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EXISTENCE AND UNIQUENESS OF NONTRIVIAL SOLUTIONS
FOR NONLINEAR HIGHER-ORDER THREE-POINT
EIGENVALUE PROBLEMS ON TIME SCALES

WEI HAN, YONGGUI KAO

ABSTRACT. In this paper, we study a nonlinear higher-order three-point eigen-
value problems with first-order derivative on time scales. Under certain growth
conditions on the nonlinearity, sufficient conditions for existence and unique-
ness of nontrivial solutions, which are easily verifiable, are obtained by using
the Leray-Schauder nonlinear alternative. The conditions used in the paper
are different from those in [4}[10} [2I]. To show applications of our main results,
we present some examples.

1. INTRODUCTION

In recent years, there has been much attention paid to the existence of positive
solution for second-order three-point and higher-order two-point boundary value
problem on time scales. On the other hand, p-Laplacian problems on time scales
have also been studied extensively, for details, see [3] [6], O] 12| T3], 14, [I5] 17} [19]
20, 211, 22| 23] and references therein. However, to the best of our knowledge, there
are not many results concerning three-point eigenvalue problems of higher-order on
time scales.

A time scale T is a nonempty closed subset of R. We make the blanket as-
sumption that 0,7 are points in T. By an interval (0,T), we always mean the
intersection of the real interval (0,7) with the given time scale; that is (0,7) N T.

Anderson [3] studied the following dynamic equation on time scales:

V(t) +alt)f(u(t) =0, te(0,T), (1.1)
u(0) =0, oau(n)=u(T). (1.2)
He obtained one positive solution based on the limits fo = lim,,_, o+ M and foo =

hmu_,OO £ He also obtained at least three positive solutions. Kaufmann [15] also
studied (|1.1)—(1.2)) and obtained finitely many positive solutions and then countably
many p051tlve Solutlons Luo and Ma [17], discussed the following dynamic equation
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on time scales:
uBV () +at) f(ut)) =0, te(0,T), (1.3)
u(0) = Bu(n), w(T) = au(n). (1.4)

They obtained results for the existence of one positive solution and for the existence
of at least three positive solutions by using a fixed point theorem and the Leggett-
Williams fixed point theorem, respectively.

We would also like to mention the results of Boey and Wong [06], Zhao-Cai Hao
[12] and Sun [23]. Boey and Wong [0] studied the following two-point right focal
boundary-value problems on time scales:

(=D)" YA () = ()P (Y, (0" (1), ¢ € [a,b]N'T. (1.5)
yA'(a)=0, 0<i<p-1, (1.6)
Y2 (o) =0, p<i<n-—I1, (1.7)

where n > 2,1 < p <n-—11is fixed and T is a time scale. Existence criteria are
developed for triple positive solutions for the problem 7 by applying fixed
point theorems for operators on a cone. Zhao-Cai Hao [12] considered the following
fourth-order singular boundary value problems:

eW(t) = Af(t2(t), te(0,1), (1.8)
z(0) =xz(1) =0, 2"(0)=2"(1)=0, (1.9)

where f € C'((0,1) x (0,00) x [0,00)), A > 0 is a parameter. He determined values
of A for which there exist positive solutions of the above boundary value problems,
and for A = 1, he gave criteria for the existence of eigenfunctions.

The present work is motivated by a recent paper Sun [23], where the following
third-order two-point boundary-value problem on time scales is considered:

uBSAA (1) + f(t,u(t),u™ (1) =0, t€ a,a(b)], (1.10)
u(a) = A, u(o(b)) =B, u??(a) =C, (1.11)

where a,b € T and a < b. Existence of solutions and positive solutions is established
by using the Leray-Schauder fixed point theorem. However, in the existing litera-
ture, very few people have considered the case where the nonlinear term contains
the first-order derivative.

In this paper, we are concerned with the existence of nontrivial solutions of the
following higher-order three-point eigenvalue problems with the first-order deriva-
tive on time scales:

uA" () + A f(tut), u®(t) =0, te(0,T), (1.12)
u(0) = au(n), u(T) = Pu(n), (1.13)
WA (0)=0 fori=1,2...,n—2, (1.14)

where A > 0 is a parameter, n € (0, p(T")) is a constant, a, 8 € R, f € Cy4([0,T] x
R xR,R), R=(—o00,+00), n > 2.
We want to point out that when T = R and A = 1, f becomes a
boundary-value problem of differential equations and has been considered in [I6].
The aim of this paper is to establish simple criteria for the existence of nontrivial
solutions of the problem 7. Our results are new and different from those
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of [3, @, 15, [I7]. Particularly, we do not require any monotonicity and nonnegative
on f, which was essential for the technique used in [3] 9} [15] [I7].

2. PRELIMINARIES

For convenience, we list the following definitions which can be found in [2, 4L [7, [§].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R.
For t < supT and r > inf T, define the forward jump operator ¢ and backward
jump operator p, respectively, by
o(t)=inf{reT |7 >t} €T,
p(ry=sup{r €T |r<r}eT.
for all t,r € T. If o(t) > t, t is said to be right scattered, and if p(r) < r, r is said

to be left scattered; if o(t) = t, ¢ is said to be right dense, and if p(r) = r, r is said
to be left dense.

Definition 2.2. Fix t € T. Let f : T — R. The delta derivative of f at the
point ¢ is defined to be the number f2(t) (provided it exists), with the property
that, for each € > 0, there is a neighborhood U of ¢ such that

[f(@(t)) = f(s) = F2()(o(t) = 5)| < elo(t) = 5],
for all s € U. Define f2"(t) to be the delta derivative of fAn_l(t); ie., fA7(t) =
(A" (@),

Definition 2.3. A function f is left-dense continuous (i.e. Ild-continuous), if f
is continuous at each left-dense point in T and its right-sided limit exists at each
right-dense point in T. If F2(t) = f(t), then define the delta integral by

/ F(s)As = F(t) — F(a).

For the rest of this article, we denote the set of left-dense continuous func-
tions from [0,7] X R x R to R and from [0,T] to R by Cj4([0,7] x R x R,R) and
C14([0, T], R), respectively.

Let X = Ci4([0,T],R) be endowed with the ordering x < y if z(¢t) < y(t)
for all t € [0,T], and [lu| = max,cjo,r]|u(t)]. Now we introduce the norm in
Y = Clld([ovT]vR) by

A A
= + = ma t)| + ma t)|.
||U||1 ||UH ||U || te[O,)Y(“] ‘“( )| te[O,)I(“] ‘U ( )|

Clearly, it follows that (Y, ||u||l1) is a Banach space.

Lemma 2.4. Suppose that d = (1 — a)T" ! — (8 —a)y™~! # 0. Then fory €
C14([0,T],R), the problem

ut (t) +y(t) =0, te(0,T), (2.1)
w(0) = au(n), u(T)= Pu(n),
w2 0)=0 for i=1,2,...,n—2, (2.3)
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has a unique solution

u(t) :é [an™ ™' +t" 71 (1 - a)] /0 %y(s)As —/0 %y(s)As

1 n— n— K (77 — s)n71
+o [—aT" ! + (a— B)t" 1] /0 Wy(s)As
(2.4)
Proof. From 7 we have
t s n—1 n—1 .
u(t) = —/0 (t(n_)l)!y(s)As + ; Ait' + B. (2.5)

Since uAi(O) =0fori=1,2,...,n—2,0onegets A;, =0fori=1,2,...,n—2. Now,
we solve for A,,_1 and B. By u(0) = au(n) and u(T) = Bu(n), it follows that

B=—-« /77 My(s)&s +ad, "'+ aB (2.6)
0 (TL — 1)' ’

and

T T — g)n—1
— / ((TLS)l)'y(S)AS + AnflTnil + B
0 - .

n o n—1
= —ﬂA (n(n_S)l)!y(S)AS—FﬂAn_lnnl + 8B.

Solving the above equations (2.6 and (2.7, we get

Anr = 3w [ a0+ -y [T Em Ay,

d n—1)1 "7 o (-1
(2.8)
g [T (T ="t net [T (n—s)" "
B = ] {77 /0 Wy(s)As -T /0 Wg(s)As} . (2.9)

Substituting (2.8) and (2.9) in , one has
_1 n—1 n—1 T (T_S)n71 ¢ (t_s)n71
) =gfon w1 —a) [ Gy as— [ G as
n—1

" (n —
n—1 n—1 n S)
It is easy to see that BVP u2" (t) = 0, u(0) = au(n), w(T) = Bu(n), ud' (0) =0,
for i = 1,2,...,n — 2, has only the trivial solution. Thus u in (2.4)) is the unique
solution of (2.1)), (2.2) and (2.3). The proof is complete. O

+

S

To prove our main result, we need a useful lemma which can be found in [I1].

Lemma 2.5 ([11]1. Let X be a real Banach space and Q be a bounded open subset
of X,0€Q, F:Q— X be a completely continuous operator. Then either there
exist x € OQ, A > 1 such that F(x) = A\x, or there exists a fized point x* € Q.
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3. MAIN RESULTS

For convenience, we introduce the following notation. Let

(t—s)n ! (t—s)n !

(P(t7 S) = (TL — 1)| (p(S) + (J(S)), Tﬁ(t’ S) = Wr(s)v

. @al ezt (2lal + )T [
M = [1 + W]A QD(T,S)AS-F |d/0 @(U,S)AS

(|l + )T =2 Tn— S A Tn-1 5
I [ nemaast [ E—emaas

a n—2 n
(|+|f||)T/ (n—1)p(n, s)As,

N O O L @l + 18T
N=[1+ ‘d| /w —a /wn,

|d|
(ol + DT 1" 1ygi 0

0
Our main result is stated as follows.

Theorem 3.1. Suppose that f(t,0,0) £ 0, t € [0,T], d # 0 and there exist non-
negative functions p,q,r € L*[0,T] such that
[f(tu,0)| < p()|u| + q@)|v]| +7(t), a e(t,u,v) €[0,T] xR xR, (3.1)

and there exists tg € [0,T] such that p(tg) # 0 or q(to) # 0. Then there exists a
constant \* > 0 such that for any 0 < X\ < X\*, the problem (1.12))—(1.14) has at
least one nontrivial solution u* € Clld([O T] R).

Proof. By Lemma [2.4 n the problem ([1.12) - ) has a solution v = u(t) if and
only if w is a solution of the operator equatlon

T (p_ gn-1
u(t) = g [an™ 1+ (1 - a)] /0 (T(n_)l)!f(s,u(s%uﬁ(s))As

Th-1
/0 (n— D)(T, s)As+/O (T ) As

t — 3 n—1
f)\/o (t(n_)l)!f(s,u(s),uA(s))As

n—1

A U
2T Tn—l _ tn—l / N2y
—I—d[a + (o= B)t" ] Nrry
=: Fu(t).
in Y. So we need only to seek for a fixed point of F' in Y. Applying Arzela-Ascoli
theorem on time scales [I] and the Lebesgue’s dominated convergence theorem on
time scales [5], we can conclude that this operator F' : ¥ — Y is a completely
continuous operator [22].
Since | f(¢,0,0)| < r(t), a.e. t € [0,T], we know fOT (T, s)As > 0, from p(ty) # 0
or q(tg) # 0, we easily obtain fo (T,s)As >0,s0 M >0, N> 0. Let

N
M’

f(s,us),u(s))As

Q={ue Clld[(),T} ully < m}.

m =
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Suppose u € 982, u > 1 are such that Fu = pu. Then
pm = pllully = [[Fully = [ Full + [[(Fu)?].
Since
|Fu|| = max |Fu(t)]
t€[0,T]

T 787171
<Gl -a)| [ L= (s, uls), ud (5))| s

(n—1)!
w0 S)nf £, uls), u%»ms
+ }2[*(11—'"71 S) UA(S))|AS}

A2]a] + )T T(T—s)
<ol / sl )]s

T (T =5
o [ )\f(SU() As))lAs

A2lal + [B)T" (7 (n— 5)"
+ AT [P0 ). )

B (2la| + 1)Tn 1 T(T—s)” 1
-ab+ SR =1

A2la| + )T (7 (= )"

+ AT [P0 s )

(@2lol + )T (T (T 9
<l HEE D [ O e (o) + o)l 0)] + ()]s

A2lal + 8T [ (n—s)nE .
+ AT [0 ) u(o)] + a9 + ()]s

< Al {1+ EEIE ) I ) + atoas

o n—1 n _g)n—1

2lal + )11 T — g)n—1
+)\{[1+( o] |d> ]/0 ((n)l)' r(s)As
2la +|8)T" " [ (n—s)" "
* d /0 eSSt

n—1 T
< Al {1+ EAEIE) [Coraas

2laf + [Tt "
+ ] / w(n, )As}

(2la| + )T
+A {1+ |O‘|Td / W(T, 5)A

n—1
2|a+|liﬁ||T /MSAS

£ (s,u(s), u ()| As
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and

1(Fu) 2|

= Fu)®(t
tg%gg]l( u)= (1)

T — g1
= max [F0 - | (T(n_)w F(5,u(s), u® (3))As

t — 3 n—2
—)\/0 (t(n _)2)! f(s,u(s),uA(s))As

>\ n— (77 - S)n !
+ 20—y L H(s )1 () s
< =" s,

/
M|ef + )12 (T(T
|d| / (n—2)!
+A/ £ s, uls), u () As

Aol + \ﬁI)T” 2T —s)" !
|d| /0 (n—2)!

(s), u™(s))|As

£ (s,u(s),u® ()| As

o n—2 T — s n—1
Al |+|d1|>T / <T(n_>2)! [p(3) u(s)| + a(5)[u>(s)] + r(s)] As

] <T(n‘_)2), [p(3)]u(s)| + g(s)|u’ (5)] +r(s)] As

o n—2 n — 3 n—1
LA |+|df|>T / <"(n_>2)! [p(5)[u(3)| + a(s)u (5)] + 7(5)] As

(o) + 1)T—2 T(T—s”_1
R

T s n—2
o [ S )+ a(e)as

(lol +18)T"2 7 (5= 5)*
i |d| /0 (n—2)! (p(s) + q(S))As}

a n—2 T _ g)n—1 T _ g2
+ )\{ (loj + DT /0 T=5s) r(s)As +/O T=s) r(s)As

(p(s) + q(s))As

[ =2 (n—2)
Ry S
_ A|u||1{W /OT(n —1)(T, 5)As + /OT B (T, 5)As
# QAT = 1pt )85
+ A{W}l')T"_z /OT(n —1)(T, 5)As + /OT ;:1¢(T, $)As

N n—2 n
e e
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then
| Fulli < Allul[1M + AN.
Choose \* = ﬁ Then when 0 < A < \*, we have

N
pm = pluly = | Fully < 5o Mlfull +

Consequently,

Sy N
PSSt o

This contradicts 4 > 1. By Lemma F has a fixed point u* € Q. Since
f(t,0,0) £ 0, then when 0 < A < \*, the problem (1.12))—(1.14]) has a nontrivial
solution w* € C},([0,T],R). This completes the proof. O

If we use the following stronger condition than (3.1]) to substitute (3.1]), we obtain
the following Theorem.

Theorem 3.2. Suppose that f(t,0,0) £ 0, t € [0,T], d # 0 and there exist non-
negative functions p,q € L*[0,T] such that

|f(tur,v1) = f(t, u2,v2)| < p(t)|ur — ual + q(t)|v1 — val, (3.2)

a.e. (t,u;,v;) €[0,T]xRxR (i =1,2), and there exists ty € [0,T] such that p(ty) #
0 or q(ty) # 0. Then there exists a constant \* > 0 such that for any 0 < A < \*,
the problem (|1.12] - has unique nontrivial solution u* € C},([0,T],R).

Proof. In fact, if uy = v9 = 0, then we have
|f(tur, v)] < p(O)|wa| + q(®)|vr| + [f(£,0,0)],  a. e (tur,v1) €0, 7] xRxR.

From Theorem we know the problem (1.12)—(1.14) has a nontrivial solution
u* € CL([0,T],R). But in this case, we prefer to concentrate on the uniqueness of

the nontrivial solution for the problem (1.12] - Let F be given in Theorem
We shall show that F is a contractlon On the one hand,

||FU1 — FUQH

= F Fus(t
tler[lg>;]| uy(t) — Fuz(t)]

T 5 n—1
= s[5 o= 400 ) / %[ﬂs,ul(s),u?(s))

— f(s,u2(s),uz'(s))] As

t — s n—1
B A/o (t(n—)l)' [£ (s, u(s),u(s)) = f(s,ua(s), us'(s))] As

3T o] [T s (9.8 (9)

— fls,us(s), us () }A \

n—1 T nl
< (2|Q|L|1T / n—1 | £(5,u1(s), uf (5)) = f(s,uals), us (s))| As

+A/O (< )1>' |f(s,ua(s),up (5)) — f (s, ua(s), up' ()| As
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A2la| + 8T 7
|d]| /O n—l , \f s,u1(s), ulA(s>)_f(37U2(S)7u2A(S))’A5

< (2|Q|L|1)Tn / (T(n—)l) [p(s)[ua(s) = ua(s)] +q(s)[uf (s) — ug'(s)|] As

+A/O (jgn__s)f;x [p(s)lur(s) = wa(s)| + a(s)[uf (s) = uz' (s)]] As

a n—1 n — 8 n—1

+q(s)|ut (s) — ug'(s)|] As

n—1 T — g1
< Alluy — u2\|1{ [M + 1} /0 (T —s) (p(s) + q(s))As

i (n—1)!
ol + BUT" 7 (1~ 5"
! |d| /0 (n—1)! (p(s) + Q(S))AS}
« n—1 T
)\||u1u2|1{[(2|7d1|)T+1}/0 o(T, s)As

+ —(2|a\ +||dﬁ||)T"_ /0?7 o(n, S)As}.

On the other hand,

[(Fup)® = (Fug)®||
= max |(Fup)2(t) — (Fuz)2(t)]

te[0,T
A T T — n—1
= tg%(;)i)%] ‘E(l — a)tn72/0 ((n_S)Q)l [f(s,ul(s),ulA(s))

—f(s U2( ) ( ))}AS
(s, un(s),ut () — f(s,ua(s), uz' ()] As

n—1

+a<a gy / <?;;_8>2)! (7o 1 (), () — 15, ua(s), w3 ()]

Mo+ 1D)T=2 (T (T — 5)"1
= |d] /0 (n—2)! ’f(svul(s)’ulA(s))_f(57U2(8),u2A(8))‘A5

TM SUSUAS — SUSUAS S
n [ s (). () = s, () 4))| &

)\(|a| + |/6|)Tn72 ! (77_5)"71 A — J(S,u2(s UA S S
* |d]| /0 (n—2)! | f(s,u1(s),ui(s)) — f(s,uz(s),us' (s))| A

a n—2 T — g1
< X +|d1|>T / (T(n_)z)! [Pl (5) — us(s)| + a(s) s (s) — s (5)]] As

$)|u1(s) —ua(s)| + q(s)|ut (s) — uf' (s)|] As

Ial +||dﬁ||)Tn /O" (n(n—j);); [p(s)|ur (s) — ua(s)]
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+a(s)[uf (s) — ug'(s)[] As

(Jaf +1)T"2 T(T—s)”*1
i A

< Al = a1 (p(s) + a(s))As

T (7 _ gyn—2
[ 0+ a)as

(n
(lol + [8)T"2 [ (- 5)!
" |d]| /0 (n —2)! (p(s) + q(s))As}
= - M r _ T, _q
= A|ug u2||1{ |d| /0 (n 1)80(T,8)As—|—/0 T_sgo(T,s)As

n
| =gt s)as)
|d] 0
Then
|Fui — Fug|1 < Mur — ual[1 M.

If we choose \* = ﬁ Then, when 0 < A < A\*, we have

1
HFul —FU2||1 < §||’U,1 —’U,2||1.

So F is indeed a contraction. Finally, we use the Banach fixed point theorem to
deduce the existence of unique solution to the problem (1.12[)—(1.14]). O

Corollary 3.3. Suppose that f(¢,0,0) 0, t € [0,T], d # 0 and

0< L= limsup M

< < 4o00. (3.3)
| 4| v|— o0 tE[0,T] |u| + |’U|

Then there exists a constant \* > 0 such that for any 0 < A < \*, the problem
(T.12)(1.14) has at least one nontrivial solution u* € C},([0,T],R)

Proof. Let ¢ > 0 such that L +1 —¢ > 0. By (3.3), there exists H > 0 such that
[f(tu,0)] < (L+T1=e)(jul+v]), |ul+[v]=H, 0<t<T.

Let K = maxec(o,7), ju|+|v|<H |f(t,u,v)]. Then for any (t,u,v) € [0,T] x R x R, we
have

|f(tu,v)] < (L+1—=¢e)(ul + v]) + K.
From Theorem m we know the problem (1.12)—(1.14)) has at least one nontrivial
solution u* € CL([0,T],R). O

Corollary 3.4. Suppose that f(¢,0,0) Z0, t € [0,T], d # 0 and

t
0< L= limsup max M < +00,
Ju|-+|v]—4oo0 tEIOT] [yl
or
t
0< L= limsup max M < +o0.
Jul+]v]|—>+oo tET]  [v]

Then there exists a constant \* > 0, such that for any 0 <

A < X*, problem
(L.12)-(1.14) has at least one nontrivial solution u* € C},([0,T],R)



EJDE-2008/58 EXISTENCE AND UNIQUENESS OF SOLUTIONS 11

We remark that Corollaries[3.3]and [3-4]include the case that f is jointly sublinear
at (—oo, +00); that is,

t t
limsup ~ max 17t w, 0)] =0 or limsup max [£(t,u,v)] =0
|+ |v]|—+o00 tE[0,T] |u| + |U| ||+ |v| —+o0 tE[0,T] ‘U|
t
or limsup max M =0.
Jul+[o|—+oc tE.T] [v]

4. SOME EXAMPLES

In the section, we illustrate our results, with some examples. We only study the
case T =R and (0,7) = (0,1).

Example 4.1. Consider the forth-order eigenvalue problem

u® 4+ ) (z;ii_nlt —t(cosu')? + (1 + t)> =0, te(0,1), (4.1)
w0 = —u(). D) =ul). WO)=0 wO=0 @2

Set a=—1,8=1,n=3,n=4, f(t,u,u) = 425 —t(cosu')? + (1 + 1),

d=(—a)T" — (B—a) ™ = (14 1)- 1 (14 1) () = 1 >0,
t
p(t) = T q(t) =t, r(t) =t
Noticing that
ut sint ,
oy — — tcosu )2+ t(L+ )| < p(t)|ul + q(t)|u/| + r(t),
it follows from a direct calculation that
(st =)ttt s C(t—s)?, s
wlts) = (n—1)! (p(s) +4(s)) = 4—1) (Tt ="% (Ea*
2la| + )T, (T 2lal + |B)TL [
M :[1 + M} / o(T, s)ds + M/ o(n, s)ds
|d| 0 |d| 0
(lof + 1) 2 /T /T n—1
+ d ; (n—1)p(T,s)ds + ; T_Sap(T, s)ds
al +|p)Tm=2 ("
T [ 1ot syas
0
_ (2x141)-1471 /1(1—3)3 s
_{1—1— 7 ; g (52+1+s)ds
(2x1+41)- 141 /% L-s)? s
+ 7 ; 5 (52 1 + s)ds
(1+41)-142 /1 (1-5)3 s /1 (1-5)?2, s
+ 7 | 5 (s2+1+8)d5+ ; 5 (82+1+s)ds
(141)- 142 /% (A —s? s
+ 7 ; 5 (82 1 + s)ds
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Choose \* = 5% = 2.8367. Then by Theorem|3.2} we know the problem (£1)-(Z.2)
has a unique nontrivial solution u* € C1([0,T],R) for any X € (0, 2.8367].

Example 4.2. Consider the third-order eigenvalue problem

w4+ A (% — cos u’) =0, te(0,1), (4.3)
1 1 3 1
S 1) = Su(= "(0) = 4.4
u(0) = Tu(3). u(t) = 2u}), w(O)=0 (1.4
Seta—i,ﬂ:%,n—%,nz&f(t,u,u’):%—cosu’,
1 3 1.1 5
_ _ n—1 _ _ n—1 _ S W I Eod SR S WA £ St S
d=(1-ar - @-ap == hoe oGm0

p(t) = 3, q(t) = 1. Noticing that
u u
’?1 — cosuj — ?2 + cosup| < p(t)ur — ua| + q(t)|u) — ),

it follows from a direct calculation that

— )"t _g)3-1 42
ot )= G2 ) 400) = (2 ) = 525

_ Q@laf+ 1)t (T 2l + [B)T " 7
M —[1 + —\d| ] /0 o(T, s)ds + —|d| /0 w(n, s)ds

al+ 1)1 2 (T Tn-1
(|||d|) / (n—1)p(T,s)ds + / T S(p(T, s)ds
0 0

(|O‘|+:S|>T"_ /On(n — 1)g(n, s)ds

2x341)- 1371 r13(1 )2
=[1+ ;i ] 1
8 0
r 1
+3).131 /2 3(3 — )2
0 4

PRI i /1 3(1—8>2d5+/1 31-s)
s 0 2 0 2

ds

ds

+
=

5
8

= 2.7625.

Choose \* = ﬁ = 0.1810. Then by Theorem problem (4.3)-(4.4) has a unique
nontrivial solution u* € C*([0,T],R) for any A € (0,0.1810].

Example 4.3. Consider the third-order eigenvalue problem

u" + A (fu% + t2sin Vud 4+ u'? +£3(1 — t)eCOSt) =0, te(0,1), (4.5)
1 1
u(0) =2u(2). w(V) = (), w©) =0, (146)
Set,a =2, =1, :i,n:&

fltu,u) = —u? 4 2 sin Vot + uw? +13(1 — t)ecost,
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d=(1-a)I" " = (B-ay" ' =(1-2) 1" - (1- 2)(%)3—1 By,

It is obvious that
| —u? + 2 sin Vud + w2 +13(1 — )t

limsup max y = 0.
[+ ]u! | —+oo tE[0,T] |ul + [v/]

Chhoose e = 1. In this case, p(t) = 1, q(t) = . It follows from a direct calculation
that

— s n—1 s 3-1 s 9
ot =S +ao) = g+ 5 = S

) lTn—l T ) Tn—l n
BT, [ G P

a n—2 T T n —
N (||+|;|)T/O (n — 1)(T, 5)ds +/0 . iso(T, 5)ds
(|@|+|g||)T"‘ /O"(n — Dy, 5)ds

2x241)-1371 (1 (1—s)? 2x241)-1371 (7 (1 —s)?
LA /( o s 22241 /4(4 ) s
0 0

M

5 s 5
T6 2 76 2
9 1) - 1372 1 1
+%/ (175)2ds+/ (1—s)ds
16 0 0
1
(2+1)-132 [i1
+ - 1 (Z — S)ZdS
16 0

= 2.6528.

Choose \* = 717 = 0.1885. Then by Corollary we know the problem (4.5)—(4.6))
has a unique nontrivial solution u* € C1([0,T],R) for any X € (0, 0.1885].

Remark 4.4. The boundary-value problem (1.12)—(1.14)) includes (BVP) (1.1))-
[ of [3 15, (T3)-(TF) of [17).
For the case where a = =0, T=R, A =1, (BVP) (1.12)—(1.14) becomes

ul™ +a(t) f(u) =0, te€(0,1),
u(0)=u(1)=0, i=0,1,2,...,n—2,
The above problem was studied by Eloe and Henderson [10].

As usual we write

t t
max foo := lim max f(tu , min foo := lim min D)
u—oote[0,7] U u—o0t€[0, 7] U
t t
max fo ;= lim max it ,u)7 min fo ;= lim min 16w
u—0+ t€[0,T] u u—0+ t€[0,T] U

Function f in [3 17, [18] is assumed to be superlinear (max fy = 0 and max f,, = 00)
or sublinear (max fo = 0 and max fy = 00).
The condition:

- t
0 < fo = limsup max M<L7 l< f =liminf min
u—0 t€[0,T] U =00 u—oo te[0,T) u
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or

_ t t
0 < fo = limsup max M<L, I < f =liminf min f(t,u)
u—oo t€[0,T] U =0 u—0 t€[0,7] U

< oo, (4.8)

is required in [22] [24], where L and [ are given. In this paper, we do not assume that
nonlinear term f satisfy either superlinear (sublinear) conditions, or the conditions
(4.7) and . Consequently, in view of different aspect, we can say that main
results in [3, 10} (17, 18, 22, 24] do not apply to (£.1)—(4.3). The sufficient conditions
in this paper ,which are easily verifiable, have a wider adaptive range. These have
an important of leadings significance in both theory and application of boundary
value problems.
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