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IMPULSIVE DYNAMIC EQUATIONS ON A TIME SCALE

ERIC R. KAUFMANN, NICKOLAI KOSMATOV, YOUSSEF N. RAFFOUL

Abstract. Let T be a time scale such that 0, ti, T ∈ T, i = 1, 2, . . . , n, and
0 < ti < ti+1. Assume each ti is dense. Using a fixed point theorem due to

Krasnosel’skĭı, we show that the impulsive dynamic equation

y∆(t) = −a(t)yσ(t) + f(t, y(t)), t ∈ (0, T ],

y(0) = 0,

y(t+i ) = y(t−i ) + I(ti, y(ti)), i = 1, 2, . . . , n,

where y(t±i ) = lim
t→t±i

y(t), and y∆ is the ∆-derivative on T, has a solu-

tion. Under a slightly more stringent inequality we show that the solution is

unique using the contraction mapping principle. Finally, with the aid of the
contraction mapping principle we study the stability of the zero solution on

an unbounded time scale.

1. Introduction

Let T be a time scale such that 0, ti, T ∈ T, for i = 1, 2, . . . , n, 0 < ti < ti+1, and
assume that ti is dense in T for each i = 1, 2, . . . , n. We will show the existence of
solutions for the nonlinear impulsive dynamic equation

y∆(t) = −a(t)yσ(t) + f(t, y(t)), t ∈ (0, T ],

y(0) = 0,

y(t+i ) = y(t−i ) + I(ti, y(ti)), i = 1, 2, . . . , n,

(1.1)

where y(t±i ) = limt→t±i
y(t), y(ti) = y(t−i ), and [0, T ] = {t ∈ T : 0 ≤ t ≤ T}. Note,

the intervals [a, b), (a, b], and (a, b) are defined similarly.
In 1988, Stephan Hilger [10] introduced the theory of time scales (measure chains)

as a means of unifying discrete and continuum calculi. Since Hilger’s initial work
there has been significant growth in the theory of dynamic equations on time scales,
covering a variety of different problems; see [2, 3, 4] and references therein. The
study of impulsive initial and boundary value problems is extensive. For the theory
and classical results, we direct the reader to the monographs [1, 15, 16]. Recent
works of D. Guo on the topic include [7, 8, 9] (and the references therein) and are
devoted to the existence of solutions to integro-differential equations using the fixed
point index of operators in ordered Banach spaces and other techniques.
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In Section 2 we present some preliminary material that we will need to show
the existence of a solution of (1.1). We will state some facts about the exponential
function on a time scale as well as a fixed point theorem due to Krasnosel’skĭı. We
present our main results in Section 3. In Section 4 we give sufficient conditions for
the stability of the zero solution of (1.1).

2. Preliminaries

We assume the reader is familiar with the notation and basic results for dynamic
equations on time scales. For a review of this topic we direct the reader to the
monographs [3, 4]. We begin with a few definitions.

A function p : T → R is said to be regressive provided 1 + µ(t)p(t) 6= 0 for all
t ∈ Tκ. The set of all regressive rd-continuous functions f : T → R is denoted by
R.

Let p ∈ R and µ(t) 6= 0 for all t ∈ T. The exponential function on T, defined by

ep(t, s) = exp
( ∫ t

s

1
µ(z)

log(1 + µ(z)p(z))∆z
)
,

is the solution to the initial value problem y∆ = p(t)y, y(s) = 1. Other properties
of the exponential function are given in the following lemma, [3, Theorem 2.36].

Lemma 2.1. Let p ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) 1

ep(t,s) = e	p(t, s), where 	p(t) = − p(t)
1+µ(t)p(t) ;

(iv) ep(t, s) = 1
ep(s,t) = e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);
(vi)

(
1

ep(·,s)
)∆ = − p(t)

eσ
p (·,s) .

Lastly in this section, we state Krasnosel’skĭı’s fixed point theorem [14] which
enables us to prove the existence of a periodic solution.

Theorem 2.2 (Krasnosel’skĭı). Let M be a closed convex nonempty subset of a
Banach space

(
B, ‖ · ‖

)
. Suppose that

(i) the mapping A : M → B is completely continuous,
(ii) the mapping B : M → B is a contraction, and
(iii) x, y ∈ M, implies Ax+By ∈ M.

Then the mapping A+B has a fixed point in M.

3. Existence Of Solutions

Define tn+1 ≡ T and let J0 = [0, t1] and for k = 1, 2, . . . , n, let Jk = (tk, tk+1].
Define

PC = {y : [0, T ] → R | y ∈ C(Jk), y(t±k ) exist and y(t−k ) = y(tk), k = 1, . . . , n}

and

PC1 = {y : [0, T ] → R | y ∈ C1(Jk), k = 1, . . . , n}
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where C(Jk) is the space of all real valued continuous functions on Jk and C1(Jk)
is the space of all continuously delta-differentiable functions on Jk. The set PC is
a Banach space when it is endowed with the supremum norm

‖u‖ = max
0≤k≤n

{
‖u‖k

}
,

where ‖u‖k = supt∈Jk
|u(t)|.

We will assume that the following conditions hold.
(A) a ∈ R.

(F1) f ∈ C(T× R,R).
(F2) There exist g and h with α := maxt∈[0,T ]

∫ t

0
|e	a(t, s)|g(s) ∆s < ∞, and

β := maxt∈[0,T ]

∫ t

0
|e	a(t, s)|h(s) ∆s <∞, such that

|f(t, y)| ≤ g(t) + h(t)|y|, t ∈ T, y ∈ R.

(I) There exists a positive constant E such that

|I(t, x)− I(t, y)| ≤ E|x− y|, for x, y ∈ R.

Lemma 3.1. The function y ∈ PC1 is a solution of equation (1.1) if and only if
y ∈ PC is a solution of

y(t) =
∫ t

0

e	a(t, s)f(s, y(s))∆s+
∑

{i:ti<t}

e	a(t, ti)I
(
ti, y(ti)

)
. (3.1)

Proof. For t ∈ J0, the solution of (1.1) satisfying y(0) = 0 is

y(t) =
∫ t

0

e	a(t, 0)f(s, y(s))∆s.

See [3] for details. To find the solution of (1.1) on J1 we consider the initial value
problem

y∆(t) = −a(t)yσ(t) + f(t, y(t)), t ∈ J1,

y(t+1 ) =
∫ t1

0

e	a(t1, s)f(s, y(s))∆s+ I(t1, y(t1)).

The solution to this initial value problem is

y(t) = e	a(t, t1)I(t1, y(t1)) +
∫ t

0

e	a(t, s)f(s, y(s))∆s.

We proceed inductively to obtain that if y ∈ PC1 is a solution of (1.1), then y ∈ PC
is a solution of

y(t) =
∫ t

0

e	a(t, s)f(s, y(s))∆s+
∑

{i:ti<t}

e	a(t, ti)I
(
ti, y(ti)

)
.

The converse statement follows trivially and the proof is complete. �

Define the mapping H : PC → PC by

(Hϕ)(t) =
∫ t

0

e	a(t, s)f(s, ϕ(s))∆s+
∑

{i:ti<t}

e	a(t, ti)I
(
ti, ϕ(ti)

)
. (3.2)
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By Lemma 3.1, a fixed point of H is a solution of (1.1). The form of (3.2) suggests
that we construct two mappings, one of which is completely continuous and the
other is a contraction. We express equation (3.2) as

(Hϕ)(t) = (Aϕ)(t) + (Bϕ)(t)

where, A,B are given by

(Aϕ)(t) =
∫ t

0

e	a(t, s)f(s, ϕ(s))∆s, (3.3)

(Bϕ)(t) =
∑

{i:ti<t}

e	a(t, ti)I
(
ti, ϕ(ti)

)
. (3.4)

Lemma 3.2. Suppose (A), (F1), (F2) hold. Then A : PC → PC, as defined by
(3.3), is completely continuous.

Proof. It is clear that A : PC → PC. To see that A is continuous, let {ϕi} ⊂ PC
be such that ϕi → ϕ as i→∞. By (F2) and the continuity of f we have, for each
t ∈ [0, T ],

lim
i→∞

∣∣Aϕi(t)−Aϕ(t)
∣∣ ≤ lim

i→∞

∫ T

0

∣∣e	a(t, s)
(
f(s, ϕi(s))− f(s, ϕ(s))

)∣∣ ∆s

≤
∫ T

0

lim
i→∞

|e	a(t, s)|
∣∣f(s, ϕi(s))− f(s, ϕ(s))

∣∣ ∆s

→ 0.

Thus A is continuous. A standard application of the Arzelà-Ascoli Theorem shows
that A is compact. �

Lemma 3.3. Let (A) and (I) hold and let B be defined by (3.4). Suppose that

E max
t∈[0,T ]

n∑
i=1

|e	a(t, ti)| ≤ ζ < 1. (3.5)

Then B : PC → PC is a contraction.

Proof. Since e	a(t, ti) is continuous for all i = 1, . . . , n, it follows trivially that
B : PC → PC. For ϕ,ψ ∈ PC, we have

‖Bϕ−Bψ‖ = max
0≤i≤n

{
|Bϕ(t)−Bψ(t)| : t ∈ Ji

}
≤ max

0≤i≤n

{ ∑
{i:ti<t}

|e	a(t, ti)|
∣∣∣I(ti, ϕ(ti))− I(ti, ψ(ti))

∣∣∣ : t ∈ Ji

}

≤
(
E max

t∈[0,T ]

n∑
i=1

|e	a(t, ti)|
)
|ϕ(ti)− ψ(ti)|

≤ ζ‖ϕ− ψ‖.

Hence B defines a contraction mapping with contraction constant ζ. �

We now state and prove our first existence theorem.
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Theorem 3.4. Assume η := maxt∈[0,T ]

∑n
i=1 |e	a(t, ti)| |I(ti, 0)| < ∞. Suppose

(A), (F1), (F2), (I) and (3.5) hold. Let J be a positive constant satisfying the
inequality

α+ η +
(
β + E max

t∈[0,T ]

n∑
i=1

|e	a(t, ti)|
)
J ≤ J. (3.6)

Then (1.1) has a solution ϕ such that ‖ϕ‖ ≤ J .

Proof. Define M = {ϕ ∈ PC : ‖ϕ‖ ≤ J}. By Lemma 3.2, A : PC → PC is
completely continuous. Also, from Lemma 3.3, the mapping B : PC → PC is a
contraction. The first and second conditions of Theorem 2.2 are satisfied.

We need to show that if ϕ,ψ ∈ M, then ‖Aϕ+ Bψ‖ ≤ J . Let ϕ,ψ ∈ M. Then,
‖ϕ‖, ‖ψ‖ ≤ J and

|Aϕ(t) +Bψ(t)|

≤
∫ t

0

e	a(t, s)|f(s, ϕ(s))|∆s+
∑

{i:ti<t}

|e	a(t, ti)| |I(ti, ψ(ti))|

≤
∫ t

0

|e	a(t, s)|g(s) ∆s+
∫ t

0

|e	a(t, s)|h(s) ∆s ‖ϕ‖

+
n∑

i=1

|e	a(t, ti)||I(ti, 0)|+
n∑

i=1

|e	a(t, ti)||I(ti, ψ(ti))− I(ti, 0)|

≤ α+ βJ + η + E max
t∈[0,T ]

n∑
i=1

|e	a(t, ti)|J ≤ J.

Hence ‖Aϕ+Bψ‖ ≤ J and so Aϕ+Bψ ∈ M. All the conditions of Krasnosel’skĭı’s
theorem are satisfied. Thus there exists a fixed point z in M such that z = Az+Bz.
By Lemma 3.1, this fixed point is a solution of (1.1) and the proof is complete. �

The conditions (F2) and (I) are global conditions on the functions f and I. In
the next theorem we replace these conditions with the following local conditions.

(F2’) There exist g and h with α := maxt∈[0,T ]

∫ t

0
|e	a(t, s)|g(s)∆s < ∞, and

β := maxt∈[0,T ]

∫ t

0
|e	a(t, s)|h(s)∆s <∞, such that

|f(t, y)| ≤ g(t) + h(t)|y|, t ∈ T, |y| < J.

(I’) There exists a positive constant E such that

|I(t, x)− I(t, y)| ≤ E|x− y|, for |x|, |y| < J.

Theorem 3.5. Assume η := maxt∈[0,T ]

∑n
i=1 |e	a(t, ti)| |I(ti, 0)| < ∞. Suppose

(A), (F1), and (3.5) hold. Let J be a positive constant such that conditions (F2’)
and (I’) hold and such that

α+ η +
(
β + E max

t∈[0,T ]

n∑
i=1

|e	a(t, ti)|
)
J ≤ J (3.7)

is satisfied. Then (1.1) has a solution ϕ such that ‖ϕ‖ ≤ J .

The proof of Theorem 3.5 parallels that of Theorem 3.4 and hence is omitted. In
our last theorem in this section, we give conditions for which the solution of (1.1)
is unique.
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Theorem 3.6. Suppose (A), (F1), (F2), (I) and (3.5) hold. If β + ζ < 1, then
there exists a unique solution to the impulsive initial value problem (1.1).

Proof. Let ϕ,ψ ∈ PC. For t ∈ [0, T ]

|Hϕ(t)−Hψ(t)| ≤
∣∣∣ ∫ t

0

e	a(t, s)
(
f(s, ϕ(s))− f(s, ψ(s))

)
∆s

∣∣∣
+

∑
{i:ti<t}

|e	a(t, ti)|
∣∣I(ti, ϕ(ti))− I(ti, ψ(ti))

∣∣
≤

∫ T

0

|e	a(t, s)|h(s) ∆s ‖ϕ− ψ‖+ ζ‖ϕ− ψ‖

≤ (β + ζ)‖ϕ− ψ‖.

Hence ‖Hϕ − Hψ‖ ≤ (β + ζ)‖ϕ − ψ‖. By the contraction mapping principal, H
has a fixed point in PC. By Lemma 3.1, this fixed point is a solution of (1.1) and
the proof is complete. �

4. Stability

Assume that T is unbounded above. In this section, we study the stability of
the zero solution of the dynamic equation

y∆(t) = −a(t)yσ(t) + f
(
t, y(t)

)
,

y(0) = y0,

y(t+i ) = y(t−i ) + I
(
ti, y(ti)

)
, i = 1, 2, . . . , n.

(4.1)

In addition to assumptions (A), (F1) and (I), we assume that a, I and f satisfy

I(t, 0) = 0, f(t, 0) = 0, (4.2)

for all t ∈ T and
e	a(t, 0) → 0, as t→∞, (4.3)

By Lemma 2.1 and (4.3) we have that e	a(t, ti) → 0 as t→∞.
We replace condition (F2) with the following condition.
(F3) There exist continuous functions g and h with

α := max
t∈T

∫ t

0

|e	a(t, s)|g(s) ∆s <∞,

β := max
t∈T

∫ t

0

|e	a(t, s)|h(s) ∆s <∞,∫ t

0

|e	a(t, s)|g(s) ∆s→ 0, and∫ t

0

|e	a(t, s)|h(s) ∆s→ 0,

such that

|f(t, y)| ≤ g(t) + h(t)|y|, t ∈ T, |y| < J.

Lastly, we assume that

lim
t→∞

∫ t

0

|e	a(t, s)|g(s) ∆s = 0. (4.4)
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Remark: Lyapunov’s direct method has been used widely when T = R. However,
the extension of the theory of Lyapunov functions to time scales has not been
fully developed. When Lyapunov’s direct method is used, one must impose point-
wise conditions on the coefficients in order to get the derivative of the constructed
Lyapunov function to be negative along the solutions of the differential equation
of interest. Since we are using fixed point theory, our conditions on the functions
a, g and h are of averaging type. For an excellent reference of collections of recent
results on the use of fixed point theory in the study of stability, periodicity and
boundedness, we refer the reader to the texts [5, 6].

As in Lemma 3.1, we can show that y ∈ PC1 is a solution of (4.1) if and only if
y ∈ PC satisfies

y(t) = e	a(t, 0)y0 +
∫ t

0

e	a(t, s)f(s, y(s))∆s+
∑

{i:ti<t}

e	a(t, ti)I
(
ti, y(ti)

)
. (4.5)

Define the set S by

S = {ϕ ∈ PC : ϕ(0) = y0, ϕ(t) → 0 as t→∞, and ϕ is bounded}.

Then (S, ‖ · ‖) is a complete metric space under the norm ‖y‖ = supt∈T |y(t)|.
Define the mapping H2 by

(H2ϕ)(t) = e	a(t, 0)y0 +
∫ t

0

e	a(t, s)f(s, ϕ(s))∆s+
∑

{i:ti<t}

e	a(t, ti)I
(
ti, ϕ(ti)

)
.

(4.6)
We say that the zero solution of (4.1) is stable if for each ε > 0 there exists a

δ = δ(ε) > 0 and a t∗ > 0 such that if |y0| < δ then |y(t)| < ε for all t > t∗.

Theorem 4.1. Assume that (A), (F1), (F3), (I), and (4.2)–(4.4) hold. Suppose
that

β + Emax
t∈T

∑
{i:ti<t}

|e	a(t, ti)| < 1,

Then every solution y(t) of (4.1) with small initial value y0 is bounded and goes to
0 as t→∞. Moreover, the zero solution is stable.

Proof. We first show that H2 : S → S. Note that if ϕ ∈ PC then H2ϕ ∈ PC. Let
ϕ ∈ PC be such that ‖ϕ‖ ≤ K and let M = maxt∈T e	a(t, 0). Then

|H2ϕ(t)| ≤ |e	a(t, 0)||y0|+
∫ t

0

|e	a(t, s)||f(s, ϕ(s))|∆s

+
∑

{i:ti<t}

|e	a(t, ti)||I
(
ti, ϕ(ti)

)
|

≤ |e	a(t, 0)||y0|+
∫ t

0

|e	a(t, s)|g(s)∆s

+
∫ t

0

|e	a(t, s)|h(s)|ϕ(s)|∆s+
∑

{i:ti<t}

E|e	a(t, ti)||ϕ(ti)|

≤M |y0|+ α+ βK + Emax
t∈T

∑
{i:ti<t}

|e	a(t, ti)|K.

Since maxt∈T
∑
{i:ti<t}|e	a(t, ti)| <∞, H2ϕ is bounded whenever ϕ is bounded.
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Conditions (4.3) and (F3) imply that (H2ϕ)(t) → 0 as t → 0. Let ϕ, θ ∈ S.
Then

|H2ϕ(t)−H2θ(t)| ≤
∫ t

0

|e	a(t, s)|h(s)|ϕ(s)− θ(s)|∆s

+
∑

i:ti<t

|e	a(t, ti)|E|ϕ(ti)− θ(ti)|

≤
[
β + Emax

t∈T

∑
{i:ti<t}

|e	a(t, ti)|
]
‖φ− θ‖.

Since β + Emaxt∈T
∑
{i:ti<t} |e	a(t, ti)| < 1 then H2 is a contraction. By the

Contraction Mapping Principal, there exists a unique fixed point in S which solves
(4.1).

Since (4.4) holds then we can find t∗ ∈ T such that if t > t∗ then∫ t

0

|e	a(t, s)|g(s) ∆s <
ε

3
.

Fix ε > 0 and let ϕ ∈ PC be such that ‖ϕ‖ ≤ max{ε/3, ε/(3M)}. As above we
have,

|H2ϕ(t)| ≤ |e	a(t, 0)||y0|+
∫ t

0

|e	a(t, s)|g(s)∆s

+
∫ t

0

|e	a(t, s)|h(s)|ϕ(s)|∆s+
∑

{i:ti<t}

E|e	a(t, ti)||ϕ(ti)|

≤ ε.

The zero solution is stable and the proof is complete. �
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