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ALMOST AUTOMORPHY OF SEMILINEAR PARABOLIC
EVOLUTION EQUATIONS

MAHMOUD BAROUN, SAID BOULITE, GASTON M. N’GUÉRÉKATA, LAHCEN MANIAR

Abstract. This paper studies the existence and uniqueness of almost auto-

morphic mild solutions to the semilinear parabolic evolution equation

u′(t) = A(t)u(t) + f(t, u(t)),

assuming that the linear operators A(·) satisfy the ’Acquistapace–Terreni’ con-

ditions, the evolution family generated by A(·) has an exponential dichotomy,
and the resolvent R(ω, A(·)), and f are almost automorphic.

1. Introduction

In this work we investigate the almost automorphy of the solutions to the para-
bolic evolution equations

u′(t) = A(t)u(t) + g(t), t ∈ R, (1.1)

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (1.2)

in a Banach space X, where the linear operators A(t) satisfy the ‘Acquistapace–
Terreni’ conditions and that the evolution family U generated by A(·) has an expo-
nential dichotomy. The asymptotic behavior of these equations was studied by sev-
eral authors. The most extensively studied cases are the autonomous case A(t) = A
and the periodic case A(t + T ) = A(t), see [3, 4, 7, 13, 14, 22, 26] for almost peri-
odicity and [6, 10, 12, 16, 20, 21] for almost automorphy. Maniar and Schnaubelt
[19] studied the general case, where some resolvent R(ω, A(·)) of A(·) is only almost
periodic.

In this paper, we follow the idea of [19] and assume that the function t 7→
R(ω, A(t)) ∈ L(X), for ω ≥ 0, is almost automorphic. We show first the almost
automorphy of the Green’s function corresponding to U , following the strategy of
[19] which consists in using Yosida-approximations of A(·). This result will yield
the existence of a unique almost automorphic mild solution u : R → X of (1.1)
given by

u(t) =
∫

R
Γ(t, τ)g(τ) dτ, t ∈ R, (1.3)
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for every almost automorphic function g. Using an interpolation argument, as in
[5], we show that the solution u of (1.1) given by (1.3) is also almost automorphic
in every time invariant interpolation space Xα, 0 ≤ α < 1.

Finally, by a fixed point technique, if the semilinear term f : R × Xα → X is
almost automorphic and globally small Lipschitzian; i.e., the Lipshitz constant is
small, we show that there is a unique almost automorphic mild solution on Xα

to the semilinear parabolic evolution problem (1.2). This is an extension of [20,
Theorem 3.1].

To illustrate our results, we also study an example of a reaction diffusion equation
with time-varying coefficients. If the coefficients and the semilinear term f are
almost automorphic, we show that the solutions are almost automorphic.

2. Prerequisites

A set U = {U(t, s) : t ≥ s, t, s ∈ R} of bounded linear operators on a Banach
space X is called an evolution family if

(E1) U(t, s) = U(t, r)U(r, s) and U(s, s) = I for t ≥ r ≥ s and
(E2) (t, s) 7→ U(t, s) is strongly continuous for t > s.
We say that an evolution family U has an exponential dichotomy if there are

projections P (t), t ∈ R, being uniformly bounded and strongly continuous in t and
constants δ > 0 and N ≥ 1 such that

(1) U(t, s)P (s) = P (t)U(t, s),
(2) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible (and we

set UQ(s, t) := UQ(t, s)−1),
(3) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s)

for t ≥ s and t, s ∈ R. Here and below we let Q(·) = I − P (·). Exponential
dichotomy is a classical concept in the study of the long–term behaviour of evolution
equations; see e.g., [8, 9, 11, 15, 17, 23, 25]. If U has an exponential dichotomy,
then the operator family

Γ(t, s) :=

{
U(t, s)P (s), t ≥ s, t, s ∈ R,

−UQ(t, s)Q(s), t < s, t, s ∈ R,

is called the Green’s function corresponding to U and P (·). If P (t) = I for t ∈ R,
then U is exponentially stable. The evolution family is called exponentially bounded
if there are constants M > 0 and γ ∈ R such that ‖U(t, s)‖ ≤ Meγ(t−s) for t ≥ s.

In the present work, we study operators A(t), t ∈ R, on X subject to the following
hypothesis introduced by P. Acquistapace and B. Terreni in [2].

(H1) There is an ω ≥ 0 such that the operators A(t), t ∈ R, satisfy Σφ ∪ {0} ⊆
ρ(A(t)− ω), ‖R(λ, A(t)− ω)‖ ≤ K

1+|λ| , and

‖(A(t)− ω)R(λ, A(t)− ω) [R(ω, A(t))−R(ω, A(s))]‖ ≤ L |t− s|µ|λ|−ν

for t, s ∈ R, λ ∈ Σφ := {λ ∈ C\{0} : | arg λ| ≤ φ}, and constants φ ∈ (π
2 , π),

L,K ≥ 0, and µ, ν ∈ (0, 1] with µ + ν > 1.
This assumption implies that there exists a unique evolution family U on X such

that (t, s) 7→ U(t, s) ∈ L(X) is continuous for t > s, U(·, s) ∈ C1((s,∞),L(X)),
∂tU(t, s) = A(t)U(t, s), and

‖A(t)kU(t, s)‖ ≤ C (t− s)−k (2.1)
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for 0 < t − s ≤ 1, k = 0, 1, 0 ≤ α < µ, x ∈ D((ω − A(s))α), and a constant C
depending only on the constants in (H1). Moreover, ∂+

s U(t, s)x = −U(t, s)A(s)x
for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)). We say that A(·) generates U .
Note that U is exponentially bounded by (2.1) with k = 0.

We further suppose that
(H2) the evolution family U generated by A(·) has an exponential dichotomy

with constants N, δ > 0, dichotomy projections P (t), t ∈ R, and Green’s
function Γ.

For the sequel, we need the following estimates, see [5] for the proof.

Proposition 2.1. For every 0 ≤ α ≤ 1, we have the following assertions:
(i) There is a constant c(α), such that

‖U(t, s)P (s)x‖t
α ≤ c(α)e−

δ
2 (t−s)(t− s)−α‖x‖; (2.2)

(ii) there is a constant m(α), such that

‖ŨQ(s, t)Q(t)x‖s
α ≤ m(α)e−δ(t−s)‖x‖ (2.3)

for every x ∈ X and t > s.

We need to introduce the following definition, and we refer to [21] for more
information.

Definition 2.2 (S. Bochner). (i) A continuous function f : R → X is called almost
automorphic if for every sequence (σn)n∈N there exists a subsequence (sn)n∈N ⊂
(σn)n∈N such that

lim
n,m→+∞

f(t + sn − sm) = f(t) for each t ∈ R.

This is equivalent to

g(t) := lim
n→+∞

f(t + sn) and f(t) = lim
n→+∞

g(t− sn)

are well defined for each t ∈ R. We note that f ∈ AA(R, X).
(ii) A function f : R × Y → X is said to be almost automorphic if it satisfies

the following conditions: f(·, y) is almost automorphic for every y ∈ Y and f is
continuous jointly in (t, x). We note f ∈ AA(R× Y,X).

The function g in the definition above is measurable, but not necessarily con-
tinuous. It is well-known that AA(R, X) is a Banach space under the sup-norm
‖f‖AA(R,X) = supt∈R ‖f(t)‖.

3. Main results

In this section, we study the existence of almost automorphic solutions to the
semilinear evolution equations

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (3.1)

where A(t), t ∈ R, satisfy (H1) and (H2), and the following assumptions hold:
(H3) R(ω, A(·)) ∈ AA(R,L(X));
(H4) there are 0 ≤ α < β < 1 such Xt

α = Xα, t ∈ R, Xt
β = Xβ , t ∈ R, with

uniform equivalent norms;
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(H5) the function f : R × Xα → X belongs to AA(R × Xα, X) and is globally
small Lipschitzian; i.e., there is a small Kf > 0 such that

‖f(t, u)− f(t, v)‖ ≤ Kf‖u− v‖α for all t ∈ R and u, v ∈ Xα.

By a mild solution of (3.1) we understand a continuous function u : R → Xα,
which satisfies the following variation of constants formula

u(t) = U(t, s)u(s) +
∫ t

s

U(t, σ)f(σ, u(σ))dσ for all t ≥ s, t, s ∈ R. (3.2)

To achieve the goal of this section, we show some intermediate results. Let us define
the Yosida approximations An(t) = nA(t)R(n, A(t)) of A(t) for n > ω and t ∈ R.
These operators generate an evolution family Un on X. It has been shown in [19,
Lemma 3.1, Proposition 3.3, Corollary 3.4] that assumptions (H1) and (H2) are
satisfied by An(·) with the same constants for every n ≥ n0.

In the following lemma, we show that the Yosida approximations An(·) satisfy
also assumption (H3) for large n. The formulas on the resolvent used in the proof
are taken from [19].

Lemma 3.1. If (H1) and (H3) hold, then there is a number n1 ≥ n0 such that
R(ω, An(·)) ∈ AA(R,L(X)) for n ≥ n1.

Proof. Let (s′l)l∈N be a sequence of real numbers, as R(ω, A(·)) is almost automor-
phic, there is a subsequence (sl)l∈N such that

lim
l, k→+∞

‖R(ω, A(t + sl − sk))−R(ω, A(t))‖ = 0, (3.3)

for each t ∈ R If n ≥ n0 and | arg(λ− ω)| ≤ φ, we have

R(ω, An(t + sl − sk))−R(ω, An(t))

=
n2

(ω + n)2
(
R

( ωn

ω + n
,A(t + sl − sk)

)
−R

( ωn

ω + n
,A(t)

))
=

n2

(ω + n)2
R(ω, A(t + sl − sk))

[
1− ω2

ω + n
R(ω, A(t + sl − sk))

]−1

− n2

(ω + n)2
R(ω, A(t))

[
1− ω2

ω + n
R(ω, A(t))

]−1
.

(3.4)

We can also see that∥∥ ω2

ω + n
R(ω, A(s))

∥∥ ≤ ω2

ω + n

K

1 + ω
≤ ωK

n
≤ 1

2

for n ≥ n1 := max{n0, 2ωK} and s ∈ R. In particular,∥∥[
1− ω2

ω + n
R(ω, A(s))

]−1∥∥ ≤ 2. (3.5)

Hence, (3.4) implies

‖R(ω, An(t + sl − sk))−R(ω, An(t))‖
≤ 2‖R(ω, A(t + sl − sk))−R(ω, A(t))‖

+
K

1 + ω

∥∥[
1− ω2

ω + n
R(ω, A(t + sl − sk))

]−1 −
[
1− ω2

(ω + n)2
R(ω, A(t))

]−1∥∥.
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Employing (3.5) again, we obtain∥∥[
1− ω2

ω + n
R(ω, A(t + sl − sk))

]−1 −
[
1− ω2

ω + n
R(ω, A(t))

]−1∥∥
≤ 4

∥∥[
1− ω2

ω + n
R(ω, A(t + sl − sk))

]
−

[
1− ω2

ω + n
R(ω, A(t))

]∥∥
≤ 4ω ‖R(ω, A(t + sl − sk))−R(ω, A(t))‖.

Therefore,
‖R(ω, An(t + sl − sk))−R(ω, An(t))‖
≤ (2 + 4K)‖R(ω, A(t + sl − sk))−R(ω, A(t))‖

(3.6)

for n ≥ n1 and t ∈ R. The assertion thus follows from (3.3). �

The following technical lemma is also needed.

Lemma 3.2. Assume that (H1)– (H3) hold. For every sequence (s′l)l∈N ∈ R, there
is a subsequence (sl)l∈N such that for every η > 0, and t, s ∈ R there is l(η, t, s) > 0
such that

‖Γn(t + sl − sk, s + sl − sk)− Γn(t, s)‖ ≤ cn2η (3.7)

for a large n and l, k ≥ l(η, t, s).

Proof. Let a sequence (s′l)l∈N ∈ R. Since R(ω, A(·)) ∈ AA(R, X), then we can
extract a subsequence (sl) such that

‖R(ω, A(σ + sl − sk))−R(ω, A(σ))‖ → 0, k, l →∞, (3.8)

for all σ ∈ R. As in [19], we have

Γn(t + sl − sk, s + sl − sk)− Γn(t, s)

=
∫

R
Γn(t, σ)(An(σ)− ω)[R(ω, An(σ + sl − sk))−R(ω, An(σ))]

× (An(σ + sl − sk)− ω)Γn(σ + sl − sk, s + sl − sk) dσ

for s, t ∈ R and l, k,∈ N and large n. This formula, the estimate (3.6) and [19,
Corollary 3.4] imply

‖Γn(t + sl − sk, s + sl − sk)− Γn(t, s)‖

≤ cn2

∫
R

e−
3δ
4 |t−σ|e−

3δ
4 |σ−s|‖R(ω, An(σ + sl − sk))−R(ω, An(σ))‖ dσ

≤ cn2(2 + 4K)
∫

R
e−

3δ
4 |t−σ|e−

3δ
4 |σ−s|‖R(ω, A(σ + sl − sk))−R(ω, A(σ))‖ dσ → 0,

as k, l →∞, by (3.8) and the Lebesgue’s Dominated Convergence Theorem. Hence,
for η > 0 there is l(η, t, s) > 0 such that

‖Γn(t + sl − sk, s + sl − sk)− Γn(t, s)‖ < cn2η

for large n and l, k ≥ l(η, t, s). �

The almost automorphy of the Green function Γ is proved in the next proposition.
An analogous result for the almost periodicity is shown in [19].
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Proposition 3.3. Assume that (H1)– (H2) hold. Let a sequence (s′l)l∈N ∈ R there
is a subsequence (sl)l∈N such that for every h > 0

‖Γ(t + sl − sk, s + sl − sk)− Γ(t, s)‖ → 0, k, l →∞
for |t− s| ≥ h.

Proof. Let (s′l)l∈N be a sequence in R, and consider the subsequence (sl) given by
Lemma 3.2. Let ε > 0 and h > 0. There is tε > h such that

‖Γ(t + sl − sk, s + sl − sk)− Γ(t, s)‖ ≤ ε

for |t− s| ≥ tε and l, k ∈ N. For h ≤ |t− s| ≤ tε, by [19, Lemma 4.2] we have

‖Γ(t + sl − sk, s + sl − sk)− Γn(t + sl − sk, s + sl − sk)‖ ≤ c(tε)n−θ, (3.9)

‖Γ(t, s)− Γn(t, s)‖ ≤ c(tε)n−θ (3.10)

for all k, l and large n. Let nε > 0 large enough such that n−θ < ε
4c(tε) for n ≥ nε.

Take 0 < η < ε
2cn2

ε
. Hence, by (3.9), (3.10) and Lemma 3.2, one has

‖Γ(t + sl − sk, s + sl − sk)− Γ(t, s)‖ ≤ 2c(tε)n−θ
ε + cn2

εη ≤ ε

for all k, l ≥ l(ε, t, s). Consequently, ‖Γ(t + sl − sk, s + sl − sk) − Γ(t, s)‖ → 0 as
l, k → +∞ for |t− s| > h > 0. �

Using Proposition 3.3, we show the existence of a unique almost automorphic
solution to the inhomogeneous evolution equation

u′(t) = A(t)u(t) + g(t), t ∈ R. (3.11)

More precisely, we state the following main result.

Theorem 3.4. Assume (H1)–(H4). Then, for every g ∈ AA(R, X), the unique
bounded mild solution u(·) =

∫
R Γ(·, s)g(s) ds of (3.11) belongs to AA(R, Xα).

Proof. First we prove that the mild solution u is almost automorphic in X. Let a
sequence (s′l)l∈N and h > 0. As g ∈ AA(R, X) there exists a subsequence (sl)l∈N
such that liml, k→+∞ ‖g(t + sl − sk)− g(t)‖ → 0. Now, we write

u(t + sl − sk)− u(t)

=
∫

R
Γ(t + sl − sk, s + sl − sk)g(s + sl − sk) ds−

∫
R

Γ(t, s)g(s) ds

=
∫

R
Γ(t + sl − sk, s + sl − sk)(g(s + sl − sk)− g(s)) ds

+
∫
|t−s|≥h

(Γ(t + sl − sk, s + sl − sk)− Γ(t, s))g(s) ds

+
∫
|t−s|≤h

(Γ(t + sl − sk, s + sl − sk)− Γ(t, s))g(s) ds.

For ε′ > 0, we deduce from Proposition 3.3 and (H2) that

‖u(t+sl−sk)−u(t)‖ ≤ 2N

∫
R

e−δ|t−s|‖g(s+sl−sk)−g(s)‖ ds +( 4
δ ε′+4Nh)‖g‖∞

for t ∈ R and l, k > l(ε, h) > 0. Now, for ε > 0, take h small and then ε′ > 0
small such that

‖u(t + sl − sk)− u(t)‖ ≤ 2N

∫
R

e−δ|t−s|‖g(s + sl − sk)− g(s)‖ ds + ε
2
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for t ∈ R and l, k > l(ε) > 0. Finally, by the Lebesgue’s Dominated Convergence
Theorem, u is almost automorphic in X.

Using the reiteration theorem, we obtain Xα = (X, Xβ)θ, with θ = α/β. By the
property of interpolation, we have

‖u(t + sl − sk)− u(t)‖α

≤ c(α, β)‖u(t + sl − sk)− u(t)‖
β−α

β ‖u(t + sl − sk)− u(t)‖
α
β

β .

Using estimates in Proposition 2.1 we can show that u is bounded in Xβ . Hence,

‖u(t + sl − sk)− u(t)‖α ≤ c(α, β)c
β
α ‖u(t + sl − sk)− u(t)‖

β−α
β

≤ c′‖u(t + sl − sk)− u(t)‖
β−α

β .
(3.12)

Since u is almost automorphic in X, u(t + sl − sk) → u(t), as l, k →∞, for t ∈ R,
and thus x ∈ AA(R, Xα). �

As a consequence of Theorem 3.4 and a fixed point technique, we achieve the
aim of the paper.

Theorem 3.5. Assume that (H1)–(H5) hold. Then (3.1) admits a unique mild
solution u in AA(R, Xα).

Proof. Consider v ∈ AA(R, Xα) and f ∈ AA(R×Xα, X). Then, by [21, Theorem
2.2.4, p. 21], the function g(·) := f(·, v(·)) ∈ AA(R, X), and from Theorem 3.4, the
inhomogeneous evolution equation

u′(t) = A(t)u(t) + g(t), t ∈ R,

admits a unique mild solution u ∈ AA(R, X) given by

u(t) =
∫

R
Γ(t, s)f(s, v(s))ds, t ∈ R.

Let the operator F : AA(R, Xα) → AA(R, Xα) be defined by

(Fv)(t) :=
∫

R
Γ(t, s)f(s, v(s))ds for all t ∈ R.

Now we prove that F has a unique fixed point. The estimates (2.2) and (2.3) yield

‖Fx(t)− Fy(t)‖α ≤ c(α)
∫ t

−∞
e−δ(t−s)(t− s)−α‖f(s, y(s))− f(s, x(s))‖ds

+ c(α)
∫ +∞

t

e−δ(t−s)‖f(s, y(s))− f(s, x(s))‖ds.

≤ Kfc′(α)‖x− y‖∞

for all t ∈ R and x, y ∈ AA(R, Xα). If we assume that Kfc′(α) < 1, then F has
a unique fixed poind u ∈ AA(R, Xα). Thus u is the unique almost automorphic
solution to the equation (3.1). �

Example 3.6. Consider the parabolic problem

∂t u(t, x) = A(t, x,D)u(t, x) + h(t,∇u(t, x)), t ∈ R, x ∈ Ω,

B(x, D)u(t, x) = 0, t ∈ R, x ∈ ∂Ω,
(3.13)
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on a bounded domain Ω ⊆ Rn with boundary ∂Ω of class C2 and outer unit normal
vector ν(x), employing the differential expressions

A(t, x,D) =
∑
k,l

akl(t, x)∂k∂l +
∑

k

ak(t, x) ∂k + a0(t, x),

B(x,D) =
∑

k

bk(x) ∂k + b0(x).

We require that akl = alk and bk are real–valued, akl, ak, a0 ∈ Cµ
b (R, C(Ω)), bk, b0 ∈

C1(∂Ω),
n∑

k,l=1

akl(t, x) ξk ξl ≥ η|ξ|2 , and
n∑

k=1

bk(x)νk(x) ≥ β

for constants µ ∈ (1/2, 1), β, η > 0 and all ξ ∈ Rn, k, l = 1, · · · , n, t ∈ R, x ∈ Ω
resp. x ∈ ∂Ω. (Cµ

b is the space of bounded, globally Hölder continuous functions.)
We set X = C(Ω),

D(A(t)) = {u ∈
⋂
p>1

W 2
p (Ω) : A(t, ·, D)u ∈ C(Ω), B(·, D)u = 0 on ∂Ω}

for t ∈ R. It is known that the operators A(t), t ∈ R, satisfy (H1), see [1, 18], or [24,
Exa.2.9]. Thus A(·) generates an evolution family U(·, ·) on X. Let α ∈ (1/2, 1)
and p > n

2(1−α) . Then Xt
α = Xα = {f ∈ C2α(Ω) : B(·, D)u = 0} with uniformly

equivalent constants due to [18, Theorem 3.1.30], and Xα ↪→ W 2
p (Ω). It is clear that

the function f(t, u)(x) := h(t,∇u(x)), x ∈ Ω, is continuous from R×Xα to X, and
if h is small Lipschitzian and almost automorphic then f is. Under the exponential
dichotomy of U(·, ·) and almost automorphy of R(ω, A(·)), the parabolic equation
(3.13) has a unique almost automorphic solution.
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1995.
[19] L. Maniar, R. Schnaubelt; Almost periodicity of inhomogeneous parabolic evolution equations,

Lecture Notes in Pure and Appl. Math., 234, Dekker, New York, 2003, 299–318.
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