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OPTIMIZATION OF THE PRINCIPAL EIGENVALUE OF THE
ONE-DIMENSIONAL SCHRÖDINGER OPERATOR

BEHROUZ EMAMIZADEH, RYAN I. FERNANDES

Abstract. In this paper we consider two optimization problems related to

the principal eigenvalue of the one dimensional Schrödinger operator. These

optimization problems are formulated relative to the rearrangement of a fixed
function. We show that both problems have unique solutions, and each of

these solutions is a fixed point of an appropriate function.

1. Introduction

In this paper we investigate two optimization problems related to the following
one-dimensional Schrödinger eigenvalue problem:

−u′′ + αf(x)u = λu in (−1, 1)

u(−1) = u(1) = 0,
(1.1)

where α is a non-negative constant, f ∈ L∞(−1, 1) is a non-negative potential, and
λ denotes an eigenvalue.

We fix f0 ∈ L∞(−1, 1), and consider the rearrangement class R generated by f0,
see the next section for definition. By λ1(α, f) we denote the principal eigenvalue
of (1.1) for a given α and f ∈ L∞(−1, 1). We are interested in the following
optimization problems:

inf
f∈R

λ1(α, f) and sup
f∈R

λ1(α, f) (1.2)

Note that (1.1) is a scaled version of the one dimensional steady state Schrödinger
eigenvalue equation governing a particle of mass m, moving in a potential V (x):

−(h/2m) u′′ + V (x) u = Λ u in (−1, 1)

u(−1) = u(1) = 0,
(1.3)

where h̄ stands for the Planck’s constant. It is well known that for (1.3) there
exists a countable collection of solutions un (quantum states), and real numbers
Λn (energies). Therefore a physical interpretation of the problems (1.2) is: we seek
potentials that minimize (maximize) the principal energy corresponding to the state
equations (1.1) relative to R.
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There is another physical motivation for considering the problems (1.2) which
we describe as follows. If we assume f0 = χD0 , the characteristic function of a given
set D0 ⊂ (−1, 1), then it turns out that R can be identified with the set

S = {D ⊂ (−1, 1) : |D| = |D0|},

where | · | denotes the one dimensional Lebesgue measure. Therefore, the problems
(1.2) can be reformulated as

inf
D⊂(−1,1),D∈S

λ1(α, χD) and sup
D⊂(−1,1),D∈S

λ1(α, χD). (1.4)

The minimization problem in (1.4) is addressed in [4], where the problem is posed
in any space dimension. There, amongst other results, it is shown that the optimal
solution D̂ provides an answer to the following physical problem, specialized to one
dimension:

Problem. Build a string out of two given materials (of varying densities) in such
a way that the string has a prescribed mass and so that the basic frequency of the
resulting string (with fixed ends) is as small as possible.

To avoid redundancy in (1.2) we impose a geometric condition on f0; namely,
we assume that f0 has no flat sections on its graph where it is positive, see the
next section for precise formulation of this condition. Clearly, taking into account
this geometric stipulation rules out the identification between R and S, hence the
problems (1.2) and (1.4) are no longer equivalent.

We would like to mention that recently Bonder [6] investigated a similar problem
where the state equation is a nonlinear Schödinger eigenvalue problem. However,
in that case the admissible set considered is a bounded, closed and convex subset
of an appropriate Lebesgue integrable function space. The problems (1.2) cannot
be considered in the context of [6], since the set of rearrangements R lacks both
convexity and closedness in L∞(−1, 1).

Let us end this section by mentioning that we have also considered (1.2) in higher
dimensions and the results will be reported in a follow up paper. We particularly
want to present the work in one dimensional setting to ensure the presentation is
elementary and essentially self contained.

2. Preliminaries and statement of the main result

In this section we recall the main properties of the principal eigenvalue and
eigenfunction for (1.1). We also state the definition of a rearrangement class, and
some well known rearrangement inequalities.

For problem (1.1), λ ∈ R is called an eigenvalue provided there exists a non-zero
u ∈ H1

0 (−1, 1) that satisfies the integral equation∫ 1

−1

u′φ′ dx+ α

∫ 1

−1

fuφ dx = λ

∫ 1

−1

uφ dx, ∀ φ ∈ C∞0 (−1, 1)

The function u is called an eigenfunction corresponding to λ.
The principal (first) eigenvalue of (1.1) denoted λ1(α, f), to emphasis dependence

on α and f , is variationally formulated as follows:

λ1(α, f) = inf
u∈H1

0 (−1,1)\{0}

∫ 1

−1
u′

2
dx+ α

∫ 1

−1
fu2 dx∫ 1

−1
u2 dx

. (2.1)
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While it is well known that λ1(α, f) is positive and simple, we provide a short
proof of the simplicity of the principal eigenvalue based on ideas introduced in [1].
Suppose u1 and u2 are eigenfunctions corresponding to λ1(α, f) ≡ λ. Thus both of
these functions are positive, and we have

λ =

∫ 1

−1
u′i

2
dx+ α

∫ 1

−1
fu2

i dx∫ 1

−1
u2

i dx
, i = 1, 2. (2.2)

Clearly v ≡ (u2
1 + u2

2)
1/2 ∈ H1

0 (−1, 1). Thus v′ = (u2
1 + u2

2)
−1/2(u1, u2) · (u′1, u′2),

where the dot denotes the usual dot product in R2. Note that from the Cauchy-
Schwarz inequality we get the strict inequality |(u1, u2) ·(u′1, u′2)|2 < (u2

1+u2
2)(u

′
1
2+

u′2
2), unless (u1, u2) and (u′1, u

′
2) are colinear. Therefore by easy calculations, and

(2.2), we find ∫ 1

−1
v′

2
dx+ α

∫ 1

−1
fv2 dx∫ 1

−1
v2 dx

< λ;

which contradicts (2.1). Hence (u1, u2) and (u′1, u
′
2) must be colinear, so there

exists a nonzero constant k such that (u1, u2) = k(u′1, u
′
2). This, in turn, implies

(u′1u2 − u′2u1)/u2
2 = 0. Thus d/dx(u1/u2) = 0, hence u1 = ku2. This proves that

the principal eigenvalue is simple.
For a non-negative measurable f defined on the interval (−1, 1), the distribution

function ξf : [0,∞) → [0,∞) is defined as

ξf (γ) = |{x ∈ (−1, 1) : f(x) ≥ γ}|.

We say the non-negative measurable functions f, g : (−1, 1) → R are rearrange-
ments of each other if and only if

ξf (γ) = ξg(γ), ∀γ ∈ [0,∞).

If f ∈ L∞(−1, 1), and g is a rearrangement of f , then g ∈ L∞(−1, 1) and ‖f‖∞ =
‖g‖∞.

We fix a non-negative function f0 ∈ L∞(−1, 1) satisfying the following geometric
condition:

(H) f0 has negligible flat sections over its strong support; that is,

|f−1
0 ({C}) ∩ {f0 > 0}| = 0, ∀ C > 0.

We define the rearrangement class R, generated by f0, as follows

R = {g : (−1, 1) → [0,∞) : f0 and g are rearrangements of each other}.

For a non-negative function h defined on (−1, 1), the decreasing rearrangement of
h, denoted h∆, is defined on (−1, 1) as follows:

h∆(s) = sup{γ : ξh(γ) ≥ s},

and the symmetric decreasing and increasing rearrangements of h, denoted h∗, h∗,
respectively, are given by:

h∗(x) = h∆(2|x|), h∗(x) = h∆(2− 2|x|).

The following inequality is standard:∫ 1

−1

f∗(x)g∗(x)dx ≤
∫ 1

−1

f(x)g(x)dx ≤
∫ 1

−1

f∗(x)g∗(x)dx. (2.3)
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It is also known that if u ∈ H1
0 (−1, 1) is a non-negative function, then u∗ ∈

H1
0 (−1, 1) and ∫ 1

−1

u∗′
2
dx ≤

∫ 1

−1

u′
2
dx, (2.4)

see for example [8]. Now we state the main results of this paper

Theorem 2.1 (Minimization). For every α ≥ 0, f∗ is the unique solution of

inf
f∈R

λ1(α, f),

that is, λ1(α, f∗) = inff∈R λ1(α, f).

Theorem 2.2 (Maximization). There is α̂ > 0 such that for α ≤ α̂, f∗ is the
unique solution of

sup
f∈R

λ1(α, f),

that is, λ1(α, f∗) = supf∈R λ1(α, f).

3. Proofs of Theorems

In this section we give proofs of our main results.

Proof of Theorem 2.1. Let us first show that f∗ is a solution. For any α ≥ 0 and
f ∈ R, let u denote the unique eigenfunction corresponding to λ1(α, f) ≡ λ(f),
satisfying the condition ∫ 1

−1

u2(x) dx = 1. (3.1)

Then from (2.1), (2.3) and (2.4) we deduce

λ(f) =
∫ 1

−1

u′
2
dx+ α

∫ 1

−1

fu2 dx ≥
∫ 1

−1

u∗′
2
dx+ α

∫ 1

−1

f∗u
∗2 dx ≥ λ(f∗). (3.2)

Since f∗ = (f0)∗ ≡ F0, we infer λ(f) ≥ λ(F0). This completes the existence part of
the theorem.

To prove uniqueness we assume g is also a minimizer. Denoting the normalized
eigenfunction corresponding to λ(g) ≡ λ1(α, g) by u, as in (3.2) , we obtain

λ(g) =
∫ 1

−1

u′
2
dx+ α

∫ 1

−1

gu2 dx

≥
∫ 1

−1

u∗′
2
dx+ α

∫ 1

−1

gu2 dx

≥
∫ 1

−1

u∗′
2
dx+ α

∫ 1

−1

g∗u
∗2 dx

≥ λ(g∗) ≥ λ(g).

(3.3)

Thus all inequalities in (3.3) in fact equalities. In particular we deduce

(a)
∫ 1

−1
u∗′

2
dx =

∫ 1

−1
u′

2
dx

(b)
∫ 1

−1
gu2 dx =

∫ 1

−1
g∗u

∗2 dx
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At this stage we show that the graph of u has no significant flat sections. Let us
consider the differential equation satisfied by u

−u′′ + αgu = λ(g)u. (3.4)

Restricting (3.4) to the set where g is zero yields −u′′ = λ(g)u, hence if u = c, c is a
constant, then cλ(g) = 0, which is not possible, since λ(g) > 0, and c is positive by
the positivity of the eigenfunctions. On the other hand, if we restrict (3.4) to the
set where g is positive, then, assuming u = c, we find αcg = λ(g)c, so g = λ(g)/α,
which is again impossible since g satisfies the geometric condition (H).

Since u has no significant flat sections on its graph, the set on which u′ vanishes
must have measure zero. This result in conjunction with (a) above and [7, Theorem
1.1] imply u = u∗ almost everywhere in (−1, 1), see also [9]. So from (b) above we
deduce ∫ 1

−1

gu∗2 dx =
∫ 1

−1

g∗u
∗2 dx.

Now recalling (2.3), we deduce that g and g∗ = F0 are both minimizers of the linear
functional L : L∞(−1, 1) →∞, defined by:

L(h) =
∫ 1

−1

h u∗2 dx,

relative to h ∈ R. Since the graph of u has no significant flat sections we can use
[3, Lemma 2.9], [2, Theorem 3] and [5, Lemma 2.2] which guarantees that L has a
unique minimizer relative to R. This obviously implies g = F0, as desired. �

Remark 3.1. From Burton’s theory one can also establish the following functional
relation

F0 = φα(u),
which holds pointwise almost everywhere in (−1, 1), where φα is a decreasing func-
tion in terms of u∆ and g∆. This relation shows that the largest parts of F0 are
concentrated where u is the smallest. Hence the largest parts of u must be concen-
trated near zero.

We now proceed to prove Theorem 2.2. Henceforth uα,f denotes the normalized
eigenfunction, see (3.1), corresponding to λ1(α, f). We need the following lemmas.

Lemma 3.2. If f ∈ L∞(−1, 1) is a non-negative even function, then uα,f is even.

Proof. For simplicity we set u ≡ uα,f , and introduce w(x) = u(−x). Note that w
satisfies the normality condition (3.1). Moreover, observe that∫ 1

−1

u′
2
dx =

∫ 1

−1

w′
2
dx and

∫ 1

−1

fu2 dx =
∫ 1

−1

fw2 dx,

where in the second equation we have used f(x) = f(−x). Thus we derive

λ(f) = λ1(α, f) =
∫ 1

−1

w′
2
dx+ α

∫ 1

−1

fw2 dx.

Hence w is also an eigenfunction corresponding to λ1(α, f), so by uniqueness we
obtain u = w, as desired. �

Lemma 3.3. Suppose f ∈ L∞(−1, 1) is a non-negative function such that f = f∗.
There exists α̂ > 0 such that, if α < α̂, then uα,f = u∗α,f .
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Proof. Note that u ≡ uα,f is an even function by Lemma 3.2. Hence to complete
the proof of the lemma it suffices to show u′ is non-positive on (0, 1). We first show
that λ1(·, f) is right continuous at zero; that is, limα→0+ λ1(α, f) = λ, where λ is
the principal eigenvalue of (1.1) with f = 0 (or α = 0). From (2.1), for any α > 0,
we have

λ1(α, f) =
∫ 1

−1

u′
2
dx+ α

∫ 1

−1

fu2 dx ≥
∫ 1

−1

u′
2
dx ≥ λ.

Therefore, lim infα→0+ λ1(α, f) ≥ λ. Also, for ε > 0, there exists v ∈ H1
0 (−1, 1)

normalized such that

λ+ ε ≥
∫ 1

−1

v′
2
dx ≥ λ1(α, f)− α

∫ 1

−1

fv2 dx, ∀ α > 0.

Therefore we obtain λ + ε ≥ lim supα→0+ λ1(α, f). Since ε is arbitrary we get
λ ≥ lim supα→0+ λ1(α, f), as desired.

Next, we fix a non-negative φ ∈ H1
0 (−1, 1). Multiplying the differential equation:

−u′′ + αfu = λ1(α, f)u,

by φ and integrating over (−1, 1) yields∫ 1

−1

u′φ′ dx =
∫ 1

−1

(λ1(α, f)− αf)uφ dx. (3.5)

Now, since f = f∗,

λ1(α, f)− αf ≥ λ1(α, f)− αf(0), (3.6)

and since λ1(·, f) is right-continuous at zero, the function q(α) ≡ λ1(α, f)− αf(0)
is also right-continuous at zero. But since q(0) > 0 we infer the existence of α̂ > 0
such that q is positive on [0, α̂]. With α ∈ [0, α̂], from (3.6) and (3.5) we deduce∫ 1

−1

u′φ′ dx =
∫ 1

−1

(λ1(α, f)− αf)uφ dx ≥ q(α)
∫ 1

−1

uφ dx ≥ 0.

Hence u′′ ≤ 0 in the sense of distributions. Note that since (λ1(α, f) − αf)u ∈
L∞(−1, 1), u ∈ W 2,p(−1, 1) for every p ∈ [1,∞). This implies that in fact u′′ ≤ 0
holds almost everywhere in (−1, 1). Therefore the following inequality holds:∫ x

0

u′′ dt ≤ 0,

for x ∈ (0, 1). Since u′ is absolutely continuous on [−1, 1], we can apply the Fun-
damental Theorem of Calculus to deduce

u′(x)− u′(0) ≤ 0, x ∈ (0, 1)

Recall that u is an even function, thus clearly we have

(u(x)− u(−x))′ = 0, x ∈ (−1, 1).

Thus, in particular, we find u′(0) = 0. Hence we obtain u′(x) ≤ 0 for almost every
x in (0, 1). In fact, since u′ is continuous we have u′(x) ≤ 0 for every x in (0, 1).
This completes the proof of the lemma. �

From Lemmas 3.2 and 3.3, the following result is immediate.
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Lemma 3.4. If α ≤ α̂ and f ∈ L∞(−1, 1), then uα,f∗ satisfies

uα,f∗ = (uα,f∗)∗,

almost everywhere in (−1, 1).

Proof of Theorem 2.2. Let α̂ be given by Lemma 3.3, and let α ≤ α̂. Fix f ∈ R,
and set λ(f) ≡ λ1(α, f), uf ≡ uα,f for simplicity. Then from (2.1), (2.3) and
Lemma 3.4 we have

λ(f) ≤
∫ 1

−1

u′2f∗ dx+ α

∫ 1

−1

fuf∗
2 dx

≤
∫ 1

−1

u′2f∗ dx+ α

∫ 1

−1

f∗(uf∗)∗
2
dx

= λ(f∗) = λ(F 0),

where F 0 ≡ f∗0 . This completes the existence part of the theorem. To prove
uniqueness, assume g ∈ R is another maximizer besides F 0. Then

λ(g) ≤
∫ 1

−1

u′2g∗ dx+ α

∫ 1

−1

gu2
g∗ dx ≤

∫ 1

−1

u′2g∗ dx+ α

∫ 1

−1

g∗u2
g∗ dx = λ(g∗) ≤ λ(g).

Thus all inequalities above are in fact equalities, hence in particular we infer∫ 1

−1

g∗u2
g∗ dx =

∫ 1

−1

gu2
g∗ dx. (3.7)

As in the minimization case, we show that the graph of ug∗ has no significant flat
sections. Recall that ug∗ satisfies the following differential equation

−u′′g∗ + αg∗ug∗ = λ1(α, g∗)ug∗ . (3.8)

Assume that ug∗ = c on a subset of E ⊆ {g∗ = 0}, where E has positive measure.
Whence restricting (3.8) to E yields cλ1(α, g∗) = 0, which is impossible since both
c and λ1(α, g∗) are positive constants. On the other hand if we assume ug∗ = c on
a subset K ⊆ {g∗ > 0}, where K has positive measure, then restricting (3.8) to
K implies αcg∗ = cλ1(α, g∗), from which it follows that the graph of g∗ has a flat
section on a set of positive measure which is not possible because g∗ satisfies the
condition (H). This shows that the graph of ug∗ has no significant flat sections.

From (3.7) and (2.3) it follows that g and g∗ both maximize the linear functional
N : L∞(−1, 1) → R defined by

N (h) =
∫ 1

−1

hu2
g∗ dx,

relative to h ∈ R. However, by Burton’s theory [2], ug∗ not having any significant
flat sections on its graph, N has a unique maximizer relative to R, hence we must
have g = g∗ = F 0, as desired. �

Remark 3.5. As in the case of the minimization, the Burton’s theory provides a
functional relation as follows:

F 0 = ψα(u),

almost everywhere in (−1, 1), where u ≡ uF 0 , and ψα is an increasing function.
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4. F0 and F 0 as fixed points

In this section we show the solutions to the optimization problems (1.2); namely,
F0 and F 0 are fixed points of appropriate operators. We begin by proving a conti-
nuity result for the principal eigenvalue.

Lemma 4.1. For every α ≥ 0, the function λ1(α, ·) : L∞(−1, 1) → R is continu-
ous.

Proof. Let us fix α ≥ 0, and assume fn → f in L∞(−1, 1). We want to show
λ1(α, fn) → λ1(α, f), as n → ∞. For simplicity we use the notation λ(fn) ≡
λ1(α, fn) and λ(f) ≡ λ1(α, f); also un ≡ uα,fn and u ≡ uα,f . From (2.1), we get

λ(fn) ≤
∫ 1

−1

u′
2
dx+ α

∫ 1

−1

fnu
2 dx, n ∈ N

Therefore

lim sup
n→∞

λ(fn) ≤
∫ 1

−1

u′
2
dx+ α

∫ 1

−1

fu2 dx = λ(f). (4.1)

On the other hand for every n ∈ N we have

λ(fn) =
∫ 1

−1

u′2n dx+ α

∫ 1

−1

fnu
2
n dx.

Thus, since {λ(fn)} and {fn} are bounded, it follows that {un} is bounded in
H1

0 (−1, 1). Hence there exist a subsequence of {un}, still denoted {un}, and a
function û ∈ H1

0 (−1, 1) such that

un ⇀ û, in H1
0 (−1, 1), un → û, uniformly on (−1, 1).

Whence

lim inf
n→∞

λ(fn) ≥ lim inf
n→∞

( ∫ 1

−1

u′2n dx+ α

∫ 1

−1

fnu
2
n dx

)
≥

∫ 1

−1

(û′)2 dx+ α

∫ 1

−1

fû2 dx ≥ λ(f).
(4.2)

Clearly, (4.1), (4.2) and the fact that the sequence {fn} is arbitrary prove the
assertion of the lemma. �

Lemma 4.2. Let α ≥ 0, and fn → f in L∞(−1, 1). Then uα,fn
→ uα,f uniformly

on (−1, 1).

Proof. From Lemma 4.1, λn → λ as n→∞. Hence {λn} is bounded; which implies
that {un} is bounded in H1

0 (−1, 1). Thus there exist a subsequence, still denoted
{un}, and a function û ∈ H1

0 (−1, 1) such that

un ⇀ û, in H1
0 (−1, 1), un → û, uniformly on (−1, 1). (4.3)

We show that û = u; this proves the assertion of the lemma, since u is the only
accumulation point of {un}. From (2.1), (4.3) and the fact that the H1

0 -norm is
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weakly sequentially lower semi-continuous we deduce

λ ≤
∫ 1

−1

û′2 dx+ α

∫ 1

−1

fû2 dx

≤ lim inf
n→∞

( ∫ 1

−1

u′n
2
dx+ α

∫ 1

−1

fnu
2
n dx

)
= lim inf

n→∞
λn = λ.

(4.4)

Thus we obtain

λ =
∫ 1

−1

û′2 dx+ α

∫ 1

−1

fû2 dx,

which shows that û is also an eigenfunction corresponding to λ. However, since û
satisfies (3.1), it follows from uniqueness that u = û, as desired. �

To state the next result we need some more notation. The principal eigenvalue
of (1.1) is a map λ1 : R × L∞(−1, 1) → R. The Fréchet derivative of λ1 with
respect to the second variable, if it exists, denoted ∂2λ1(α, ·). For a function f ∈
L∞(−1, 1), ∂2λ1(α, f) would be a linear functional from L∞(−1, 1) into the reals.
By ∂2λ1(α, f)[h] we denote the Fréchet derivative at f applied to h ∈ L∞(−1, 1).

Lemma 4.3. Let α ≥ 0, and f and h be functions in L∞(−1, 1). Then

∂2λ1(α, f)[h] = α

∫ 1

−1

hu2
α,f dx, (4.5)

hence ∂2λ1(α, f) can be identified with αu2
α,f .

Proof. From (2.1) we have

λ1(α, f + h) ≤
∫ 1

−1

u′
2
α,f dx+ α

∫ 1

−1

(f + h)u2
α,f dx

= λ1(α, f) + α

∫ 1

−1

hu2
α,f dx

(4.6)

Thus we derive

λ1(α, f + h)− λ1(α, f)− α

∫ 1

−1

hu2
α,f dx ≤ 0. (4.7)

On the other hand, again from (2.1), we have

λ1(α, f) ≤
∫ 1

−1

u′
2
α,f+h dx+ α

∫ 1

−1

fu2
α,f+h dx

= λ1(α, f + h)− α

∫ 1

−1

hu2
α,f+h dx.

Thus

λ1(α, f + h)− λ1(α, f)− α

∫ 1

−1

hu2
α,f dx ≥ α

∫ 1

−1

h(u2
α,f+h − u2

α,f ) dx. (4.8)
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From (4.7) and (4.8) we deduce

|λ1(α, f + h)− λ1(α, f)− α

∫ 1

−1

hu2
α,f dx| ≤ α‖h‖∞

∫ 1

−1

|u2
α,f+h − u2

α,f | dx

≤ 2α‖h‖∞‖uα,f+h − uα,f‖2
≤ 4α‖h‖∞‖uα,f+h − uα,f‖∞,

(4.9)

where in the second inequality we used the Hölder inequality, and in the third one
the fact that uα,f+h and uα,f both satisfy (3.1). Note that from Lemma 4.2, we
infer that ‖uα,f+h − uα,f‖∞ = o(1), as ‖h‖∞ → 0. This result coupled with (4.9)
imply that

λ1(α, f + h)− λ1(α, f)− α

∫ 1

−1

hu2
α,f dx = o(‖h‖∞),

as ‖h‖∞ → 0. This, in turn, verifies (4.5). �

To state the next result we introduce the functional Φα : L∞(−1, 1) → R as

Φα(g) =

√
1
α
∂2λ1(α, g), α > 0.

Note that Φα is well-defined since from Lemma 4.3, ∂2λ1(α, g) can be identified
with the positive function αu2

α,g.

Theorem 4.4. (a) For every α > 0, we have F0 = φα ◦Φα(F0), almost every-
where in (−1, 1).

(b) For 0 < α ≤ α̂, we have F 0 = ψα ◦ Φα(F 0), almost everywhere in (−1, 1).
Where the functions φα and ψα are the functions stated in Remarks 3.1, and

3.5, respectively.

The proof of the above theorem is straightforward; so we omit it.
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