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ON BOUNDARY-VALUE PROBLEMS FOR HIGHER-ORDER
DIFFERENTIAL INCLUSIONS

MYELKEBIR AITALIOUBRAHIM, SAID SAJID

Abstract. We show the existence of solutions to boundary-value problems for

higher-order differential inclusion x(n)(t) ∈ F (t, x(t)), where F (., .) is a closed
multifunction, measurable in t and Lipschitz continuous in x. We use the fixed

point theorem introduced by Covitz and Nadler for contraction multivalued
maps.

1. Introduction

The aim of this paper is to establish the existence of solutions of the following
higher-order boundary-value problems:

• For n ≥ 2
x(n)(t) ∈ F (t, x(t)) a.e. on [0, 1];

x(i)(0) = 0, 0 ≤ i ≤ n− 2;

x(η) = x(1).

(1.1)

• For n ≥ 2
x(n)(t) ∈ F (t, x(t)) a.e. on [0, 1];

x(0) = x′(η); x(1) = x(τ).
(1.2)

• For n ≥ 4
x(n)(t) ∈ F (t, x(t)) a.e. on [0, 1];

x(i)(0) = x(i+1)(η), 2 ≤ i ≤ n− 2;

x(0) = x′(η); x(1) = x(τ).

(1.3)

• For n ≥ 2
x(n)(t) ∈ F (t, x(t)) a.e. on [0, 1];

x(i)(0) = x(i+1)(η), 0 ≤ i ≤ n− 2.
(1.4)

where F : [0, 1]× R → 2R is a closed multivalued map, measurable with respect to
the first argument and Lipschitz with respect to the second argument, and (η, τ) ∈
]0, 1[2.

2000 Mathematics Subject Classification. 34A60, 34B10, 34B15.

Key words and phrases. Boundary value problems; contraction; measurability; multifunction.
c©2008 Texas State University - San Marcos.
Submitted March 14, 2007. Published April 22, 2008.

1



2 M. AITALIOUBRAHIM, S. SAJID EJDE-2008/62

Three and four-point boundary-value problems for second-order differential in-
clusions was initiated by Benchohra and Ntouyas, see [4, 5, 6]. The authors inves-
tigate the existence of solutions on compact intervals for the problems (1.1) and
(1.2) in the particular case n = 2. In order to obtain solutions of (1.1) and (1.2)
when F is not necessarily convex values, Benchohra and Ntouyas (see [6]) reduce
the existence of solutions to the search for fixed points of a suitable multivalued
map on the Banach space C([0, 1],R). Indeed, they used the fixed point theorem
for contraction multivalued maps, due to Covitz and Nadler [3].

In this paper, we give an extension of the Benchohra and Ntouyas’s result [6]
to the n−order non-convex boundary-value problems and we prove the existence of
solutions for (1.3) and (1.4). We shall adopt the technique used by Benchohra and
Ntouyas in the previous paper.

2. Preliminaries and statement of the main results

Let (E, d) be a complete metric space. We denote by C([0, 1], E) the Banach space
of continuous functions from [0, 1] to E with the norm ‖x(.)‖∞ := sup

{
‖x(t)‖; t ∈

[0, 1]
}
, where ‖ · ‖ is the norm of E. For x ∈ E and for nonempty sets A,B of

E we denote d(x,A) = inf{d(x, y); y ∈ A}, e(A,B) := sup{d(x,B);x ∈ A} and
H(A,B) := max{e(A,B), e(B,A)}. A multifunction is said to be measurable if its
graph is measurable. For more detail on measurability theory, we refer the reader
to the book of Castaing and Valadier [2].

Definition 2.1. Let T : E → 2E be a multifunction with closed values.
(1) T is k-Lipschitz if and only if

H
(
T (x), T (y)

)
≤ kd(x, y), for each x, y ∈ E.

(2) T is a contraction if and only if it is k-Lipschitz with k < 1.
(3) T has a fixed point if there exists x ∈ E such that x ∈ T (x).

Let us recall the following results that will be used in the sequel.

Lemma 2.2. [3] If T : E → 2E is a contraction with nonempty closed values, then
it has a fixed point.

Lemma 2.3. [7] Assume that F : [a, b]×R → 2R is a multifunction with nonempty
closed values satisfying:

• For every x ∈ R, F (., x) is measurable on [a, b];
• For every t ∈ [a, b], F (t, .) is (Hausdorff) continuous on R.

Then for any measurable function x(.) : [a, b] → R, the multifunction F (., x(.)) is
measurable on [a, b].

Definition 2.4. A function x(.) : [0, 1] → R is said to be a solution of (1.1)
(resp. (1.2), (1.3), (1.4)) if x(.) is (n−1)-times differentiable, x(n−1)(.) is absolutely
continuous and x(.) satisfies the conditions of (1.1) (resp. (1.2), (1.3), (1.4)).

Let η ∈ R and n ∈ N \ {0, 1}. Define a sequence of functions (ϕp(.))2≤p≤n by:
For all t ∈ [0, 1]

ϕ2(t) = 1;

ϕ3(t) = t+ ϕ2(η);
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ϕp(t) =
tp−2

(p− 2)!
+

p−1∑
k=3

ϕk−1(η)
tp−k

(p− k)!
+ ϕp−1(η).

We remark that
(a) For t ∈ [0, 1] and k ∈ {0, . . . , n− 2}, ϕ(k)

n (t) = ϕn−k(t);
(b) For k ∈ {0, . . . , n− 3}, ϕn−k(0) = ϕn−k−1(η);
(c) For k ∈ {0, . . . , n− 2} the function ϕ(k)

n (.) is increasing.

Assumptions. We will use the following hypotheses:
(H1) F : [0, 1] × R → 2R is a multivalued map with nonempty closed values

satisfying
(i) For each x ∈ R, t 7→ F (t, x) is measurable;
(ii) There exists a function m(.) ∈ L1([0, 1],R+) such that for all t ∈ [0, 1]

and for all x1, x2 ∈ R,

H
(
F (t, x1), F (t, x2)

)
≤ m(t)|x1 − x2|.

(H2) For η ∈]0, 1[,

1
(n− 1)!

(
L(1) +

L(η) + L(1)
1− ηn−1

)
< 1

where L(t) =
∫ t

0
m(s)ds for all t ∈ [0, 1];

(H3) For (η, τ) ∈]0, 1[2,

(3− τ)L(1) + 2L(τ)
(1− τ)(n− 1)!

+
n−2∑
k=0

L(η)
(1− τ)k!

[
(3− τ)ϕ(k)

n (1) + 2ϕ(k)
n (τ)

]
< 1;

(H4) For η ∈]0, 1[,

L(1)
(n− 1)!

+ L(η)
n−2∑
k=0

ϕ
(k)
n (1)
k!

< 1.

Main results. We shall prove the following results.

Theorem 2.5. If assumptions (H1) and (H2) are satisfied, then problem (1.1) has
at least one solution on [0, 1].

Theorem 2.6. If assumptions (H1) and (H3) are satisfied, then problems (1.2)
and (1.3) have at least one solution on [0, 1].

Theorem 2.7. If assumptions (H1) and (H4) are satisfied, then problem (1.4) has
at least one solution on [0, 1].

3. Proof of the main results

Proof of Theorem 2.5. For y(.) ∈ C([0, 1],R), set

SF,y(.) :=
{
g ∈ L1([0, 1],R) : g(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]

}
.

By Lemma 2.3, for y(.) ∈ C([0, 1],R), F (., y(.)) is closed and measurable, then it
has a selection. Thus SF,y(.) is nonempty. Let us transform the problem into a fixed
point problem. Consider the multivalued map T : C([0, 1],R) → 2C([0,1],R) defined
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as follows: for y(.) ∈ L1([0, 1],R), T (y(.)) is the set of all z(.) ∈ C([0, 1],R), such
that

z(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds+

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds

− tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds,

where g ∈ SF,y(.).
We shall show that T satisfies the assumptions of Lemma 2.2. The proof will be

given in two steps:
Step 1: T has non-empty closed values. Indeed, let (yp(.))p≥0 ∈ T (y(.)) converges
to ȳ(.) in C([0, 1],R). Then ȳ(.) ∈ C([0, 1],R) and for each t ∈ [0, 1],

yp(t) ∈
∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds+

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
F (s, y(s))ds

− tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
F (s, y(s))ds.

Since the sets∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds ,

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
F (s, y(s))ds ,

tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
F (s, y(s))ds

are closed for all t ∈ [0, 1], we have

ȳ(t) ∈
∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds+

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
F (s, y(s))ds

− tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
F (s, y(s))ds.

Then ȳ(.) ∈ T (y(.)). So T (y(.)) is closed for each y(.) ∈ C([0, 1],R).
Step 2: T is a contraction. Indeed, let y1(.), y2(.) ∈ C([0, 1],R) and z1(.) ∈
T (y1(.)). Then

z1(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g1(s)ds+

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g1(s)ds

− tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g1(s)ds,

where g1 ∈ SF,y1(.). Consider the multivalued map U : [0, 1] → 2R, defined by

U(t) =
{
x ∈ R : |g1(t)− x| ≤ m(t)|y1(t)− y2(t)|

}
.

For each t ∈ [0, 1], U(t) is nonempty. Indeed, let t ∈ [0, 1], from (H1) we have

H
(
F (t, y1(t)), F (t, y2(t))

)
≤ m(t)|y1(t)− y2(t)|.

Hence, there exists x ∈ F (t, y2(t)), such that

|g1(t)− x| ≤ m(t)|y1(t)− y2(t)|.
By [2, Proposition III.4], the multifunction

V : t→ U(t) ∩ F (t, y2(t)) (3.1)
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is measurable. Then there exists a measurable selection of V denoted g2 such that

g2(t) ∈ F (t, y2(t)) and |g1(t)− g2(t)| ≤ m(t)|y1(t)− y2(t)|, for each t ∈ [0, 1].

Now, for t ∈ [0, 1] set

z2(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g2(s)ds+

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g2(s)ds

− tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g2(s)ds.

Then

|z1(t)− z2(t)| ≤
∫ t

0

(t− s)n−1

(n− 1)!
|g1(t)− g2(s)|ds

+
tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
|g1(s)− g2(s)|ds

+
tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
|g1(s)− g2(s)|ds

≤
∫ t

0

(t− s)n−1

(n− 1)!
m(s)|y1(s)− y2(s)|ds

+
tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
m(s)|y1(s)− y2(s)|ds

+
tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
m(s)|y1(s)− y2(s)|ds

≤ 1
(n− 1)!

‖y1(.)− y2(.)‖∞
∫ 1

0

m(s)ds

+
1

(1− ηn−1)(n− 1)!
‖y1(.)− y2(.)‖∞

∫ η

0

m(s)ds

+
1

(1− ηn−1)(n− 1)!
‖y1(.)− y2(.)‖∞

∫ 1

0

m(s)ds

≤ 1
(n− 1)!

(
L(1) +

L(η) + L(1)
1− ηn−1

)
‖y1(.)− y2(.)‖∞.

So, we conclude that

‖z1(.)− z2(.)‖∞ ≤ 1
(n− 1)!

(
L(1) +

L(η) + L(1)
1− ηn−1

)
‖y1(.)− y2(.)‖∞.

By the analogous relation, obtained by interchanging the roles of y1(.) and y2(.), it
follows that

H
(
T (y1(.)), T (y2(.))

)
≤ 1

(n− 1)!

(
L(1) +

L(η) + L(1)
1− ηn−1

)
‖y1(.)− y2(.)‖∞.

Consequently, T is a contraction. Hence, by Lemma 2.2, T has a fixed point y(.).

Proposition 3.1. y(.) is a solution of (1.1).

Proof. We have

y(t) =
∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds+

tn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds
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− tn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds,

where g ∈ SF,y(.). Then

y(η) =
∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds+

ηn−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds

− ηn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds

=
1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds− ηn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds

and

y(1) =
∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds+

1
1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds

− 1
1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds

=
1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds− ηn−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds,

hence y(1) = y(η). On the other hand, for 0 ≤ i ≤ n− 2, we have

y(i)(t) =
∫ t

0

(t− s)n−i−1

(n− i− 1)!
g(s)ds+

(n− 1) . . . (n− i)tn−i−1

1− ηn−1

∫ η

0

(η − s)n−1

(n− 1)!
g(s)ds

− (n− 1) . . . (n− i)tn−i−1

1− ηn−1

∫ 1

0

(1− s)n−1

(n− 1)!
g(s)ds,

hence y(i)(0) = 0. Finally, it is clear that y(n)(t) = g(t), so y(n)(t) ∈ F (t, y(t)). �

Proof of Theorem 2.6. We transform the problem into a fixed point problem.
For t ∈ [0, 1], set

ψg
n(t) =

∫ t

0

(t− s)n−1

(n− 1)!
g(s)ds+

n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
g(s)ds,

where g ∈ SF,y(.). Consider the multivalued map, T : C([0, 1],R) → 2C([0,1],R)

defined as follows: for y(.) ∈ C([0, 1],R),

T (y(.)) :=
{
z(.) ∈ C([0, 1],R) : z(t) = ψg

n(t) +
1 + t

1− τ

(
ψg

n(τ)− ψg
n(1)

)}
.

We shall show that T satisfies the assumptions of Lemma 2.2. The proof will be
given in two steps:
Step 1: T has non-empty closed values. Indeed, let (yp(.))p≥0 ∈ T (y(.)) converges
to ȳ(.) in C([0, 1],R). Then ȳ(.) ∈ C([0, 1],R) and for each t ∈ [0, 1],

yp(t) ∈
∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds+

n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
F (s, y(s))ds

+
1 + t

1− τ

[ ∫ τ

0

(τ − s)n−1

(n− 1)!
F (s, y(s))ds
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+
n−2∑
k=0

ϕ(k)
n (τ)

∫ η

0

(η − s)k

k!
F (s, y(s))ds

−
∫ 1

0

(1− s)n−1

(n− 1)!
F (s, y(s))ds−

n−2∑
k=0

ϕ(k)
n (1)

∫ η

0

(η − s)k

k!
F (s, y(s))ds

]
.

Since the set ∫ t

0

(t− s)k

k!
F (s, y(s))ds

is closed for all t ∈ [0, 1] and 0 ≤ k ≤ n− 1, we have

ȳ(t) ∈
∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds+

n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
F (s, y(s))ds

+
1 + t

1− τ

[ ∫ τ

0

(τ − s)n−1

(n− 1)!
F (s, y(s))ds

+
n−2∑
k=0

ϕ(k)
n (τ)

∫ η

0

(η − s)k

k!
F (s, y(s))ds

−
∫ 1

0

(1− s)n−1

(n− 1)!
F (s, y(s))ds−

n−2∑
k=0

ϕ(k)
n (1)

∫ η

0

(η − s)k

k!
F (s, y(s))ds

]
.

Then ȳ(.) ∈ T (y(.)). So T (y(.)) is closed for each y(.) ∈ C([0, 1],R).
Step 2: T is a contraction. Indeed, let y1(.), y2(.) ∈ C([0, 1],R) and z1(.) ∈
T (y1(.)). Then

z1(t) = ψg1
n (t) +

1 + t

1− τ

(
ψg1

n (τ)− ψg1
n (1)

)
,

where g1 ∈ SF,y1(.). By (3.1), there exists g2 such that

g2(t) ∈ F (t, y2(t)) and |g1(t)− g2(t)| ≤ m(t)|y1(t)− y2(t)|, for each t ∈ [0, 1].

Now, set for all t ∈ [0, 1],

z2(t) = ψg2
n (t) +

1 + t

1− τ

(
ψg2

n (τ)− ψg2
n (1)

)
.

On the other hand, we have

|ψg2
n (t)− ψg1

n (t)| ≤
∫ t

0

(t− s)n−1

(n− 1)!
|g1(s)− g2(s)|ds

+
n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
|g1(s)− g2(s)|ds

≤ 1
(n− 1)!

∫ t

0

m(s)|y1(s)− y2(s)|ds

+
n−2∑
k=0

ϕ(k)
n (t)

1
k!

∫ η

0

m(s)|y1(s)− y2(s)|ds

≤ 1
(n− 1)!

‖y1(.)− y2(.)‖∞
∫ t

0

m(s)ds
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+
n−2∑
k=0

ϕ(k)
n (t)

1
k!
‖y1(.)− y2(.)‖∞

∫ η

0

m(s)ds

≤
( L(1)

(n− 1)!
+ L(η)

n−2∑
k=0

ϕ
(k)
n (1)
k!

)
‖y1(.)− y2(.)‖∞.

Then, by (c)

|z2(t)− z1(t)| ≤ |ψg2
n (t)− ψg1

n (t)|+ 1 + t

1− τ

[
|ψg2

n (τ)− ψg1
n (τ)|+ |ψg2

n (1)− ψg1
n (1)|

≤
( L(1)

(n− 1)!
+ L(η)

n−2∑
k=0

ϕ
(k)
n (1)
k!

)
‖y1(.)− y2(.)‖∞

+
2

1− τ

[( L(τ)
(n− 1)!

+ L(η)
n−2∑
k=0

ϕ
(k)
n (τ)
k!

)
‖y1(.)− y2(.)‖∞

+
( L(1)

(n− 1)!
+ L(η)

n−2∑
k=0

ϕ
(k)
n (1)
k!

)
‖y1(.)− y2(.)‖∞

]
≤

[ (3− τ)L(1) + 2L(τ)
(1− τ)(n− 1)!

+
n−2∑
k=0

L(η)
(1− τ)k!

[
(3− τ)ϕ(k)

n (1) + 2ϕ(k)
n (τ)

]]
‖y1(.)− y2(.)‖∞.

By the analogous relation, obtained by interchanging the roles of y1(.) and y2(.), it
follows that

H
(
T (y1(.)), T (y2(.))

)
≤

[ (3− τ)L(1) + 2L(τ)
(1− τ)(n− 1)!

+
n−2∑
k=0

L(η)
(1− τ)k!

[
(3− τ)ϕ(k)

n (1)

+ 2ϕ(k)
n (τ)

]]
‖y1(.)− y2(.)‖∞.

Consequently, T is a contraction. Thus, by Lemma 2.2, T has a fixed point y(.).

Proposition 3.2. y(.) is a solution of (1.2) and (1.3).

Proof. We have

y(t) = ψg
n(t) +

1 + t

1− τ

(
ψg

n(τ)− ψg
n(1)

)
,

where g ∈ SF,y(.). Then

y(1) = ψg
n(1) +

2
1− τ

(
ψg

n(τ)− ψg
n(1)

)
=
−1− τ

1− τ
ψg

n(1) +
2

1− τ
ψg

n(τ)

and

y(τ) = ψg
n(τ) +

1 + τ

1− τ

(
ψg

n(τ)− ψg
n(1)

)
=
−1− τ

1− τ
ψg

n(1) +
2

1− τ
ψg

n(τ),

hence y(1) = y(τ). On the other hand, for 0 ≤ i ≤ n− 2 and t ∈ [0, 1], we have

[ψg
n](i)(t) =

∫ t

0

(t− s)n−i−1

(n− i− 1)!
g(s)ds+

n−2∑
k=0

ϕ(k+i)
n (t)

∫ η

0

(η − s)k

k!
g(s)ds
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=
∫ t

0

(t− s)n−i−1

(n− i− 1)!
g(s)ds+

n+i−2∑
l=i

ϕ(l)
n (t)

∫ η

0

(η − s)l−i

(l − i)!
g(s)ds

=
∫ t

0

(t− s)n−i−1

(n− i− 1)!
g(s)ds+

n−2∑
l=i

ϕ(l)
n (t)

∫ η

0

(η − s)l−i

(l − i)!
g(s)ds.

Then, by (a) and (b)

[ψg
n](i)(0) =

∫ η

0

(η − s)n−i−2

(n− i− 2)!
g(s)ds+

n−3∑
l=i

ϕ(l)
n (0)

∫ η

0

(η − s)l−i

(l − i)!
g(s)ds

=
∫ η

0

(η − s)n−i−2

(n− i− 2)!
g(s)ds+

n−3∑
l=i

ϕn−l−1(η)
∫ η

0

(η − s)l−i

(l − i)!
g(s)ds

and by (a)

[ψg
n](i+1)(η) =

∫ η

0

(η − s)n−i−2

(n− i− 2)!
g(s)ds+

n−3∑
l=i

ϕ(l+1)
n (η)

∫ η

0

(η − s)l−i

(l − i)!
g(s)ds

=
∫ η

0

(η − s)n−i−2

(n− i− 2)!
g(s)ds+

n−3∑
l=i

ϕn−l−1(η)
∫ η

0

(η − s)l−i

(l − i)!
g(s)ds,

consequently
[ψg

n](i+1)(η) = [ψg
n](i)(0), (3.2)

which implies that y(0) = y′(η) and y(i)(0) = y(i+1)(η) for 2 ≤ i ≤ n− 2 whenever
if n ≥ 4. Finally, it is clear that y(n)(t) = g(t), hence y(n)(t) ∈ F (t, y(t)). �

Proof of Theorem 2.7. Consider the multivalued map T : C([0, 1],R) → 2C([0,1],R)

defined as follows: for y(.) ∈ C([0, 1],R),

T (y(.)) :=
{
z(.) ∈ C([0, 1],R) : z(t) = ψg

n(t)
}
.

We shall show that T satisfies the assumptions of Lemma 2.2. The proof will be
given in two steps:
Step 1: T has non-empty closed values. Indeed, let (yp(.))p≥0 ∈ T (y(.)) converges
to ȳ(.) in C([0, 1],R). Then ȳ(.) ∈ C([0, 1],R) and for each t ∈ [0, 1],

yp(t) ∈
∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds+

n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
F (s, y(s))ds.

Since the set ∫ t

0

(t− s)k

k!
F (s, y(s))ds

is closed for all t ∈ [0, 1] and 0 ≤ k ≤ n− 1, we have

ȳ(t) ∈
∫ t

0

(t− s)n−1

(n− 1)!
F (s, y(s))ds+

n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
F (s, y(s))ds.

Then ȳ(.) ∈ T (y(.)). So T (y(.)) is closed for each y(.) ∈ C([0, 1],R).
Step 2: T is a contraction. Indeed, let y1(.), y2(.) ∈ C([0, 1],R) and z1(.) ∈
T (y1(.)). Then

z1(t) = ψg1
n (t),
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where g1 ∈ SF,y1(.). By (3.1), there exists g2 such that

g2(t) ∈ F (t, y2(t)) and |g1(t)− g2(t)| ≤ m(t)|y1(t)− y2(t)|, for each t ∈ [0, 1].

Now, for t ∈ [0, 1], we set z2(t) = ψg2
n (t).

On the other hand, we have

|ψg2
n (t)− ψg1

n (t)| ≤
∫ t

0

(t− s)n−1

(n− 1)!
|g1(s)− g2(s)|ds

+
n−2∑
k=0

ϕ(k)
n (t)

∫ η

0

(η − s)k

k!
|g1(s)− g2(s)|ds

≤ 1
(n− 1)!

∫ t

0

m(s)|y1(s)− y2(s)|ds

+
n−2∑
k=0

ϕ(k)
n (t)

1
k!

∫ η

0

m(s)|y1(s)− y2(s)|ds

≤ 1
(n− 1)!

‖y1(.)− y2(.)‖∞
∫ t

0

m(s)ds

+
n−2∑
k=0

ϕ(k)
n (t)

1
k!
‖y1(.)− y2(.)‖∞

∫ η

0

m(s)ds

≤
( L(t)

(n− 1)!
+ L(η)

n−2∑
k=0

ϕ
(k)
n (t)
k!

)
‖y1(.)− y2(.)‖∞.

Then, by (c)

|z2(t)− z1(t)| ≤
( L(1)

(n− 1)!
+ L(η)

n−2∑
k=0

ϕ
(k)
n (1)
k!

)
‖y1(.)− y2(.)‖∞.

By the analogous relation, obtained by interchanging the roles of y1(.) and y2(.), it
follows that

H
(
T (y1(.)), T (y2(.))

)
≤

( L(1)
(n− 1)!

+ L(η)
n−2∑
k=0

ϕ
(k)
n (1)
k!

)
‖y1(.)− y2(.)‖∞.

Consequently, T is a contraction. Hence, by Lemma 2.2, T has a fixed point y(.). �

Proposition 3.3. y(.) is a solution of (1.4).

Proof. By (3.2), we have y(i)(0) = y(i+1)(η), for 0 ≤ i ≤ n−2. Since y(n)(t) = g(t),
we have y(n)(t) ∈ F (t, y(t)). �
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