∈[0,T ]
|(Fu1)∆(t)− (Fu2)∆(t)|

= max
t∈[0,T ]

∣∣∣λ
d

(1− α)tn−2

∫ T

0

(T − s)n−1

(n− 2)!
[
f(s, u1(s), u∆

1 (s))

− f(s, u2(s), u∆
2 (s))

]
∆s

− λ

∫ t

0

(t− s)n−2

(n− 2)!
[
f(s, u1(s), u∆

1 (s))− f(s, u2(s), u∆
2 (s))

]
∆s

+
λ

d
(α− β)tn−2

∫ η

0

(η − s)n−1

(n− 2)!
[
f(s, u1(s), u∆

1 (s))− f(s, u2(s), u∆
2 (s))

]
∆s

∣∣∣
≤ λ(|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!

∣∣f(s, u1(s), u∆
1 (s))− f(s, u2(s), u∆

2 (s))
∣∣ ∆s

+ λ

∫ T

0

(T − s)n−2

(n− 2)!

∣∣f(s, u1(s), u∆
1 (s))− f(s, u2(s), u∆

2 (s))
∣∣ ∆s

+
λ(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!

∣∣f(s, u1(s), u∆
1 (s))− f(s, u2(s), u∆

2 (s))
∣∣ ∆s

≤ λ(|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!
[
p(s)|u1(s)− u2(s)|+ q(s)|u∆

1 (s)− u∆
2 (s)|

]
∆s

+ λ

∫ T

0

(T − s)n−2

(n− 2)!
[
p(s)|u1(s)− u2(s)|+ q(s)|u∆

1 (s)− u∆
2 (s)|

]
∆s

+
λ(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!
[
p(s)|u1(s)− u2(s)|
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+ q(s)|u∆
1 (s)− u∆

2 (s)|
]
∆s

≤ λ‖u1 − u2‖1
{ (|α|+ 1)Tn−2

|d|

∫ T

0

(T − s)n−1

(n− 2)!
(p(s) + q(s))∆s

+
∫ T

0

(T − s)n−2

(n− 2)!
(p(s) + q(s))∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(η − s)n−1

(n− 2)!
(p(s) + q(s))∆s

}
= λ‖u1 − u2‖1

{ (|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ϕ(T, s)∆s+
∫ T

0

n− 1
T − s

ϕ(T, s)∆s

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ϕ(η, s)∆s
}
.

Then
‖Fu1 − Fu2‖1 ≤ λ‖u1 − u2‖1M.

If we choose λ∗ = 1
2M . Then, when 0 < λ ≤ λ∗, we have

‖Fu1 − Fu2‖1 ≤
1
2
‖u1 − u2‖1.

So F is indeed a contraction. Finally, we use the Banach fixed point theorem to
deduce the existence of unique solution to the problem (1.12)–(1.14). �

Corollary 3.3. Suppose that f(t, 0, 0) 6≡ 0, t ∈ [0, T ], d 6= 0 and

0 ≤ L = lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|
|u|+ |v|

< +∞. (3.3)

Then there exists a constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem
(1.12)–(1.14) has at least one nontrivial solution u∗ ∈ C1

ld([0, T ],R)

Proof. Let ε > 0 such that L+ 1− ε > 0. By (3.3), there exists H > 0 such that

|f(t, u, v)| ≤ (L+ 1− ε)(|u|+ |v|), |u|+ |v| ≥ H, 0 ≤ t ≤ T.

Let K = maxt∈[0,T ], |u|+|v|≤H |f(t, u, v)|. Then for any (t, u, v) ∈ [0, T ]×R×R, we
have

|f(t, u, v)| ≤ (L+ 1− ε)(|u|+ |v|) +K.

From Theorem 3.1, we know the problem (1.12)–(1.14) has at least one nontrivial
solution u∗ ∈ C1

ld([0, T ],R). �

Corollary 3.4. Suppose that f(t, 0, 0) 6≡ 0, t ∈ [0, T ], d 6= 0 and

0 ≤ L = lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|
|u|

< +∞,

or

0 ≤ L = lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|
|v|

< +∞.

Then there exists a constant λ∗ > 0, such that for any 0 < λ ≤ λ∗, problem
(1.12)–(1.14) has at least one nontrivial solution u∗ ∈ C1

ld([0, T ],R).
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We remark that Corollaries 3.3 and 3.4 include the case that f is jointly sublinear
at (−∞,+∞); that is,

lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|
|u|+ |v|

= 0 or lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|
|u|

= 0

or lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|
|v|

= 0.

4. Some examples

In the section, we illustrate our results, with some examples. We only study the
case T = R and (0, T ) = (0, 1).

Example 4.1. Consider the forth-order eigenvalue problem

u(4) + λ

(
ut sin t
t2 + 1

− t(cosu′)2 + t(1 + t)
)

= 0, t ∈ (0, 1), (4.1)

u(0) = −u(1
2
), u(1) = u(

1
2
), u′(0) = 0, u′′(0) = 0. (4.2)

Set α = −1, β = 1, η = 1
2 , n = 4, f(t, u, u′) = ut sin t

t2+1 − t(cosu′)2 + t(1 + t),

d = (1− α)Tn−1 − (β − α)ηn−1 = (1 + 1) · 14−1 − (1 + 1) · (1
2
)4−1 =

7
4
> 0,

p(t) =
t

t2 + 1
, q(t) = t, r(t) = t2.

Noticing that∣∣ut sin t
t2 + 1

− t(cosu′)2 + t(1 + t)
∣∣ ≤ p(t)|u|+ q(t)|u′|+ r(t),

it follows from a direct calculation that

ϕ(t, s) =
(t− s)n−1

(n− 1)!
(p(s) + q(s)) =

(t− s)4−1

(4− 1)!
(

s

s2 + 1
+ s) =

(t− s)3

6
(

s

s2 + 1
+ s),

M =
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ϕ(T, s)ds+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ϕ(η, s)ds

+
(|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ϕ(T, s)ds+
∫ T

0

n− 1
T − s

ϕ(T, s)ds

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ϕ(η, s)ds

=
[
1 +

(2× 1 + 1) · 14−1

7
4

] ∫ 1

0

(1− s)3

6
(

s

s2 + 1
+ s)ds

+
(2× 1 + 1) · 14−1

7
4

∫ 1
2

0

( 1
2 − s)3

6
(

s

s2 + 1
+ s)ds

+
(1 + 1) · 14−2

7
4

∫ 1

0

(1− s)3

2
(

s

s2 + 1
+ s)ds+

∫ 1

0

(1− s)2

2
(

s

s2 + 1
+ s)ds

+
(1 + 1) · 14−2

7
4

∫ 1
2

0

( 1
2 − s)3

2
(

s

s2 + 1
+ s)ds

= 0.1763.
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Choose λ∗ = 1
2M = 2.8367. Then by Theorem 3.2, we know the problem (4.1)–(4.2)

has a unique nontrivial solution u∗ ∈ C1([0, T ],R) for any λ ∈ (0, 2.8367].

Example 4.2. Consider the third-order eigenvalue problem

u′′′ + λ
(u

2
− cosu′

)
= 0, t ∈ (0, 1), (4.3)

u(0) =
1
4
u(

1
2
), u(1) =

3
4
u(

1
2
), u′(0) = 0. (4.4)

Set α = 1
4 , β = 3

4 , η = 1
2 , n = 3, f(t, u, u′) = u

2 − cosu′,

d = (1− α)Tn−1 − (β − α)ηn−1 = (1− 1
4
) · 13−1 − (

3
4
− 1

4
)(

1
2
)3−1 =

5
8
> 0,

p(t) = 1
2 , q(t) = 1. Noticing that∣∣u1

2
− cosu′1 −

u2

2
+ cosu′2

∣∣ ≤ p(t)|u1 − u2|+ q(t)|u′1 − u′2|,

it follows from a direct calculation that

ϕ(t, s) =
(t− s)n−1

(n− 1)!
(p(s) + q(s)) =

(t− s)3−1

(3− 1)!
(
1
2

+ 1) =
3(t− s)2

4
,

M =
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ϕ(T, s)ds+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ϕ(η, s)ds

+
(|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ϕ(T, s)ds+
∫ T

0

n− 1
T − s

ϕ(T, s)ds

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ϕ(η, s)ds

=
[
1 +

(2× 1
4 + 1) · 13−1

5
8

] ∫ 1

0

3(1− s)2

4
ds

+
(2× 1

4 + 3
4 ) · 13−1

5
8

∫ 1
2

0

3( 1
2 − s)2

4
ds

+
( 1
4 + 1) · 13−2

5
8

∫ 1

0

3(1− s)2

2
ds+

∫ 1

0

3(1− s)
2

ds

+
( 1
4 + 3

4 ) · 13−2

5
8

∫ 1
2

0

3( 1
2 − s)2

2
ds

= 2.7625.

Choose λ∗ = 1
2M = 0.1810. Then by Theorem 3.2, problem (4.3)-(4.4) has a unique

nontrivial solution u∗ ∈ C1([0, T ],R) for any λ ∈ (0, 0.1810].

Example 4.3. Consider the third-order eigenvalue problem

u′′′ + λ
(
−u 1

2 + t2 sin
√
u4 + u′2 + t3(1− t)ecos t

)
= 0, t ∈ (0, 1), (4.5)

u(0) = 2u(
1
4
), u(1) = u(

1
4
), u′(0) = 0. (4.6)

Set, α = 2, β = 1, η = 1
4 , n = 3,

f(t, u, u′) = −u 1
2 + t2 sin

√
u4 + u′2 + t3(1− t)ecos t,
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d = (1− α)Tn−1 − (β − α)ηn−1 = (1− 2) · 13−1 − (1− 2)(
1
4
)3−1 = −15

16
< 0 .

It is obvious that

lim sup
|u|+|u′|→+∞

max
t∈[0,T ]

| − u
1
2 + t2 sin

√
u4 + u′2 + t3(1− t)ecos t|
|u|+ |u′|

= 0.

Choose ε = 1
2 . In this case, p(t) = 1

2 , q(t) = 1
2 . It follows from a direct calculation

that

ϕ(t, s) =
(t− s)n−1

(n− 1)!
(p(s) + q(s)) =

(t− s)3−1

(3− 1)!
(
1
2

+
1
2
) =

(t− s)2

2
,

M =
[
1 +

(2|α|+ 1)Tn−1

|d|
] ∫ T

0

ϕ(T, s)ds+
(2|α|+ |β|)Tn−1

|d|

∫ η

0

ϕ(η, s)ds

+
(|α|+ 1)Tn−2

|d|

∫ T

0

(n− 1)ϕ(T, s)ds+
∫ T

0

n− 1
T − s

ϕ(T, s)ds

+
(|α|+ |β|)Tn−2

|d|

∫ η

0

(n− 1)ϕ(η, s)ds

=
[
1 +

(2× 2 + 1) · 13−1

15
16

] ∫ 1

0

(1− s)2

2
ds+

(2× 2 + 1) · 13−1

15
16

∫ 1
4

0

( 1
4 − s)2

2
ds

+
(2 + 1) · 13−2

15
16

∫ 1

0

(1− s)2ds+
∫ 1

0

(1− s)ds

+
(2 + 1) · 13−2

15
16

∫ 1
4

0

(
1
4
− s)2ds

= 2.6528.

Choose λ∗ = 1
2M = 0.1885. Then by Corollary 3.3, we know the problem (4.5)–(4.6)

has a unique nontrivial solution u∗ ∈ C1([0, T ],R) for any λ ∈ (0, 0.1885].

Remark 4.4. The boundary-value problem (1.12)–(1.14) includes (BVP) (1.1)-
(1.2) of [3, 15], (1.3)-(1.4) of [17].

For the case where α = β = 0, T = R, λ = 1, (BVP) (1.12)–(1.14) becomes

u(n) + a(t)f(u) = 0, t ∈ (0, 1),

u(i)(0) = u(1) = 0, i = 0, 1, 2, . . . , n− 2,

The above problem was studied by Eloe and Henderson [10].

As usual we write

max f∞ := lim
u→∞

max
t∈[0,T ]

f(t, u)
u

, min f∞ := lim
u→∞

min
t∈[0,T ]

f(t, u)
u

,

max f0 := lim
u→0+

max
t∈[0,T ]

f(t, u)
u

, min f0 := lim
u→0+

min
t∈[0,T ]

f(t, u)
u

.

Function f in [3, 17, 18] is assumed to be superlinear (max f0 = 0 and max f∞ = ∞)
or sublinear (max f∞ = 0 and max f0 = ∞).

The condition:

0 ≤ f0 = lim sup
u→0

max
t∈[0,T ]

f(t, u)
u

< L, l < f∞ = lim inf
u→∞

min
t∈[0,T ]

f(t, u)
u

≤ ∞, (4.7)
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or

0 ≤ f∞ = lim sup
u→∞

max
t∈[0,T ]

f(t, u)
u

< L, l < f
0

= lim inf
u→0

min
t∈[0,T ]

f(t, u)
u

≤ ∞, (4.8)

is required in [22, 24], where L and l are given. In this paper, we do not assume that
nonlinear term f satisfy either superlinear (sublinear) conditions, or the conditions
(4.7) and (4.8). Consequently, in view of different aspect, we can say that main
results in [3, 10, 17, 18, 22, 24] do not apply to (4.1)–(4.3). The sufficient conditions
in this paper ,which are easily verifiable, have a wider adaptive range. These have
an important of leadings significance in both theory and application of boundary
value problems.
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cations, Birkhäuser, Boston, Cambridge, MA, 2001.
[8] M. Bohner, A. Peterson; Advances in Dynamic Equations on time scales, Birkhäuser Boston,

Cambridge, MA, 2003.

[9] J. J. Dacunha, J. M. Davis, P. K. Singh; Existence results for singular three point boundary
value problems on time scales, J. Math. Anal. Appl. 295 (2004) 378-391.

[10] P. W. Eloe, J. Henderson; Positive solutions for (n−1, 1) conjugate boundary value Problems,

Nonlinear Anal. 28 (1997) 1669-1680.
[11] D. Guo, V. Lakshmikanthan; Nonlinear problems in Abstract Cones, Academic Press, San

Diego, 1988.

[12] Z. C. Hao, L. Debnath; On eigenvalue intervals and eigenfunctions of fourth-order singular
boundary value problems, Appl. Math. Lett. 18 (2005) 543-553.

[13] Z. M. He; Double positive solutions of three-point boundary value problems for p-Laplacian

dynamic equations on time scales, J. Comput. Appl. Math. 182 (2005) 304-315.
[14] Z. M. He; Triple positive solutions of boundary value problems for p-Laplacian dynamic

equations on time scales, J. Math. Anal. Appl. 321 (2006) 911-920.
[15] E. R. Kaufmann; Positive solutions of a three-point boundary value problem on a time scale,

Eletron. J. Differen. Equ. 2003 (2003) no. 82, 1-11.

[16] Y. J. Liu, W. G. Ge; Positive solutions for (n-1,1) three-point boundary value problems with
coefficient that changes sign, J. Math. Anal. Appl. 282 (2003) 816-825.

[17] H. Luo, Q. Z. Ma; Positive solutions to a generalized second-order three-point boundary value
problem on time scales, Eletron. J. Differen. Equ. 17 (2005) 1-14.

[18] R. Ma; Positive solutions of nonlinear three-point boundary value problem, Eletron. J.
Differen. Equ. 1998 (1998) no. 34, 1-8.

[19] H. Su, B. Wang, Z. Wei; Positive solutions of four-point boundary value problems for four-
order p-Laplacian dynamic equations on time scales, Eletron. J. Differen. Equ. 2006 (2006)
no. 78, 1-13.

[20] H. Su, Z. Wei, F. Xu; The existence of positive solutions for nonlinear singular boundary
value system with p-Laplacian, J. Appl. Math. Comp. 181 (2006) 826-836.



EJDE-2008/58 EXISTENCE AND UNIQUENESS OF SOLUTIONS 15

[21] H. Su, Z. Wei, F. Xu, The existence of countably many positive solutions For a system of

nonlinear singular boundary value problems with the p-Laplacian operator, J. Math. Anal.

Appl. 325 (2007) 319-332.
[22] H. R. Sun, W. T. Li; Positive solutions for nonlinear m-point boundary value problems on

time scales, Acta Mathematica Sinica 49 (2006) 369-380(in Chinese).

[23] J. P. Sun; Existence of solution and positive solution of BVP for nonlinear third-order dynamic
equation, Nonlinear Anal. 64 (2006) 629-636.

[24] Q. Yao; Existence and multiplicity of positive solutions for a class of second-order three-point

boundary value problem, (in Chinese) Acta Mathematica Sinica 45 (2002) 1057-1064.

Wei Han

Department of Mathematics, North University of China, Taiyuan Shanxi, 030051, China

E-mail address: qd hanweiwei1@126.com

Yonggui Kao

Department of Mathematics, Harbin Institute of Technology, Weihai Shandong 264209,

China
E-mail address: kaoyonggui@sina.com


	1. Introduction
	2. Preliminaries
	3. Main results
	4. Some examples
	References

