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TERMINAL VALUE PROBLEMS FOR FIRST AND SECOND
ORDER NONLINEAR EQUATIONS ON TIME SCALES

ROMAN HILSCHER, CHRISTOPHER C. TISDELL

Abstract. In this paper we examine “terminal” value problems for dynamic
equations on time scales – that is, a dynamic equation whose solutions are

asymptotic at infinity. We present a number of new theorems that guarantee

the existence and uniqueness of solutions, as well as some comparison-type
results. The methods we employ feature dynamic inequalities, weighted norms,

and fixed-point theory.

1. Introduction

The theory of “terminal” value problems, where the problem consists of a dy-
namic equation coupled with asymptotic behavior of the solution at ∞, forms an
interesting and more challenging field of research than the theory of initial value
problems. This is due to even the basic results and methods known for initial value
problems, such as the perturbation technique, are unavailable for use in the setting
of terminal value problems. For example, the existence of a solution to the termi-
nal value problem x′ = f(t, x), x(∞) = x0, need not imply that the terminal value
problem x′ = f(t, x)± 1

n , x(∞) = x0 ± 1
n has a solution, see [1, pg. 1173].

In this work, we examine terminal value problems for “dynamic equations on
time scales”, which is a new and versatile area of mathematics that is more general
than the fields of differential equations and difference equations. The area of time
scales originates in the work of Hilger in [23]. Such investigations reveal the bonds
and distinctions between the two areas and also provide a framework with which
to more accurately model stop-start processes.

Our main interest herein is in the qualitative properties of solutions to terminal
value problems on time scales, including the existence, uniqueness, and comparison
theorems. The methods that we employ involve dynamic inequalities, weighted
norms, and fixed point theory. The motivation for using the weighted (or Bielecki)
norms originates in [31] and the references quoted therein, where this method was
used in order to prove the existence and uniqueness results for nonlinear initial value
problems on bounded time scales. The existence of bounded solutions to initial
value problems for second order dynamic equations and inequalities on unbounded
time scales was studied in [3], while in [2] results of this type are given for certain
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first order dynamic equations. In the latter three references, as well as in the present
paper, the fixed point theory is utilized.

Our results extend some of the ideas in [1] and, more recently, those of [20]. More
specifically, we provide some extensions of the comparison results in [1], which were
formulated for terminal value problems involving ordinary differential equations, to
the time scale environment. Furthermore, compared to [20] we allow in Section 4 the
nonlinearity f(t, xσ) or f(t, xσ, x∆σ) to be vector valued and we pose no restriction
on the sign of its entries. Also, we assume in those results that the leading coefficient
r(t) is merely nonzero as opposed to the assumption of its positivity in [20]. In
addition, for the case of positive r(t) and nonnegative nonlinearity f we extend in
Section 5 the ideas in [20] from the scalar case to the matrix/vector case. Some of
the main results (e.g., Theorems 3.5, 3.6, 4.2, 4.5, 5.1 and 5.2) appear to be new
even for the special case T = Z, that is, for difference equations.

For additional papers that contain comparison and existence and uniqueness
results for first-order terminal value problems involving ordinary differential equa-
tions, we refer the reader to [21, 22, 27, 32]. For papers dealing with second-order
terminal value problems, the reader is referred to [22, 29, 30]. The methods used
in the range of the aforementioned papers involve differential inequalities and the
fixed-point theorems of Banach or Schauder.

The setup of the paper is the following. In Section 2 we introduce necessary
notation and terminology as well as some preparatory results about the time scale
exponential function. In Section 3 we derive an existence and uniqueness theorem
for the terminal value problem of the first order. Then we continue in deriving
comparison results for solutions of first order dynamic inequalities. In Section 4 we
consider terminal value problems for second order dynamic equations with scalar
leading coefficient, while in Section 5 we deal with such equations with matrix lead-
ing coefficient and with nonnegative nonlinearity. In Section 6 we present examples
illustrating the applicability of the obtained results. Finally, in Section 7 we discuss
further applications and extensions, in particular to nabla dynamic terminal value
problems.

2. Prerequisites and notation

Let n ∈ N be a fixed natural number. For a real symmetric n× n matrix A we
write A > 0 or A ≥ 0 for A being a positive definite or positive semidefinite matrix,
respectively. Moreover, if B is a real symmetric n×n matrix, then we write A < B
or A ≤ B if B −A > 0 or B −A ≥ 0, respectively.

In this paper we will use the vector norm | · |∞ on Rn denoted for simplicity by
|x| := |x|∞ = max{|xi|, i = 1, . . . , n}. Given a number 0 < q ≤ ∞, we use the
notation Ωq := {x ∈ Rn, |x| < q} for the open q-ball in Rn. Then we can identify
Ω∞ with Rn.

Let T be a time scale, i.e., a nonempty closed subset of R, which is bounded
below and unbounded above. Then a := min T exists and we may identify T with
the time scale interval [a,∞)T. We shall use the common time scale notation and
terminology e.g. from the books [10, 11]. In particular, the forward and backward
jump operators are denoted by σ and ρ, and the graininess is µ(t) := σ(t) − t.
As it is common, the sets of all continuous, rd-continuous, or rd-continuously ∆-
differentiable functions (on a given interval) will be denoted by C, Crd, and C1

rd,
respectively. The sup norm in the space of bounded n-vector functions x ∈ C on
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[a,∞)T will be denoted by ‖x‖0 := supt∈[a,∞)T
|x(t)|. The sup norm in the space

of bounded n-vector functions x ∈ C1
rd on [a,∞)T such that x∆ is also bounded

will be denoted by ‖x‖1 := max{‖x‖0, ‖x∆‖0}. The improper integrals used in this
paper are defined in the traditional way as

∫∞
a
f(t) ∆t := limb→∞

∫ b
a
f(t) ∆t, see

e.g. [8, Section 5.6] and [9, Section 4]. In addition, motivated by [26, Definition 3],
we adopt the following terminology.

Definition 2.1. Let 0 < q ≤ ∞ and f : [a,∞)T × Ωq × Rn → Rn be a function.
We write f ∈ Crd ×C×C and say that f is Crd ×C×C-continuous on its domain
if for any (t0, x0, v0) ∈ [a,∞)T×Ωq×Rn and any ε > 0 there exists δ > 0 such that
0 < |(t− t0, x− x0, v − v0)| < δ implies∣∣F (t, x, v)− F (t0, x0, v0)

∣∣ < ε. (2.1)

When the point t0 is left-dense and right-scattered at the same time, then replace
t0 in (2.1) by t−0 (the left-hand limit).

In other words, f ∈ Crd × C × C means that f is continuous at any point
(t0, y0, v0) ∈ [a,∞)T×Ωq×Rn when t0 is right-dense, and that f is jointly regulated,
that is, limn→∞ f(tn, xn, vn) exists (finite) whenever tn → t−0 or tn → t+0 , and
(xn, vn) → (x0, v0).

The following result is a minor modification of [26, Proposition 1]. It shows that
the above continuity concept is the right one when considering time scale delta
integrals involving a Crd × C× C-continuous function f in the composition with a
C1

rd function x.

Proposition 2.2. Let x ∈ C1
rd[a,∞)T and assume that f ∈ Crd×C×C on [a,∞)T×

Ωq × Rn with 0 < q ≤ ∞. Then f
(
·, xσ(·), x∆σ(·)

)
∈ Crd.

Similarly, when the function f is defined only on [a,∞)T × Ωq we have the
following statement.

Proposition 2.3. Let x ∈ C[a,∞)T and assume that f ∈ Crd ×C on [a,∞)T ×Ωq
with 0 < q ≤ ∞. Then f

(
·, xσ(·)

)
∈ Crd.

When considering terminal value problems, we shall use the abbreviation

x(∞) := lim
t→∞

x(t).

The vector space of all real n-vector functions defined on [a,∞)T will be denoted
throughout the paper by F .

For completeness we recall the statement of the Banach fixed point theorem
adjusted to the setting of this paper.

Proposition 2.4. Let X be a Banach space (i.e., a complete normed space) with
norm ‖ · ‖X and let U ⊆ X be its nonempty and closed subset. If a mapping
F : U → U is a contraction, i.e., if there exists L ∈ (0, 1) such that ‖Fx−Fy‖X ≤
L ‖x − y‖X for all x, y ∈ U , then F has a unique fixed point, i.e., there exists a
unique element x ∈ U such that x = Fx. Furthermore, if x0 ∈ U is arbitrary, and
if we set xi+1 := Fxi for all i ∈ N, then the sequence {xi}∞i=0 converges in X to
the fixed point x, and the error between the i-th iteration xi and the fixed point x
satisfies the estimate

‖xi − x‖X ≤ Li

1− L
‖x1 − x0‖X , i ∈ N.
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Next we present some important properties of the time scale exponential func-
tion. By definition, see [10, Definition 2.30], for an rd-continuous and regressive
function p : [a,∞)T → R, the time scale exponential function ep(·)(t, a) is defined
to be the unique solution of the initial value problem u∆ = p(t)u, u(a) = 1. In
this paper we will utilize the time scale exponential functions corresponding to the
initial value problem

u∆ = −p(t)uσ, t ∈ [a,∞)T, u(a) = 1. (2.2)

By expanding uσ in (2.2) with the formula uσ = u + µ(t)u∆ and using the re-
gressivity of p(·), the dynamic equation in (2.2) is equivalent to the equation
u∆ = (	p)(t)u, where 	p(t) := [−p(t)]/[1 + µ(t) p(t)]. Thus, the time scale expo-
nential function e	p(·)(t, a) is the unique solution of the initial value problem (2.2).
Motivated by [20, Lemma 3.1], we have the following result.

Lemma 2.5. Assume that p : [a,∞)T → (0,∞), p ∈ Crd, and∫ ∞

a

p(s) ∆s <∞. (2.3)

Let u(t) := e	p(·)(t, a) be the time scale exponential function corresponding to the
initial value problem (2.2). Then u(·) is positive and decreasing on [a,∞)T, and
limt→∞ u(t) =: u0 ∈ (0, 1). Furthermore,

sup
t∈[a,∞)T

1
u(t)

∫ ∞

t

[−u∆(s)]∆s = 1− u0. (2.4)

Proof. Since p(·) is positive, 	p(·) is a negative function. Hence, we have 1 +
µ(t) (	p)(t) = 1/[1 + µ(t) p(t)] > 0 on [a,∞)T, i.e., 	p(·) is an rd-continuous and
positively regressive function. By [10, Theorem 2.44], we get that u(t) > 0 on
[a,∞)T. Consequently, u∆(t) < 0, the function u(·) is decreasing on [a,∞)T, the
limit u0 exists, and u0 ∈ [0, 1). The fact that actually u0 > 0 follows from the
assumption (2.3). We refer to the proof of [20, Lemma 3.1] for the details. For the
proof of (2.4), we have

sup
t∈[a,∞)T

1
u(t)

∫ ∞

t

[−u∆(s)]∆s = sup
t∈[a,∞)T

(
1− u0

u(t)

)
= 1− u0,

because the function u attains its maximum value u(a) = 1. �

3. First order equations

Consider the first order time scale dynamic equation

x∆ + f(t, xσ) = 0, t ∈ [a,∞)T. (3.1)

For a given positive number N we define the set

XN :=
{
x ∈ C[a,∞)T, ‖x‖0 ≤ N

}
, (3.2)

Then XN is a closed subset of the Banach space (C[a,∞)T, ‖ · ‖0).

Remark 3.1. Given a function ψ : [a,∞)T → [c, d], 0 < c ≤ d < ∞, we introduce
on the space C[a,∞)T another norm

‖x‖ψ := ‖x/ψ‖0 = sup
t∈[a,∞)T

|x(t)|
ψ(t)

.
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The norm ‖ · ‖ψ is on C[a,∞)T clearly equivalent to the norm ‖ · ‖0, so that
(C[a,∞)T, ‖ · ‖ψ) is also a Banach space, compare with [31, Lemma 3.3].

The following theorem is then our first result.

Theorem 3.2. Assume that f : [a,∞)T ×Ωq → Rn with 0 < q ≤ ∞, f ∈ Crd ×C,
is a function satisfying the Lipschitz condition∣∣f(t, x)− f(t, y)

∣∣ ≤ k(t) |x− y|, for all t ∈ [a,∞)T, x, y ∈ Ωq, (3.3)

where k : [a,∞)T → (0,∞), k ∈ Crd, and∫ ∞

a

k(s) ∆s <∞. (3.4)

Let A ∈ Rn be a given vector. If there exists a number N ∈ R, |A| ≤ N < q, such
that ∫ ∞

a

∣∣f(
s, xσ(s)

)∣∣ ∆s ≤ N − |A|, for all x ∈ XN , (3.5)

where XN is defined by (3.2), then the problem (3.1) has a unique solution x(t) on
[a,∞)T satisfying x(∞) = A.

Proof. We will apply the Banach fixed point theorem in the space (C[a,∞)T, ‖ · ‖ψ)
for a suitably chosen function ψ. Define the operator F : XN → F (the space of
n-vector functions) by

[Fx](t) := A+
∫ ∞

t

f
(
s, xσ(s)

)
∆s, t ∈ [a,∞)T.

It follows from Proposition 2.3 and assumption (3.5) that [Fx](t) is well-defined for
all t ∈ [a,∞)T. Furthermore,∣∣[Fx](t)∣∣ ≤ |A|+

∫ ∞

t

∣∣f(
s, xσ(s)

)∣∣ ∆s ≤ |A|+
∫ ∞

a

∣∣f(
s, xσ(s)

)∣∣ ∆s

≤ |A|+N − |A| = N, t ∈ [a,∞)T.

Hence, ‖Fx‖0 ≤ N . Since Fx is ∆-differentiable, hence continuous, it follows that
Fx ∈ XN , and

[Fx]∆(t) = −f
(
t, xσ(t)

)
, t ∈ [a,∞)T. (3.6)

Next, motivated by its introduction and use in [31], choose the function ψ(t) to
be the time scale exponential function e	k(·)(t, a). Then, by Lemma 2.5, we have
0 < ψ0 ≤ ψ(t) ≤ 1 for all t ∈ [a,∞)T with ψ0 ∈ (0, 1), where ψ0 := limt→∞ ψ(t).
Thus, by Remark 3.1, (C[a,∞)T, ‖ · ‖ψ) is a Banach space. By using (3.3) and (2.4)
with u := ψ and u0 := ψ0, we have for x, y ∈ XN

‖Fx− Fy‖ψ ≤ sup
t∈[a,∞)T

1
ψ(t)

∫ ∞

t

∣∣f(
s, xσ(s)

)
− f

(
s, yσ(s)

)∣∣ ∆s

≤ sup
t∈[a,∞)T

1
ψ(t)

∫ ∞

t

k(s)
∣∣xσ(s)− yσ(s)

∣∣ ∆s

≤ ‖x− y‖ψ sup
t∈[a,∞)T

1
ψ(t)

∫ ∞

t

[−ψ∆(s)]∆s = (1− ψ0) ‖x− y‖ψ.
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Hence, the mapping F is a contraction in XN . By Proposition 2.4, there is a unique
function x ∈ XN such that x = Fx, i.e.,

x(t) = A+
∫ ∞

t

f
(
s, xσ(s)

)
∆s, t ∈ [a,∞)T. (3.7)

By (3.6) and Proposition 2.3, Fx ∈ C1
rd, and x satisfies equation (3.1). Finally,

from assumption (3.5) it follows that

lim
t→∞

∫ ∞

t

f
(
s, xσ(s)

)
∆s = 0,

and hence, identity (3.7) yields that x(∞) = A. �

In Theorem 3.2 the solution x(t) approaches the a priori given limit A, and the
number N defining the set XN then depends on |A|. It may be hard to find such
number N . On the other hand, in the following result the solution x(t) approaches
a limit M , and at the same time the vector M determines the set in which the
contraction mapping F is defined. This type of result is then of the same fashion
as e.g. the results in [20].

Corollary 3.3. Assume that f : [a,∞)T ×Ωq → Rn with 0 < q ≤ ∞, f ∈ Crd×C,
is a function satisfying the Lipschitz condition (3.3), where k : [a,∞)T → (0,∞),
k ∈ Crd, and (3.4) holds. If there exists a vector M ∈ Rn, |M | < q, such that∫ ∞

a

∣∣f(
s, xσ(s)

)∣∣ ∆s ≤ |M |, for all x ∈ X2 |M |,

then the problem (3.1) has a unique solution x(t) on [a,∞)T satisfying x(∞) = M .

Proof. We let A := M and N := 2 |M | in Theorem 3.2. �

Our attention now turns to the following dynamic equation

x∆ + f(t, x) = 0, t ∈ [a,∞)T, (3.8)

where f is scalar-valued. Our interest is in obtaining comparison-type theorems for
solutions x to (3.8) subject to

x(∞) = A. (3.9)

Lemma 3.4. Assume that f : [a,∞)T × R → R, f ∈ Crd × C, and there exist
functions u, v : [a,∞)T → R such that: u(∞), v(∞) both exist,

u∆(t) + f
(
t, u(t)

)
≥ 0, for all t ∈ [a,∞)T, (3.10)

v∆(t) + f
(
t, v(t)

)
≤ 0, for all t ∈ [a,∞)T, (3.11)

f(t, p) ≤ f(t, q), for all q ≤ p. (3.12)

If u(∞) < v(∞), then u(t) < v(t) for all t ∈ [a,∞)T.

Proof. Argue by contradiction by assuming that there exists a point t1 ∈ [a,∞)T

such that

u(t1) ≥ v(t1), and (3.13)

u(t) < v(t), for all t ∈ (t1,∞)T. (3.14)

There are two cases to discuss: (a) the point t1 is right-scattered; (b) the point t1
is right-dense.
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(a) If t1 is right-scattered, then u∆(t1) < v∆(t1) and so from (3.10) and (3.11)
we obtain

−f(t1, u(t1)) ≤ u∆(t1) < v∆(t1) ≤ −f(t1, v(t1)),

which is a contradiction to (3.12).
(b) If t1 is right-dense, then (3.13) is forced to become u(t1) = v(t1) by (3.14)

and the intermediate value theorem. As per part (a) we see

−f(t1, u(t1)) < −f(t1, v(t1)),

which is impossible since u(t1) = v(t1).
Thus, in either case we have u(t) < v(t) for all t ∈ [a,∞)T. �

We will now apply Lemma 3.4 to obtain comparison results for solutions to (3.8),
(3.9).

Theorem 3.5. Assume that f : [a,∞)T × R → R, f ∈ Crd × C, satisfying (3.12)
and there exists a function u : [a,∞)T → R such that u(∞) exists and (3.10) holds.
If x is a solution to (3.8), (3.9) and u(∞) < A, then x(t) > u(t) for all t ∈ [a,∞)T.

Proof. Take v := x in Lemma 3.4 and the result follows. �

Similarly, we have the following result by taking u := x in Lemma 3.4.

Theorem 3.6. Assume that f : [a,∞)T × R → R, f ∈ Crd × C, satisfying (3.12)
and there exists a function v : [a,∞)T → R such that v(∞) exists and (3.11) holds.
If x is a solution to (3.8), (3.9) and v(∞) > A, then x(t) < v(t) for all t ∈ [a,∞)T.

4. Second order equations with scalar leading coefficient

The methods used in Section 3 to derive the existence and uniqueness results
for the first order equations can be naturally used in order to derive similar results
for the second order dynamic equations. For the second order setting there are two
cases depending on whether the nonlinearity f involves the ∆-derivative of x or
does not. As we shall see, these two cases differ in the assumption on the leading
coefficient r(t). Note that as in the previous section the function f can take both
positive and negative values. Consider first the equation(

r(t)x∆
)∆ + f(t, xσ) = 0, t ∈ [a,∞)T. (4.1)

We note that while the functions f and x in (4.1) are n-vector valued, the function
r will be (in this section) assumed to be scalar valued. Furthermore, compared with
some recent oscillation and asymptotic results for second order dynamic equations
[3, 4, 5, 12, 13, 18, 19, 20, 28] in which r(t) > 0 on [a,∞)T, in this paper we assume
(if not otherwise stated) that r(t) 6= 0 only. This type of assumption is common in
the oscillation theory of difference equations, see e.g. [14, 16], and have also been
adopted in some papers in the time scale setting [15, 17, 24, 25].

The results in this section directly generalize [20, Theorems 4.2 and 4.5] to vector
valued nonlinearity f which can take negative values and the leading coefficient r(t)
is assumed to be nonzero only.

Remark 4.1. Given a function r : [a,∞)T → R, r ∈ Crd, such that

inf
t∈[a,b]T

∣∣r(t)∣∣ > 0, for all b ∈ [a,∞)T, (4.2)
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it follows that r(t) 6= 0 for all t ∈ [a,∞)T, and the function 1
r also belongs to Crd

on [a,∞)T. Hence, the integrals

R(t, s) :=
∫ t

s

1
r(τ)

∆τ, R̄(t, s) :=
∫ t

s

1
|r(τ)|

∆τ, t, s ∈ [a,∞)T,

are well-defined. Obviously, for a fixed s ∈ [a,∞)T both R(·, s) and R̄(·, s) belong
to C1

rd with (∆-differentiating with respect to the first argument) R∆(t, s) = 1
r(t)

and R̄∆(t, s) = 1
|r(t)| > 0 for all t ∈ [a,∞)T. Consequently, the function R̄(t, s) is

increasing as t increases or, for the same reason, as s decreases. Moreover, we have

∣∣R(t, s)
∣∣ ≤ R̄(t, s) ≤ R̄(t, a), t, s ∈ [a,∞)T, t ≥ s. (4.3)

In connection with these functions we shall frequently use the identities

R
(
σ(s), t

)
= R

(
σ(s), a

)
−R(t, a), R̄

(
σ(s), t

)
= R̄

(
σ(s), a

)
− R̄(t, a), (4.4)

for t, s ∈ [a,∞)T. Next we present the first main result of this section.

Theorem 4.2. Assume that f : [a,∞)T ×Ωq → Rn with 0 < q ≤ ∞, f ∈ Crd ×C,
and r : [a,∞)T → R, r ∈ Crd, are given functions satisfying condition (4.2) and the
Lipschitz condition (3.3), in which k : [a,∞)T → (0,∞), k ∈ Crd, and∫ ∞

a

R̄
(
σ(s), a

)
k(s)∆s <∞. (4.5)

Let A ∈ Rn be a given vector. If there exists a number N ∈ R, |A| ≤ N < q, such
that ∫ ∞

a

R̄
(
σ(s), a

) ∣∣f(
s, xσ(s)

)∣∣ ∆s ≤ N − |A|, for all x ∈ XN , (4.6)

where XN is defined by (3.2), then the problem (4.1) has a unique solution x(t) on
[a,∞)T satisfying x(∞) = A and (rx∆)(∞) = 0.

Before proving Theorem 4.2 we need to establish an auxiliary lemma.

Lemma 4.3. Let g : [a,∞)T → Rn, g ∈ Crd, and r : [a,∞)T → R, r ∈ Crd, be
given functions such that condition (4.2) holds and∫ ∞

a

R̄
(
σ(s), a

)
|g(s)|∆s <∞. (4.7)

Define the function

G(t) :=
∫ ∞

t

R
(
σ(s), t

)
g(s) ∆s, t ∈ [a,∞)T.

Then G(t) is well-defined, G ∈ C1
rd on [a,∞)T, and

G∆(t) = − 1
r(t)

∫ ∞

t

g(s) ∆s, t ∈ [a,∞)T. (4.8)

Moreover,

lim
t→∞

G(t) = 0, lim
t→∞

r(t)G∆(t) = 0. (4.9)
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Proof. First note that, since R̄
(
σ(s), t

)
≤ R̄

(
σ(s), a

)
for t ≥ a, we have for all

t ∈ [a,∞)T∣∣G(t)
∣∣ ≤ ∫ ∞

t

R̄
(
σ(s), t

) ∣∣g(s)∣∣ ∆s ≤
∫ ∞

t

R̄
(
σ(s), a

) ∣∣g(s)∣∣ ∆s =: Ḡ(t) ≤ Ḡ(a).

Hence, by assumption (4.7), G(t) is well defined for all t ∈ [a,∞)T. Next, since
R̄(t, a) ≤ R̄

(
σ(s), a

)
for σ(s) ≥ t, the estimate∣∣∣R(t, a)

∫ ∞

t

g(s) ∆s
∣∣∣ = R̄(t, a)

∣∣∣ ∫ ∞

t

g(s) ∆s
∣∣∣ ≤ Ḡ(t), t ∈ [a,∞)T,

and the fact that R̄(t, a) > 0 for t > a show that
∣∣ ∫∞
t
g(s)∆s

∣∣ and hence
∫∞
t
g(s) ∆s

are finite for any t ∈ (a,∞)T. Fix any t0 ∈ (a,∞)T. Since g ∈ Crd, the integral∫ t0
a
g(s) ∆s exists, and then with respect to the previous conclusion we get that∫∞

a
g(s) ∆s =

{ ∫ t0
a

+
∫∞
t0

}
g(s) ∆s exists finite. The latter then implies that

lim
t→∞

∫ ∞

t

g(s) ∆s = 0. (4.10)

Thus, by using the first expression in (4.4), we may write

G(t) =
∫ ∞

t

R
(
σ(s), a

)
g(s) ∆s−R(t, a)

∫ ∞

t

g(s) ∆s, t ∈ [a,∞)T, (4.11)

in which both improper integrals exist finite. This shows that G is a C1
rd function on

[a,∞)T. Using the time scale product rule when ∆-differentiating the second term
in (4.11) we obtain formula (4.8). Finally, the first limit in (4.9) follows from the
fact that (for example) G(a) is finite, while the second limit in (4.9) is a consequence
of formula (4.8) in combination with the limit (4.10). �

We are now ready to derive Theorem 4.2.

Proof of Theorem 4.2. We will apply the Banach fixed point theorem in the space
(C[a,∞)T, ‖·‖ψ) for a suitably chosen function ψ. Define the operator F : XN → F
(the space of n-vector functions) by

[Fx](t) := A−
∫ ∞

t

R
(
σ(s), t

)
f
(
s, xσ(s)

)
∆s, t ∈ [a,∞)T.

Set g(t) := f
(
t, xσ(t)

)
on [a,∞)T. Then Proposition 2.3 yields that g ∈ Crd.

By assumption (4.6) and Lemma 4.3, we have that [Fx](t) is well-defined for all
t ∈ [a,∞)T, Fx ∈ C1

rd, and

[Fx]∆(t) =
1
r(t)

∫ ∞

t

g(s) ∆s, t ∈ [a,∞)T, (4.12)

with the limits
lim
t→∞

[Fx](t) = A, lim
t→∞

r(t) [Fx]∆(t) = 0. (4.13)

Furthermore, inequality (4.3) and assumption (4.6) yield that
∣∣[Fx](t)∣∣ ≤ N for all

t ∈ [a,∞)T, so that ‖Fx‖0 ≤ N and Fx ∈ XN .
Next, similarly to the proof of Theorem 3.2, we choose the function ψ(t) to

be the time scale exponential function e	p(·)(t, a), where p(t) := R̄
(
σ(t), a

)
k(t) for

t ∈ [a,∞)T. That is, ψ∆(t) = −p(t)ψσ(t) on [a,∞)T. Then, by Lemma 2.5, we have
0 < ψ0 ≤ ψ(t) ≤ 1 for all t ∈ [a,∞)T with ψ0 ∈ (0, 1), where ψ0 := limt→∞ ψ(t).
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Thus, by Remark 3.1, (C[a,∞)T, ‖ · ‖ψ) is a Banach space. By using the Lipschitz
condition (3.3), we get for any x, y ∈ XN

‖Fx− Fy‖ψ ≤ sup
t∈[a,∞)T

1
ψ(t)

∫ ∞

t

R̄
(
σ(s), t

) ∣∣f(
s, xσ(s)

)
− f

(
s, yσ(s)

)∣∣ ∆s

≤ sup
t∈[a,∞)T

1
ψ(t)

∫ ∞

t

R̄
(
σ(s), t

)
k(s)

∣∣xσ(s)− yσ(s)
∣∣ ∆s. (4.14)

Now if t = a, then for s ≥ t = a we have R̄
(
σ(s), t

)
k(s) = −ψ∆(s)

ψσ(s) . If t > a, then
for s ≥ t the quantity R̄

(
σ(s), a

)
> 0 and 0 ≤ R̄

(
σ(s), t

)
< R̄

(
σ(s), a

)
. In this case

we have

R̄
(
σ(s), t

)
k(s) =

R̄
(
σ(s), t

)
R̄

(
σ(s), a

) R̄(
σ(s), a

)
k(s) ≤ −ψ∆(s)

ψσ(s)
, (4.15)

and in combination with the previous case we see that inequality (4.15) holds for
any t ∈ [a,∞)T. Thus, we get from (4.14) by using (4.15), the definition of ‖x−y‖ψ,
and condition (2.4) with u := ψ and u0 := ψ0 that

‖Fx− Fy‖ψ ≤ ‖x− y‖ψ sup
t∈[a,∞)T

1
ψ(t)

∫ ∞

t

[−ψ∆(s)]∆s = (1− ψ0) ‖x− y‖ψ.

Hence, the mapping F is a contraction in XN . By Proposition 2.4, there is a unique
function x ∈ XN such that x = Fx, i.e.,

x(t) = A−
∫ ∞

t

R
(
σ(s), t

)
g(s) ∆s, t ∈ [a,∞)T. (4.16)

From the limits in (4.13) we get that

x(∞) = [Fx](∞) = A and (rx∆)(∞) = lim
t→∞

r(t) [Fx]∆(t) = 0.

Moreover, equations (4.12) and (4.16) show that the function x satisfies

r(t)x∆(t) =
∫ ∞

t

g(s) ∆s, t ∈ [a,∞)T. (4.17)

While the right-hand side of (4.17) is ∆-differentiable, it follows that(
r(t)x∆(t)

)∆ = −g(t), t ∈ [a,∞)T,

i.e., the function x satisfies the dynamic equation (4.1). The proof is complete. �

Next we turn our attention to the more general dynamic equation(
r(t)x∆

)∆ + f(t, xσ, x∆σ) = 0, t ∈ [a,∞)T. (4.18)

As we saw in Theorem 4.2, the problem (4.1) which does not involve x∆ in f can
be treated within the set XN consisting of certain continuous functions x. On the
other hand, the problem (4.18) must be considered in a narrower space, because
it is implicitly assumed in the form of this equation that x∆ exists throughout the
interval [a,∞)T. Therefore, we introduce the set

X1
N :=

{
x ∈ C1

rd[a,∞)T, ‖x‖1 <∞, ‖x‖0 ≤ N
}
. (4.19)

Then X1
N is a closed subset of the Banach space (C1

rd[a,∞)T, ‖ · ‖1).
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Remark 4.4. Given a function ϕ : [a,∞)T → [c, d], 0 < c ≤ d < ∞, we introduce
on the space C1

rd[a,∞)T another norm

‖x‖ϕ := max
{
‖x/ϕ‖0, ‖x∆/ϕ‖0

}
.

Since c ‖x‖ϕ ≤ ‖x‖1 ≤ d ‖x‖ϕ, the norm ‖ · ‖ϕ is on C1
rd[a,∞)T equivalent to the

norm ‖ · ‖1. Hence, (C1
rd[a,∞)T, ‖ · ‖ϕ) is also a Banach space.

Our main result regarding equation (4.18) is the following.

Theorem 4.5. Assume that f : [a,∞)T × Ωq × Rn → Rn with 0 < q ≤ ∞,
f ∈ Crd × C× C, and r : [a,∞)T → R, r ∈ Crd, are functions satisfying

inf
t∈[a,∞)T

∣∣r(t)∣∣ ≥ r0 > 0 (4.20)

for some number r0 > 0, the Lipschitz condition∣∣f(t, x, u)− f(t, y, v)
∣∣ ≤ k(t)

[
|x− y|+ |u− v|

]
(4.21)

for all t ∈ [a,∞)T, x, y ∈ Ω, u, v ∈ Rn, where k : [a,∞)T → (0,∞), k ∈ Crd, and
condition ∫ ∞

a

[
R̄

(
σ(s), a

)
+ 1

]
k(s) ∆s <∞. (4.22)

Let A ∈ Rn be a given vector. If there exists a number N ∈ R, |A| ≤ N < q, such
that∫ ∞

a

R̄
(
σ(s), a

) ∣∣f(
s, xσ(s), x∆σ(s)

)∣∣ ∆s ≤ N − |A|, for all x ∈ X1
N , (4.23)

sup
t∈[a,∞)T

∣∣∣ ∫ ∞

t

f
(
s, xσ(s), x∆σ(s)

)
∆s

∣∣∣ <∞, for all x ∈ X1
N , (4.24)

where X1
N is defined by (4.19), then the problem (4.18) has a unique solution x(t)

on [a,∞)T satisfying x(∞) = A and (rx∆)(∞) = 0.

Let us briefly comment on the main differences between the above Theorems 4.5
and 4.2.

Remark 4.6. (i) In Theorem 4.5, the assumption (4.20) on the function r(·) is
stronger than the assumption (4.2) in Theorem 4.2. Therefore, functions r(·) decay-
ing to zero at infinity are not allowed in Theorem 4.5 while they are still admissible
for Theorem 4.2.

(ii) It is a part of the proof of Theorem 4.5 that assumption (4.23) implies the
finiteness of the improper integral

∫∞
t
f
(
s, xσ(s), x∆σ(s)

)
∆s in condition (4.24) for

every t ∈ [a,∞)T and every x ∈ X1
N .

(iii) Another difference between Theorems 4.5 and 4.2 is the presence of the
additional condition (4.24) in Theorem 4.5. Note that this condition is satisfied
e.g. when the improper integral∫ ∞

a

∣∣f(
s, xσ(s), x∆σ(s)

)∣∣ ∆s <∞ (4.25)

for any x ∈ X1
N . The latter condition is satisfied, in particular, when n = 1

and f(·, ·, ·) ≥ 0 as in [20]. Assuming (4.20), condition (4.24) in fact means that∥∥[Fx]∆
∥∥

0
is finite, which is needed in order to show that Fx ∈ X1

N . On the other
hand, the finiteness of

∥∥[Fx]∆
∥∥

0
is not required in the proof of Theorem 4.2, since

there we work in the set XN only.
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Proof of Theorem 4.5. The proof is similar to the proof of Theorem 4.2 and we shall
include only the main differences. We will apply the Banach fixed point theorem in
the space (C1

rd[a,∞)T, ‖ · ‖ϕ) for a suitably chosen function ϕ. Define the operator
F : X1

N → F by

[Fx](t) := A−
∫ ∞

t

R
(
σ(s), t

)
f
(
s, xσ(s), x∆σ(s)

)
∆s, t ∈ [a,∞)T,

and set g(t) := f
(
t, xσ(t), x∆σ(t)

)
on [a,∞)T. Then Proposition 2.2 yields that

g ∈ Crd. As in the proof of Theorem 4.2 we get that [Fx](t) is well defined for all
t ∈ [a,∞)T, and formulas (4.12) and (4.13) hold. In particular,

∫∞
t
g(s) ∆s exists

finite for all t ∈ [a,∞)T. Assumption (4.23) now yields that
∣∣[Fx](t)∣∣ ≤ N for all

t ∈ [a,∞)T, so that ‖Fx‖0 ≤ N . Furthermore, from (4.12) and assumption (4.24)
we get∥∥[Fx]∆

∥∥
0

= sup
t∈[a,∞)T

1
|r(t)|

∣∣∣ ∫ ∞

t

g(s) ∆s
∣∣∣ ≤ 1

r0
sup

t∈[a,∞)T

∣∣∣ ∫ ∞

t

g(s) ∆s
∣∣∣ <∞.

This yields that ‖Fx‖1 = max
{
‖Fx‖0,

∥∥[Fx]∆
∥∥

0

}
is finite, and thus Fx ∈ X1

N .
Choose the function ϕ(t) to be the time scale exponential function e	p(·)(t, a),

where p(t) := 2
r0

[
R̄

(
σ(t), a

)
+1

]
k(t) for t ∈ [a,∞)T. Then, by Lemma 2.5, we have

0 < ϕ0 ≤ ϕ(t) ≤ 1 for all t ∈ [a,∞)T with ϕ0 ∈ (0, 1), where ϕ0 := limt→∞ ϕ(t).
Thus, by Remark 4.4, (C1

rd[a,∞)T, ‖ · ‖ϕ) is a Banach space. Similarly to the proof
of Theorem 4.2 we now deduce that for any x, y ∈ X1

N∥∥(Fx− Fy)/ϕ
∥∥

0
≤ (1− ϕ0) ‖x− y‖ϕ. (4.26)

Furthermore, by assumption (4.20) and the Lipschitz condition (4.21),∥∥(
[Fx]∆ − [Fy]∆

)
/ϕ

∥∥
0

= sup
t∈[a,∞)T

1
ϕ(t)

∣∣∣ −1
r(t)

∫ ∞

t

[
g(s)− f

(
s, yσ(s), y∆σ(s)

)]
∆s

∣∣∣
≤ 1
r0

[∥∥(x− y)/ϕ
∥∥

0
+

∥∥(x∆ − y∆)/ϕ
∥∥

0

]
sup

t∈[a,∞)T

1
ϕ(t)

∫ ∞

t

k(s)ϕσ(s)∆s

≤ 2
r0
‖x− y‖ϕ sup

t∈[a,∞)T

1
ϕ(t)

∫ ∞

t

k(s)ϕσ(s) ∆s.

Now the choice of ϕ, the fact that R̄
(
σ(s), a

)
+ 1 ≥ 1 for any s ≥ t, and condition

(2.4) with u := ϕ and u0 := ϕ0 yield that∥∥(
[Fx]∆ − [Fy]∆

)
/ϕ

∥∥
0

= ‖x− y‖ϕ sup
t∈[a,∞)T

1
ϕ(t)

∫ ∞

t

1
R̄

(
σ(s), a

)
+ 1

[−ϕ∆(s)]∆s

≤ ‖x− y‖ϕ sup
t∈[a,∞)T

1
ϕ(t)

∫ ∞

t

[−ϕ∆(s)]∆s

= (1− ϕ0) ‖x− y‖ϕ. (4.27)

The estimates (4.26) and (4.27) now yield that ‖Fx − Fy‖ϕ ≤ (1 − ϕ0) ‖x − y‖ϕ,
that is, the mapping F is a contraction in X1

N . Hence, by Proposition 2.4, there
is a unique function x ∈ X1

N such that x = Fx. The rest of the proof is the same
as in Theorem 4.2, namely we conclude that the function x satisfies the equation
(4.18), and the limits x(∞) = A and (rx∆)(∞) = 0. �
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Similarly as in Corollary 3.3, upon the choice A := M and N := 2 |M | in
Theorems 4.2 and 4.5 we can now derive results on the solvability of the terminal
value problems for the equations (4.1) and (4.18) with the limits x(∞) = M and
(rx∆)(∞) = 0.

Corollary 4.7. Assume that f : [a,∞)T ×Ωq → Rn with 0 < q ≤ ∞, f ∈ Crd×C,
and r : [a,∞)T → R, r ∈ Crd, are given functions satisfying condition (4.2) and the
Lipschitz condition (3.3), in which k : [a,∞)T → (0,∞), k ∈ Crd, and (4.5) holds.
If there exists a vector M ∈ Rn, |M | < q, such that∫ ∞

a

R̄
(
σ(s), a

) ∣∣f(
s, xσ(s)

)∣∣ ∆s ≤ |M |, for all x ∈ X2 |M |,

then the problem (4.1) has a unique solution x(t) on [a,∞)T which satisfies x(∞) =
M and (rx∆)(∞) = 0.

Corollary 4.8. Assume that f : [a,∞)T × Ωq × Rn → Rn with 0 < q ≤ ∞,
f ∈ Crd × C× C, and r : [a,∞)T → R, r ∈ Crd, are functions satisfying (4.20) for
some number r0 > 0, the Lipschitz condition (4.21) in which k : [a,∞)T → (0,∞),
k ∈ Crd, and condition (4.22) holds. If there exists a vector M ∈ Rn, |M | < q,
such that∫ ∞

a

R̄
(
σ(s), a

) ∣∣f(
s, xσ(s), x∆σ(s)

)∣∣ ∆s ≤ |M |, for all x ∈ X1
2 |M |,

sup
t∈[a,∞)T

∣∣∣ ∫ ∞

t

f
(
s, xσ(s), x∆σ(s)

)
∆s

∣∣∣ <∞, for all x ∈ X1
2 |M |,

then the problem (4.18) has a unique solution x(t) on [a,∞)T which satisfies x(∞) =
M and (rx∆)(∞) = 0.

5. Second order equations with matrix leading coefficient

In this section we present existence and uniqueness results for second order n-
vector dynamic equations of the form (4.1) and (4.18), but in which the leading
coefficient is a nonnegative n× n matrix function and f is a nonnegative n-vector
function. The method for proving such results is a combination of the approach from
[20], where scalar valued dynamic equations with nonnegative f were considered,
with the methods presented in Section 4.

Since in this section the nonlinearity f and solutions x will have nonnegative
entries, we modify the notation accordingly. If a vector x ∈ Rn has nonnegative
entries, we shall denote it by x ≥ 0. Similarly, for two vectors x, y ∈ Rn we write
x ≤ y provided y − x ≥ 0, i.e., their entries are compared componentwise.

For a real n × n matrix A we shall use any norm ‖ · ‖ compatible with (e.g.,
induced by) the vector norm | · |, for example, the maximum row sum matrix norm
‖A‖ := ‖A‖∞ = max{

∑n
j=1 |aij |, i = 1, . . . , n}. We also require, that the matrix

norm is monotone; that is,

if A and B are symmetric with nonnegative

entries and 0 < A ≤ B, then ‖A‖ ≤ ‖B‖. (5.1)

We refer to [7] for more properties of matrix norms. Throughout this section we
will denote by R+ := [0,∞) the set of all nonnegative real numbers. Similarly, the
set of all such n-tuples will be denoted by Rn+ := [0,∞)n. Accordingly with the
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notation introduced in Section 2, we denote by Ω+
q the intersection of the open

q-ball Ωq with Rn+, that is Ω+
q := {x ∈ Rn+, |x| < q}.

For any vector M ∈ Rn+ we define the set

YM :=
{
x ∈ C[a,∞)T, 0 ≤ x(t) ≤M, for all t ∈ [a,∞)T

}
. (5.2)

Then YM is a closed subset of the Banach space (C[a,∞)T, ‖ · ‖0). Consider the
second order dynamic equation(

P (t)x∆
)∆ + f(t, xσ) = 0, t ∈ [a,∞)T. (5.3)

In this section we denote by λ0(t) the smallest eigenvalue of the symmetric matrix
P (t). Similarly to Remark 4.1, for t, s ∈ [a,∞)T we define the symmetric n × n
matrix

Q(t, s) :=
∫ t

s

P−1(τ) ∆τ.

We emphasize that in this section the matrix P (t) and the n-vectors f(t, x) or
f(t, x, y) have only nonnegative entries.

The following two results generalize [20, Theorems 4.2 and 4.5] to vector valued
nonlinearity f and matrix valued leading coefficient r(t).

Theorem 5.1. Assume that f : [a,∞)T ×Ω+
q → Rn+ with 0 < q ≤ ∞, f ∈ Crd×C,

and P : [a,∞)T → Rn×n+ , P ∈ Crd, P (t) positive definite for all t ∈ [a,∞)T, are
given functions satisfying

inf
t∈[a,b]T

λ0(t) > 0, for all b ∈ [a,∞)T,

and the Lipschitz condition (3.3), in which k : [a,∞)T → (0,∞), k ∈ Crd, and∫ ∞

a

∥∥Q(
σ(s), a

)∥∥ k(s) ∆s <∞,

where the matrix norm ‖ ·‖ is compatible with the vector norm | · | and monotone in
the sense of condition (5.1). If there exists a vector M ∈ Rn+, |M | < q, such that∫ ∞

a

Q
(
σ(s), a

)
f
(
s, xσ(s)

)
∆s ≤M, for all x ∈ YM , (5.4)

where YM is defined by (5.2), then the problem (5.3) has a unique solution x(t) on
[a,∞)T satisfying x(∞) = M and (rx∆)(∞) = 0. Furthermore,

x(t) ≥ Q(t, a)P (t)x∆(t), t ∈ [a,∞)T. (5.5)

Proof. The proof is a combination of the proofs of Theorem 4.2 and [20, Theo-
rem 4.2]. With the notation g(s) := f

(
s, xσ(s)

)
, the operator

[Tx](t) := M −
∫ ∞

t

Q
(
σ(s), t

)
g(s) ∆s, t ∈ [a,∞)T,

maps the set YM into itself. Indeed, Tx ∈ C1
rd[a,∞)T ⊆ C[a,∞)T and since the

functions P and f have nonnegative entries, we have

[Tx]∆(t) = P−1(t)
∫ ∞

t

g(s) ∆s ≥ 0, t ∈ [a,∞)T, (5.6)
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and [Tx](t) ≤ M on [a,∞)T and [Tx](a) ≥ 0. This yields that [Tx](·) is nonde-
creasing so that [Tx](t) ≥ 0 on [a,∞)T. Furthermore,

0 ≤
∫ ∞

t

Q
(
σ(s), t

)
g(s) ∆s =

∫ ∞

t

Q
(
σ(s), a

)
g(s) ∆s−Q(t, a)

∫ ∞

t

g(s) ∆s (5.7)

implies that

0 ≤ Q(t, a)
∫ ∞

t

g(s) ∆s ≤
∫ ∞

t

Q
(
σ(s), a

)
g(s)∆s,

so that, by assumption (5.4),

lim
t→∞

∫ ∞

t

Q
(
σ(s), a

)
g(s)∆s = 0 = lim

t→∞
Q(t, a)

∫ ∞

t

g(s) ∆s. (5.8)

Equations (5.7) and (5.8) now yield that

lim
t→∞

∫ ∞

t

Q
(
σ(s), t

)
g(s) ∆s = 0,

Thus, the definition of Tx implies that [Tx](∞) = M . The contraction property of
T is proven similarly as in Theorem 4.2 but with p(t) :=

[∥∥Q(
σ(t), a

)∥∥ + 1
]
k(t).

Here ‖·‖ is the previously discussed matrix norm, for which we have
∥∥Q(

σ(s), t
)∥∥ ≤∥∥Q(

σ(s), a
)∥∥ for t ∈ [a,∞)T and s ≥ t.

Thus, the Banach Theorem (Proposition 2.4) yields a unique function x ∈ YM
with Tx = x, i.e., x ∈ C[a,∞)T and 0 ≤ x(t) ≤ M (componentwise) for all
t ∈ [a,∞)T. From (5.6) we get x∆ = [Tx]∆ ∈ Crd[a,∞)T which implies that
x ∈ C1

rd[a,∞)T. Moreover, since Q(·, a) is positive definite and increasing, it follows
that either some of its eigenvalues tend monotonically to ∞ or all its eigenvalues
are bounded and in this case Q(t, a) converges to some constant matrix Q0 > 0 as
t→∞. But in any of these two cases the second limit in (5.8) implies that

lim
t→∞

∫ ∞

t

g(s) ∆s = 0. (5.9)

Hence, by (5.6) and (5.9),

(Px∆)(∞) = lim
t→∞

P (t) [Tx]∆(t) =
∫ ∞

t

g(s) ∆s = 0.

Furthermore, from x = Tx we get

x(t) ≥M −
∫ ∞

a

Q
(
σ(s), a

)
g(s)∆s+Q(t, a)P (t)P−1(t)

∫ ∞

t

g(s) ∆s,

so that by assumption (5.4) and by using formula (5.6) in x∆(t) = [Tx]∆(t) we
have inequality (5.5). The proof is now complete. �

Next we define the set

Y 1
M :=

{
x ∈ C1

rd[a,∞)T, 0 ≤ x(t) ≤M, x∆(t) ≥ 0

for all t ∈ [a,∞)T, ‖x∆‖0 <∞
}
.

(5.10)

Then Y 1
M is a closed subset of the Banach space (C1

rd[a,∞)T, ‖ · ‖1). Consider the
second order dynamic equation(

P (t)x∆
)∆ + f(t, xσ, x∆σ) = 0, t ∈ [a,∞)T. (5.11)
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Theorem 5.2. Assume that f : [a,∞)T × Ω+
q × Rn+ → Rn+ with 0 < q ≤ ∞,

f ∈ Crd × C × C, and P : [a,∞)T → Rn×n+ , P ∈ Crd, P (t) positive definite for all
t ∈ [a,∞)T, are given functions satisfying

inf
t∈[a,∞)T

λ0(t) ≥ r0 > 0

for some number r0 > 0, and the Lipschitz condition (4.21), in which k : [a,∞)T →
(0,∞), k ∈ Crd, and ∫ ∞

a

[∥∥Q(
σ(s), a

)∥∥ + 1
]
k(s) ∆s <∞,

where the matrix norm ‖ ·‖ is compatible with the vector norm | · | and monotone in
the sense of condition (5.1). If there exists a vector M ∈ Rn+, |M | < q, such that∫ ∞

a

Q
(
σ(s), a

)
f
(
s, xσ(s), x∆σ(s)

)
∆s ≤M, for all x ∈ Y 1

M ,

sup
t∈[a,∞)T

∣∣∣ ∫ ∞

t

f
(
s, xσ(s), x∆σ(s)

)
∆s

∣∣∣ <∞, for all x ∈ Y 1
M ,

where Y 1
M is defined by (5.10), then the problem (5.11) has a unique solution x(t)

on [a,∞)T satisfying x(∞) = M and (rx∆)(∞) = 0. Furthermore, inequality (5.5)
holds.

Proof. The proof is a combination of the proofs of Theorem 4.5 and [20, Theo-
rem 4.5]. The proof of the contraction now uses the function

p(t) :=
2
r0

[∥∥Q(
σ(t), a

)∥∥ + 1
]
k(t).

The details are omitted. �

6. Examples

We now present some examples to illustrate how to apply the main ideas of this
paper.

Example 6.1. Consider the scalar-valued terminal value problem

x∆ =
(xσ)2

9 eσ(t, a)
, t ∈ [a,∞)T.

and x(∞) = 1. We claim that this problem has a unique solution x on [a,∞)T.

Proof. Our objective is to show that the conditions of Theorem 3.2 are satisfied.
We choose q := 3 to form Ωq. Next, we see for all t ∈ [a,∞)T and all u, v ∈ Ω3 we
have

|u2 − v2|
9 eσ(t, a)

≤ 6 |u− v|
9 eσ(t, a)

and so (3.3) holds for

k(t) :=
2

3 eσ(t, a)
, t ∈ [a,∞)T.

Furthermore, it is not difficult to show that the left-hand side of (3.4) is 2
3 and so

inequality (3.4) holds for the above defined function k(·).
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Now choose N := 2 to form XN . See that for all x ∈ X2 we then have∫ ∞

a

[xσ(s)]2

9 eσ(s, a)
∆s ≤

∫ ∞

a

4
9 eσ(s, a)

∆s =
4
9

and so (3.5) holds. Thus, the claim follows from Theorem 3.2. �

Example 6.2. In this example we illustrate the applicability of Theorem 4.2. Let
n = 1, q = ∞, T = Z, a = 0, and

r(t) :=
(−1)t

t+ 1
, f(t, x) :=

1
(t+ 1)3+β

x

1 + x2
, with β > 0.

Then we claim that the assumptions of Theorem 4.2 are satisfied.

Proof. First note that r(t) changes its sign but

inf
t∈[0,b]Z

∣∣r(t)∣∣ = inf
t∈[0,b]Z

1
t+ 1

=
1

b+ 1
> 0 for every b ∈ [0,∞)Z,

hence condition (4.2) holds. It follows that

R(t, s) =
t−1∑
i=s

i+ 1
(−1)i

=
t∑

i=s+1

(−1)i−1 i, R̄(t, s) =
t∑

i=s+1

i =
t(t+ 1)

2
− s(s+ 1)

2
.

Moreover, f(t, x) is Lipschitz with k(t) := 1/(t+ 1)3+β , i.e., condition (3.3) holds.
With the estimate (i+ 1)(i+ 2) ≤ 2(i+ 1)2, a simple calculation shows that∫ ∞

0

R̄(s+ 1, 0) k(s) ∆s =
∞∑
i=0

(i+ 1) (i+ 2)
2 (i+ 1)3+β

≤
∞∑
i=0

1
(i+ 1)1+β

<∞,

by the integral criterion for infinite series. Thus, condition (4.5) holds. Finally,
since the function x/(1 + x2) is bounded on R (by 1

2 ), we get for any sequence
x ∈ XN that∫ ∞

0

R̄(s+ 1, 0)
∣∣f(

s, x(s+ 1)
)∣∣ ∆s ≤ 1

2

∞∑
i=0

1
(i+ 1)β+1

=
1
2

+
1
2

∫ ∞

1

1
τβ+1

dτ

≤ 1
2

+
1
2β

=
β + 1
2β

.

Since the above estimate is independent of x(·), we may choose N := |A|+ β+1
2β , and

then inequality (4.6) holds. Hence, by Theorem 4.2, for any A ∈ R the terminal
value problem

∆
( (−1)t

(t+ 1)3+β
∆x(t)

)
+

1
(t+ 1)3+β

x(t+ 1)
1 + x2(t+ 1)

= 0, t ∈ [0,∞)Z,

lim
t→∞

x(t) = A, lim
t→∞

(−1)t

(t+ 1)3+β
∆x(t) = 0,

has a unique solution x(·) on [0,∞)Z. �

Example 6.3. Note that the leading coefficient r(t) from Example 6.2 is not al-
lowed in Theorem 4.5, since

inf
t∈[0,∞)Z

∣∣r(t)∣∣ = inf
t∈[0,∞)Z

1
t+ 1

= 0,
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contradicting condition (4.20). However, one can consider a leading coefficient such
as r(t) = (−1)t on [0,∞)Z, which is admissible in Theorem 4.5.

Example 6.4. In this example we illustrate the applicability of Theorem 4.5. Let
n = 1, q = ∞, T = R, a = 0, and

r(t) := 1, f(t, x, y) :=
1

(t+ 1)2+β
(

cosx+
sin y

1 + sin2 y

)
, with β > 0.

Then we claim that the assumptions of Theorem 4.5 are satisfied.

Proof. We have R(t, s) = R̄(t, s) =
∫ t
s

1 dτ = t − s, and the Lipschitz condition
(4.21) is satisfied with the function k(t) := 1/(t + 1)2+β . Conditions (4.22) and
(4.23) are verified similarly as in Example 6.2. Condition (4.24) follows from (4.25)
in Remark 4.6(iii) and from the estimate∫ ∞

0

∣∣f(
s, x(s), x′(x)

)∣∣ ds ≤ 3
2

∫ ∞

0

1
(s+ 1)2+β

ds =
3

2 (β + 1)
<∞

for every x ∈ X1
N , since the function cosx+ sin y

1+sin2 y
is bounded on R (by 3

2 ). Hence,
by Theorem 4.5, for any A ∈ R the terminal value problem

x′′ +
1

(t+ 1)2+β
(
cosx+

sinx′

1 + sin2 x′

)
= 0, t ∈ [0,∞),

lim
t→∞

x(t) = A, lim
t→∞

x′(t) = 0,

has a unique solution x(·) on [0,∞). �

The two examples above motivate the following corollaries of Theorems 4.2 and
4.5, in which the existence of the number N is guaranteed from the assumed esti-
mates on the data.

Corollary 6.5. Assume that g : Ωq → Rn with 0 < q ≤ ∞, g ∈ C1, and r :
[a,∞)T → R, r ∈ Crd, and k : [a,∞)T → (0,∞), k ∈ Crd, are given functions
satisfying condition (4.2),∫ ∞

a

R̄
(
σ(s), a

)
k(s)∆s ≤ k1 <∞, (6.1)∣∣g(x)∣∣ ≤ M1 on Ωq, and g′(x) is bounded on Ωq. Then for any A ∈ Rn such that

|A| < q −M1k1 (in particular, for any A ∈ Rn if q = ∞) the problem(
r(t)x∆

)∆ + k(t) g(xσ) = 0, t ∈ [a,∞)T,

has a unique solution x(·) on [a,∞)T satisfying x(∞) = A and (rx∆)(∞) = 0.

Proof. Upon taking f(t, x) := k(t) g(x) and N := |A| +M1 k1 we show that these
data satisfy the assumptions of Theorem 4.2. �

Corollary 6.6. Assume that g : Ωq × Rn → Rn with 0 < q ≤ ∞, g ∈ C1, and
r : [a,∞)T → R, r ∈ Crd, and k : [a,∞)T → (0,∞), k ∈ Crd, are given functions
satisfying conditions (4.20), (6.1), (3.4), and

∣∣g(x, y)∣∣ ≤ M1 on Ωq × Rn, and
gx(x, y) and gy(x, y) are bounded on Ωq × Rn. Then for any A ∈ Rn such that
|A| < q −M1k1 (in particular, for any A ∈ Rn if q = ∞) the problem(

r(t)x∆
)∆ + k(t) g(xσ, x∆σ) = 0, t ∈ [a,∞)T,

has a unique solution x(·) on [a,∞)T satisfying x(∞) = A and (rx∆)(∞) = 0.
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Proof. Upon taking f(t, x, y) := k(t) g(x, y) and N := |A| + M1 k1 we show that
these data satisfy the assumptions of Theorem 4.5. Note that condition (4.25) from
Remark 4.6(iii) is used in order to verify condition (4.24). �

In Example 6.2 we had k(t) = 1/(t + 1)3+β , k1 = β+1
β , g(x) = x/(1 + x2), and

M1 = 1
2 , while in Example 6.4 we had k(t) = 1/(t + 1)2+β , k1 = 1

β , g(x, y) =
cosx+ sin y

1+sin2 y
, and M1 = 3

2 .

7. Further applications and extensions

Nabla dynamic equations, see e.g. [6], can be considered as a dual version of
∆-differential equations. The backward graininess function is denoted by ν(t) :=
t−ρ(t). The spaces of ld-continuous and ld-continuously ∇-differentiable functions
are accordingly denoted by Cld and C1

ld. Similarly to Definition 2.1 we have the
notion of f ∈ Cld × C × C, and results corresponding to Propositions 2.2 and 2.3
now hold true for the ∇-setting. The ∇-exponential function having the properties
concluded in Lemma 2.5 corresponds to the dynamic equation u∇ = −p(t)u, see
[6, Section 3.2]. Consequently, all the results of this paper extend directly to the
corresponding results for the ∇-differential equations. As examples of such results
we have the following.

Theorem 7.1. Assume that f : [a,∞)T × Ωq → Rn with 0 < q ≤ ∞ is a function
satisfying f ∈ Cld×C and the Lipschitz condition (3.3), where k : [a,∞)T → (0,∞),
k ∈ Cld, and ∫ ∞

a

k(s)∇s <∞. (7.1)

Let A ∈ Rn be a given vector. If there exists a number N ∈ R, |A| ≤ N < q, such
that ∫ ∞

a

∣∣f(
s, x(s)

)∣∣∇s ≤ N − |A|, for all x ∈ XN ,

where XN is defined by (3.2), then the problem

x∇ + f(t, x) = 0, t ∈ [a,∞)T. (7.2)

has a unique solution x(t) on [a,∞)T satisfying x(∞) = A.

Corollary 7.2. Assume that f : [a,∞)T × Ωq → Rn with 0 < q ≤ ∞ is a function
satisfying f ∈ Cld×C and the Lipschitz condition (3.3), where k : [a,∞)T → (0,∞),
k ∈ Cld, and (7.1) holds. If there exists a vector M ∈ Rn, |M | < q, such that∫ ∞

a

∣∣f(
s, x(s)

)∣∣∇s ≤ |M |, for all x ∈ X2 |M |,

then the problem (7.2) has a unique solution x(t) on [a,∞)T satisfying x(∞) = M .
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The corresponding results to Theorems 4.2, 4.5, 5.1, 5.2 and Corollaries 6.5, 6.6
now hold under appropriate assumptions for the second order ∇-dynamic equations(

r(t)x∇
)∇ + f(t, x) = 0, t ∈ [a,∞)T,(

r(t)x∇
)∇ + f(t, x, x∇) = 0, t ∈ [a,∞)T,(

P (t)x∇
)∇ + f(t, x) = 0, t ∈ [a,∞)T,(

P (t)x∇
)∇ + f(t, x, x∇) = 0, t ∈ [a,∞)T,(

r(t)x∇
)∇ + k(t) g(x) = 0, t ∈ [a,∞)T,(

r(t)x∇
)∇ + k(t) g(x, x∇) = 0, t ∈ [a,∞)T,

respectively.
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