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ALMOST AUTOMORPHY OF SEMILINEAR PARABOLIC
EVOLUTION EQUATIONS

MAHMOUD BAROUN, SAID BOULITE, GASTON M. NGUEREKATA, LAHCEN MANIAR

ABSTRACT. This paper studies the existence and uniqueness of almost auto-
morphic mild solutions to the semilinear parabolic evolution equation

u'(t) = At)u(t) + f(t,u(t),
assuming that the linear operators A(-) satisfy the ’Acquistapace—Terreni’ con-

ditions, the evolution family generated by A(-) has an exponential dichotomy,
and the resolvent R(w, A(+)), and f are almost automorphic.

1. INTRODUCTION

In this work we investigate the almost automorphy of the solutions to the para-
bolic evolution equations

u'(t) = A(t)u(t) + g(t), tER, (1.1)
u'(t) = At)u(t) + f(t,u(t), teR, (1.2)

in a Banach space X, where the linear operators A(t) satisfy the ‘Acquistapace—
Terreni’ conditions and that the evolution family U generated by A(-) has an expo-
nential dichotomy. The asymptotic behavior of these equations was studied by sev-
eral authors. The most extensively studied cases are the autonomous case A(t) = A
and the periodic case A(t+T) = A(t), see [3 [ [, 13, 14, 22| 26] for almost peri-
odicity and [6] 10, 12, 16l 20, 21] for almost automorphy. Maniar and Schnaubelt
[19] studied the general case, where some resolvent R(w, A(-)) of A(-) is only almost
periodic.

In this paper, we follow the idea of [I9] and assume that the function ¢ —
R(w, A(t)) € L(X), for w > 0, is almost automorphic. We show first the almost
automorphy of the Green’s function corresponding to U, following the strategy of
[19] which consists in using Yosida-approximations of A(-). This result will yield
the existence of a unique almost automorphic mild solution v : R — X of
given by

u(t) = /RF(t,T)g(T) dr, teR, (1.3)
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for every almost automorphic function g. Using an interpolation argument, as in
[5], we show that the solution u of given by is also almost automorphic
in every time invariant interpolation space X,, 0 < a < 1.

Finally, by a fixed point technique, if the semilinear term f : R x X, — X is
almost automorphic and globally small Lipschitzian; i.e., the Lipshitz constant is
small, we show that there is a unique almost automorphic mild solution on X,
to the semilinear parabolic evolution problem . This is an extension of [20}
Theorem 3.1].

To illustrate our results, we also study an example of a reaction diffusion equation
with time-varying coefficients. If the coefficients and the semilinear term f are
almost automorphic, we show that the solutions are almost automorphic.

2. PREREQUISITES

Aset U={U(t,s):t>s, t,s € R} of bounded linear operators on a Banach
space X is called an evolution family if

(E1) U(t,s) =U(t,r)U(r,s) and U(s,s) = I for t > r > s and

(E2) (t,s) — U(t,s) is strongly continuous for ¢ > s.

We say that an evolution family U has an exponential dichotomy if there are
projections P(t), t € R, being uniformly bounded and strongly continuous in ¢ and
constants § > 0 and N > 1 such that

(1) U(t,s)P(s) = P(t)U(t,s),

(2) the restriction Ug(t,s) : Q(s)X — Q)X of U(t, s) is invertible (and we

set Ug(s,t) :=Ug(t,s)™1),

(3) U, s)P(s)| < N2t~ and [[Ug(s, )Q(1)]| < Ne 20
for t > s and t,s € R. Here and below we let Q(-) = I — P(-). Exponential
dichotomy is a classical concept in the study of the long—term behaviour of evolution
equations; see e.g., [8, @, [IT], 18], 7, 23, 25]. If U has an exponential dichotomy,
then the operator family

F(t ) U(ta S)P(S), t>s, t,s€ ]Ra
,8) =
—Ug(t,s)Q(s), t<s,t,seR,

is called the Green’s function corresponding to U and P(-). If P(t) = I for t € R,
then U is exponentially stable. The evolution family is called ezponentially bounded
if there are constants M > 0 and v € R such that ||U(t,s)|| < Me %) for t > s.
In the present work, we study operators A(t), t € R, on X subject to the following
hypothesis introduced by P. Acquistapace and B. Terreni in [2].
(H1) There is an w > 0 such that the operators A(¢), t € R, satisfy 34 U {0} C
p(A(t) —w), [RO\ A(t) = w)|| < ], and
[(A(t) = w)R(A, A(t) — w) [R(w, A(t)) = R(w, A(s))][| < L[t — s[*|A]™"
fort,s € R, A € ¥y := {A € C\{0} : |arg A\| < ¢}, and constants ¢ € (5, 7),
L,K >0, and p,v € (0,1] with p+v > 1.
This assumption implies that there exists a unique evolution family U on X such
that (¢,8) — U(t,s) € L(X) is continuous for ¢t > s, U(-,s) € C((s,00), L(X)),
U (t,s) = A(t)U(t, s), and

lA® Ut s <O (t—s)7" (2.1)
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for0<t—s<1,k=0,1,0<a< u, z € D((w— A(s))%), and a constant C
depending only on the constants in (H1). Moreover, 0fU(t,s)x = —U(t, s)A(s)z

for t > s and x € D(A(s)) with A(s)z € D(A(s)). We say that A(-) generates U.
Note that U is exponentially bounded by ([2.1) with k& = 0.
We further suppose that

(H2) the evolution family U generated by A(:) has an exponential dichotomy
with constants N,0 > 0, dichotomy projections P(t), t € R, and Green’s
function T.

For the sequel, we need the following estimates, see [5] for the proof.

Proposition 2.1. For every 0 < a < 1, we have the following assertions:

(i) There is a constant c(a), such that
UtsPsa:tScoze_%(t_s)t—s_o‘x‘ 2.2
U, s) ;
(i) there is a constant m(«), such that
1Tq (s, )R < m(a)e x| (2.3)
for every x € X and t > s.

We need to introduce the following definition, and we refer to [2I] for more
information.

Definition 2.2 (S. Bochner). (i) A continuous function f : R — X is called almost
automorphic if for every sequence (0, )nen there exists a subsequence (s, )nen C
(0n)nen such that

lim  f(t+sp —sm) = f(t) foreachteR.

n,m—-+00

This is equivalent to

g()i= lm f(t+s,) and f(t)= T glt—s,)

n—-+oo

are well defined for each t € R. We note that f € AA(R, X).

(ii) A function f : R x Y — X is said to be almost automorphic if it satisfies
the following conditions: f(-,y) is almost automorphic for every y € Y and f is
continuous jointly in (¢,z). We note f € AAR x Y, X).

The function ¢ in the definition above is measurable, but not necessarily con-
tinuous. It is well-known that AA(R, X) is a Banach space under the sup-norm

Il fllaam,x) = supseg [|.f ()]

3. MAIN RESULTS

In this section, we study the existence of almost automorphic solutions to the
semilinear evolution equations
W (1) = A®)u(t) + f(tu(t)), tER, (3.1)
where A(t),t € R, satistfy (H1) and (H2), and the following assumptions hold:
(H3) R(w, A()) € AA(R, L(X));
(H4) there are 0 < a < 3 < 1 such X! = X,,, t € R, X}, = Xp, t € R, with
uniform equivalent norms;
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(H5) the function f : R x X, — X belongs to AA(R x X,,X) and is globally
small Lipschitzian; i.e., there is a small K¢ > 0 such that

| f(t,u) — f(t,v)]| < Kfllu—v||o forallteR and u,ve X,.

By a mild solution of (3.1) we understand a continuous function u : R — X,
which satisfies the following variation of constants formula

u(t) = U(t, s)u(s) + /t U(t,o)f(o,u(o))do forallt>s, t,seR. (3.2)

To achieve the goal of this section, we show some intermediate results. Let us define
the Yosida approximations A, (t) = nA(t)R(n, A(t)) of A(t) for n > w and ¢t € R.
These operators generate an evolution family U,, on X. It has been shown in [I9]
Lemma 3.1, Proposition 3.3, Corollary 3.4] that assumptions (H1) and (H2) are
satisfied by A, (-) with the same constants for every n > ny.

In the following lemma, we show that the Yosida approximations A, (-) satisfy
also assumption (H3) for large n. The formulas on the resolvent used in the proof
are taken from [19].

Lemma 3.1. If (H1) and (H3) hold, then there is a number ny > ng such that
R(w,An(")) € AAR, L(X)) for n > ny.

Proof. Let (s])ien be a sequence of real numbers, as R(w, A(-)) is almost automor-
phic, there is a subsequence (s;);en such that

[ R(w, At + st = se) — R(w, A@)] =0, (3-3)

for each t € RIf n > ng and |arg(A —w)| < ¢, we have

R(w, An(t+ 81 — sk)) — R(w, Ap(t))

__n (R( wn ,A(t—i—sl—sk))—R( v A(t)))

(w+n)2\ \w+n w+n’
_ R(w, A(t o R(w, A(t ! (34)
fm (w, A( +szfsk))[ - (w, A( +sl—sk))]

 (w+n)?

We can also see that

w+n

R(w, A(t))[1 - R(w, A(t))] .

w+n

22

w+n

for n > n; := max{ng,2wK} and s € R. In particular,

I[1- = Rlw A)] T < 2. (3.5)

Hence, implies
[R(w, An(t + 51— sx)) — R(w, An(t))|
< 2[|R(w, A(t + 51 — s1)) — R(w, (1))

K w? -1 w?

+ R(w, A(#)] |
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Employing (3.5) again, we obtain

w2 —1 w2 —
11— o nR(WaA(t +s—sp)] - [l 0T nR(w,A(t))] 1||
<41 = E =R At + s - )] - [1- =R, A0)] |

<Aw||R(w, A(t + s1 — 1)) — R(w, A(1))]].

Therefore,
[R(w, An(t + 51— sx)) — R(w, An(t))]] (3.6)
< (24+4K)|R(w, A(t + 51 — si)) — R(w, A(1))]| '
for n > nqy and t € R. The assertion thus follows from . O

The following technical lemma is also needed.

Lemma 3.2. Assume that (H1)- (H3) hold. For every sequence (s))ien € R, there
is a subsequence (81)ien such that for everyn > 0, and t, s € R there isl(n,t,s) >0
such that

T (t+ 81 — 51,58+ 81— s1) — Dn(t, 8)|| < en’n (3.7)
for a large n and 1, k > 1(n,t,s).

Proof. Let a sequence (s])ieny € R. Since R(w, A(-)) € AA(R, X), then we can
extract a subsequence (s;) such that

[R(w, A(o + 51 = s1)) — R(w, A(0))| = 0, k1 — oo, (3-8)
for all 0 € R. As in [19], we have

Tn(t+ s;— sk, s+ 81— sk) — Tnlt,s)

= [ Pt n(o) — R A +51 = 51)) = Rl A (o)
x (Ap(o + 81— 8x) — W)y (0 + 81 — 8k, 8 + 8 — 8) do

for s,t € R and [, k, € N and large n. This formula, the estimate (3.6) and [I9]
Corollary 3.4] imply

T (t + s; — sk, s+ 81— sk) — Tnl(t, s)||
< en? / e ¥t~ 1o | Rw, A, (0 + 51 — 5t)) — R(w, An(0))] do
R

< cn?(2 +4K) / e~ Fl=ole= 1=l R(w, Ao + 51 — s1)) — R(w, A(0))||do — 0,
R

as k,l — oo, by (3.8) and the Lebesgue’s Dominated Convergence Theorem. Hence,
for n > 0 there is I(n,t,s) > 0 such that

I (t+ 51— sk, 8 + 51— sk) — Tn(t, 8)[| < en’n
for large n and I, k > I(n,t,s). O

The almost automorphy of the Green function I' is proved in the next proposition.
An analogous result for the almost periodicity is shown in [19].
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Proposition 3.3. Assume that (H1)- (H2) hold. Let a sequence (s])ien € R there
is a subsequence (s;)1en such that for every h > 0

IT(t+s1— sk, s+ 80— sk) =Tt s)| =0, k,l—o00
for |t —s| > h.

Proof. Let (s])ien be a sequence in R, and consider the subsequence (s;) given by
Lemma 3.2} Let e > 0 and h > 0. There is ¢ > h such that

IT(t+ s; — skys+ 81 —sk) —T(t,9)|| <e
for [t —s| >t. and I, k € N. For h < |t — s| < ¢, by [19, Lemma 4.2] we have
IT(t+ 51— Sk, 5+ 51 — s5x) — Do (t 4 51— s, 5+ 51 — s3)|| < e(te)n™, (3.9)
IT(t, ) = Tt )| < et)n™" (3.10)
e

for all k,1 and large n. Let n. > 0 large enough such that n=¢ < () for n > ne.

Take 0 <7 < 5=—. Hence, by (3.9), (3.10) and Lemma one has
ID(t+ 81 — sk, s+ 81 — sk) —L(¢,8)| < QC(tE)TL;O +enPn<e

for all k,l > I(e,t,s). Consequently, |T'(t + s; — sk, s+ s; — sx) — (¢, 8)]] — 0 as
l, k — +oo for |t —s| > h > 0. O

Using Proposition we show the existence of a unique almost automorphic
solution to the inhomogeneous evolution equation

u'(t) = A(t)u(t) +g(t), teR. (3.11)
More precisely, we state the following main result.

Theorem 3.4. Assume (H1)—(H4). Then, for every g € AA(R,X), the unique
bounded mild solution u(-) = [, T(-,s)g(s)ds of (3.11)) belongs to AA(R, X).

Proof. First we prove that the mild solution u is almost automorphic in X. Let a
sequence (s))ieny and b > 0. As g € AA(R, X)) there exists a subsequence (s;)en
such that lim; 100 [lg(t + s1 — sx) — g(t)|| — 0. Now, we write

u(t+ 1 — sg) — u(t)

:/I‘(t—l—sl—sk,s—i—sl—sk)g(s—i—sl—sk)ds—/F(t,s)g(s)ds
R R

= /]Rl"(t + 51— sk, s+ 51— si)(g(s+ s; — sk) —g(s))ds
—|—/ (T(t+ s; — sk, s+ 81— sk) —L'(¢,9))g(s)ds
lt—s|>h

—|—/ (T(t+ 51— sk, s+ s1 — si) — (¢, 5))g(s) ds.

t—s|<h

For &’ > 0, we deduce from Proposition and (H2) that

[u(t+s1—s) —u(t)]| < 2N/Ref‘;‘tfs‘||9(S+Sz —sk) —g(s)llds + (5 &' +4Nh) gl

fort €e Rand I, k > I(e, h) > 0. Now, for € > 0, take h small and then ¢’ > 0
small such that

Jut + 50— s1) ~ul)]| <2V [ 0 gls 51 = ) — g5 ds + 5
R
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for t € Rand I, k > I(¢) > 0. Finally, by the Lebesgue’s Dominated Convergence
Theorem, u is almost automorphic in X.

Using the reiteration theorem, we obtain X, = (X, Xg)g, with 6 = a/3. By the
property of interpolation, we have

lu(t + 51 = s1) = u()]la
Boa «
< el B)llult + st — ) — w7 [ult + 51— s6) —u(®)ll5-
Using estimates in Proposition we can show that v is bounded in Xg. Hence,

lult + 5t — s1) — u(®)la < cla, Bt [ult + st — sx) — u(®)]| 7

B—«
[

(3.12)
< u(t + s, — sx) — u(t)

Since u is almost automorphic in X, u(t + s; — sg) — u(t), as [,k — oo, for t € R,

and thus z € AA(R, X,). O

As a consequence of Theorem and a fixed point technique, we achieve the
aim of the paper.

Theorem 3.5. Assume that (H1)-(H5) hold. Then (3.1) admits a unique mild
solution u in AA(R, X,).

Proof. Consider v € AA(R, X,) and f € AA(R x X, X). Then, by [2I, Theorem
2.2.4, p. 21], the function g(-) := f(-,v(-)) € AA(R, X), and from Theorem [3.4] the
inhomogeneous evolution equation

W (1) = A()u(t) + g(t), teR,
admits a unique mild solution u € AA(R, X) given by

u(t)z/Rr(t,s)f(s,v(s))ds, teR.

Let the operator F': AA(R, X,,) — AA(R, X,,) be defined by

(Fo)(t) :== /RF(t,s)f(s,v(s))ds for all ¢ € R.

Now we prove that F' has a unique fixed point. The estimates (2.2)) and ([2.3)) yield
¢

[Fz(t) — Fy(t)]a < c(a)/ eI (= 5) | f (s, y(s)) = f(s,2(s))ds

— 00

+oo
+d®[' e (s, y(s)) — F(s,2(5)) | ds.
< K¢ ()12 — ylloo

forall t € R and z, y € AA(R, X,). If we assume that Kyc'(a) < 1, then F has
a unique fixed poind u € AA(R, X,). Thus u is the unique almost automorphic
solution to the equation (3.1]). (]

Example 3.6. Consider the parabolic problem

Ou(t,x) = A(t,z, D)u(t,z) + h(t, Vu(t,z)), teR, ze€Q,

3.13
B(z,D)u(t,z) =0, teR, ze€d, ( )
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on a bounded domain Q C R™ with boundary 9 of class C? and outer unit normal
vector v(x), employing the differential expressions

A(t,z,D) = Z aki(t, x)0k0 + Z ai(t,x) Ok + ao(t, x),
k,l k

B(z,D) = Zbk(az) Ok + bo(x).
k

We require that ay; = a, and by, are real-valued, ay, ax, ag € Ct' (R, C(R)), bg, by €
C(09),

Z akl(tax) Ek gl > T)\§|27 and Zbk(x)yk(x) > ﬂ
k=1

k=1

for constants p € (1/2,1), ,p >0and all ¢ € R*, kIl =1,---,n,tcR, 2 €Q
resp. x € Q. (C}' is the space of bounded, globally Holder continuous functions.)
We set X = C(Q),

D(A(t)) ={ue [\ W2(Q) : A(t,, D)u € C(Q), B(-,D)u =0 on 99}

for t € R. It is known that the operators A(t), ¢ € R, satisfy (H1), see [I, 18], or [24]
Exa.2.9]. Thus A(-) generates an evolution family U(-,-) on X. Let o € (1/2,1)

and p > 5o Then X! =X, ={f € C**Q) : B(-,D)u = 0} with uniformly

equivalent constants due to [I8, Theorem 3.1.30], and X, — WpQ(Q) It is clear that
the function f(¢,u)(x) := h(t, Vu(x)), z € Q, is continuous from R x X, to X, and
if h is small Lipschitzian and almost automorphic then f is. Under the exponential
dichotomy of U(-,-) and almost automorphy of R(w, A(-)), the parabolic equation
has a unique almost automorphic solution.
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