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PERTURBED FUNCTIONAL AND NEUTRAL FUNCTIONAL
EVOLUTION EQUATIONS WITH INFINITE DELAY IN

FRÉCHET SPACES

SELMA BAGHLI, MOUFFAK BENCHOHRA

Abstract. This article shows sufficient conditions for the existence of mild

solutions, on the positive half-line, for two classes of first-order functional

and neutral functional perturbed differential evolution equations with infinite
delay. Our main tools are: the nonlinear alternative proved by Avramescu for

the sum of contractions and completely continuous maps in Fréchet spaces,

and the semigroup theory.

1. Introduction

In this paper, we study the existence of mild solutions, defined on the positive
semi-infinite real interval J := [0,+∞), for two classes of first-order perturbed
functional and neutral functional differential evolution equations with infinite delay
in Fréchet spaces. Firstly, in Section 3, we study the following partial perturbed
evolution equation with infinite delay

y′(t) = A(t)y(t) + f(t, yt) + g(t, yt), a.e. t ∈ J, (1.1)

y0 = φ ∈ B, (1.2)

where f, g : J × B → E and φ ∈ B are given functions and {A(t)}0≤t<+∞ is a
family of linear closed (not necessarily bounded) operators from a real Banach space
(E, | · |) into E that generates an evolution system of operators {U(t, s)}(t,s)∈J×J

for 0 ≤ s ≤ t < +∞.
For any continuous function y defined on (−∞,+∞) and any t ≥ 0, we denote

by yt the element of B defined by yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. Here yt(·)
represents the history of the state from time t − r up to the present time t. We
assume that the histories yt belongs to some abstract phase space B, to be specified
later.
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In Section 4, we consider the following perturbed neutral evolution equation with
infinite delay

d

dt
[y(t)− h(t, yt)] = A(t)y(t) + f(t, yt) + g(t, yt), a.e. t ∈ J, (1.3)

y0 = φ ∈ B, (1.4)

where A(·), f, g and φ are as in (1.1)–(1.2) and h : J × B → E is a given function.
Finally in Section 5, we give two examples to demonstrate our results.

Functional and partial functional differential equations have been used for mod-
elling the evolution of physical, biological and economic systems in which the re-
sponse of the system depends not only on the current state, but also on the past
history of the system. For more details on this topic, see for example the books
of Kolmanovskii and Myshkis [34], Hale and Verduyn Lunel [26] and Wu [37], and
the references therein. In the literature devoted to equations with finite delay, the
state space is the space of all continuous functions on the finite interval [−r, 0] for
r > 0, endowed with the uniform norm topology. Some results in this case can be
found in the books by Ahmed [4, 5], Heikkila and Lakshmikantham [27], and Pazy
[35] and the references therein.

When the delay is infinite, the notion of the phase space B plays an important
role in the study of both qualitative and quantitative theory. A usual choice is a
seminormed space satisfying suitable axioms, introduced by Hale and Kato in [25];
see also Corduneanu and Lakshmikantham [21], Kappel and Schappacher [33] and
Schumacher [36]. For a detailed discussion and applications on this topic, we refer
the reader to the book by Hale and Verduyn Lunel [26], Hino et al. [32] and Wu
[37].

Many publications are developed for study of (1.1) with A(t) = A. We refer the
reader to the books by [27] and the pioneer Hino and Murakami paper [31] and
the papers by Adimy et al [1, 2, 3], Balachandran et al. [10, 11], Benchohra and
Gorniewicz [16], Benchohra et al [17, 18], Ezzinbi [23], Henriquez [28] and Hernandez
[29, 30], where existence and uniqueness, among other things, are derived. In a series
of papers, Belmekki et al [12, 13, 14, 15] considered some classes of semilinear
perturbed functional differential problems where existence of solutions are given
over a bounded interval [0, b].

When A depends on time, Arara et al [6] considered a control multivalued prob-
lem on the bounded interval [0, b]. Recently, Baghli and Benchohra [8, 9] provided
uniqueness results for some classes of partial and neutral functional differential evo-
lution equations on the semiinfinite interval J = [0,+∞) with local and nonlocal
conditions when the delay is finite. Our main purpose in this paper is to extend
some results from finite delay and those considered on a bounded interval to partial
and neutral perturbed evolution equations.

Sufficient conditions are established to obtain the existence of mild solutions,
which are fixed points of the appropriate operators. We apply a recent nonlinear
alternative given by Avramescu in [7], combined with the semigroup theory [4, 35].

2. Preliminaries

In this section, we introduce notation, definitions and theorems to be used later.
Let C([0,∞);E) be the space of continuous functions from [0,∞) to E and B(E)
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be the space of all bounded linear operators from E to E, with the norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}.

A measurable function y : [0,+∞) → E is Bochner integrable if |y| is Lebesgue
integrable. (For details on the Bochner integral properties, see Yosida [38]).

Let L1([0,+∞), E) be the Banach space of measurable functions y : [0,+∞) → E
which are Bochner integrable, equipped with the norm

‖y‖L1 =
∫ +∞

0

|y(t)| dt.

Consider the space

B+∞ = {y : (−∞,+∞) → E : y|J ∈ C(J,E), y0 ∈ B},

where y|J is the restriction of y to J .
In this paper, we will employ the axiomatic definition of the phase space B

introduced by Hale and Kato in [25] and follow the terminology used in [32]. Thus,
(B, ‖ · ‖B) will be a seminormed linear space of functions mapping (−∞, 0] to E,
and satisfying the following axioms:

(A1) If y : (−∞, b) → E with b > 0, is continuous on [0, b] and y0 ∈ B, then for
every t ∈ [0, b) the following conditions hold:
(i) yt ∈ B;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions K(·),M(·) : R+ → R+ independent of y(t)
with K continuous and M locally bounded such that

‖yt‖B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.
(A2) For the function y(.) in (A1), yt is a B-valued continuous function on [0, b].
(A3) The space B is complete.

Remark 2.1.
• Condition (ii) in (A1) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.
• Since ‖ · ‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ− ψ‖B = 0

without necessarily φ(θ) = ψ(θ) for all θ ≤ 0.
• From the equivalence of (ii), we can see that for all φ, ψ ∈ B such that
‖φ− ψ‖B = 0. This implies necessarily that φ(0) = ψ(0).

Next we present some examples of phase spaces. For more details we refer to
the book by Hino et al [32].

Example 2.2. Let BC be the space of bounded continuous functions defined from
(−∞, 0] to E. Let BUC the space of bounded uniformly continuous functions
defined from (−∞, 0] to E. Let

C∞ := {φ ∈ BC : lim
θ→−∞

φ(θ) exist in E}.

C0 := {φ ∈ BC : lim
θ→−∞

φ(θ) = 0} .

The space C0 is endowed with the uniform norm ‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.
Then the spaces BUC, C∞ and C0 satisfy conditions (A1)–(A3). BC satisfies

(A1), (A3) but not (A2).



4 S. BAGHLI, M. BENCHOHRA EJDE-2008/69

Example 2.3. Let g be a positive continuous function on (−∞, 0]. We define:

Cg := {φ ∈ C((−∞, 0], E) :
φ(θ)
g(θ)

is bounded on(−∞, 0]},

C0
g := {φ ∈ Cg : lim

θ→−∞

φ(θ)
g(θ)

= 0}

endowed with the uniform norm ‖φ‖ = sup{ |φ(θ)|
g(θ) : θ ≤ 0}.

Also we assume that
(G1) For all a > 0, sup0≤t≤a sup{ g(t+θ)

g(θ) : −∞ < θ ≤ −t} <∞.

Then the spaces Cg and C0
g satisfy condition (A3). They satisfy conditions (A1)

and (A2) if (G1) holds.

Example 2.4. For each constant γ, we define the space

Cγ := {φ ∈ C((−∞, 0], E) : lim
θ→−∞

eγθφ(θ) exist in E}

endowed with the norm ‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}. Then in the space Cγ ,
assumptions (A1)–(A3) are satisfied.

Definition 2.5. A function f : J × B → E is said to be an L1-Carathéodory
function if it satisfies:

(i) for each t ∈ J the function f(t, .) : B → E is continuous;
(ii) for each y ∈ B the function f(., y) : J → E is measurable;
(iii) for every positive integer k there exists hk ∈ L1(J ; R+) such that |f(t, y)| ≤

hk(t) for all ‖y‖B ≤ k and almost all t ∈ J .

In what follows, we assume that {A(t), t ≥ 0} is a family of closed densely de-
fined linear unbounded operators on the Banach space E and with domain D(A(t))
independent of t.

Definition 2.6. A family of bounded linear operators {U(t, s)}(t,s)∈∆ : U(t, s) :
E → E for (t, s) ∈ ∆ := {(t, s) ∈ J × J : 0 ≤ s ≤ t < +∞} is called an evolution
system if the following properties are satisfied :

(1) U(t, t) = I where I is the identity operator in E,
(2) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,
(3) U(t, s) ∈ B(E) the space of bounded linear operators on E, where for every

(t, s) ∈ ∆ and for each y ∈ E, the mapping (t, s) → U(t, s)y is continuous.
(4) U(t, s) is a compact operator for 0 < s < t < +∞.

More details on evolution systems and their properties can be found in the books
by Ahmed [4], Engel and Nagel [22], and Pazy [35].

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. Let Y ⊂ X,
we say that F is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.
With X, we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: For
every n ∈ N, we consider the equivalence relation x ∼n y if and only if ‖x−y‖n = 0
for all x, y ∈ X. We denote Xn = (X|∼n

, ‖ · ‖n) the quotient space, the completion
of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence the {Y n}
of subsets Y n ⊂ Xn as follows : For every x ∈ X, we denote [x]n the equivalence
class of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }. We denote Y n,
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intn(Y n) and ∂nY
n, respectively, the closure, the interior and the boundary of Y n

with respect to ‖ · ‖ in Xn. We assume that the family of semi-norms {‖ · ‖n}
verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ... for every x ∈ X.

Definition 2.7 ([7]). A function f : X → X is said to be a contraction if for each
n ∈ N there exists kn ∈ (0, 1) such that:

‖f(x)− f(y)‖n ≤ kn‖x− y‖n for all x, y ∈ X.

We use the following nonlinear alternative, due to Avramescu, has been has a
version on Banach spaces by Burton-Kirk [19, 20].

Theorem 2.8 (Avramescu Nonlinear Alternative [7]). Let X be a Fréchet space
and let A,B : X → X be two operators satisfying:

(1) A is a compact operator,
(2) B is a contraction.

Then either one of the following statements holds:
(S1) The operator A+B has a fixed point;
(S2) The set {x ∈ X,x = λA(x) + λB(x

λ )} is unbounded for λ ∈ (0, 1).

3. Perturbed Evolution Equations

Before stating and proving the main result, we give the definition of mild solution
of the semilinear perturbed evolution (1.1)–(1.2).

Definition 3.1. We say that the function y(·) : R → E is a mild solution of
(1.1)–(1.2) if y(t) = φ(t) for all t ∈ (−∞, 0] and y satisfies the integral equation

y(t) = U(t, 0)φ(0) +
∫ t

0

U(t, s)[f(s, ys) + g(s, ys)] ds for each t ∈ [0,+∞). (3.1)

We introduce the following hypotheses:

(H1) U(t, s) is compact for t − s > 0 and there exists a constant M̂ ≥ 1 such
that

‖U(t, s)‖B(E) ≤ M̂ for every (t, s) ∈ ∆.

(H2) There exists a function p ∈ L1
loc(J ; R+) and a continuous nondecreasing

function ψ : R+ → (0,∞) and such that:

|f(t, u)| ≤ p(t)ψ(‖u‖B) for a.e. t ∈ J and each u ∈ B.

(H3) There exists a function η ∈ L1
loc(J,R+) such that:

|g(t, u)− g(t, v)| ≤ η(t)‖u− v‖B for a.e. t ∈ J and all u, v ∈ B.

Theorem 3.2. Suppose that hypotheses (H1)–(H3) are satisfied and∫ +∞

αn

ds

s+ ψ(s)
> KnM̂

∫ n

0

max(p(s), η(s))ds ds for each n ∈ N (3.2)

with

αn = KnM̂

∫ n

0

|g(s, 0)|ds+ (KnM̂H +Mn)‖φ‖B.

Then (1.1)–(1.2) has a mild solution.
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Proof. Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms

‖y‖n := sup{e−τL∗
n(t)|y(t)| : t ∈ [0, n]}

where L∗n(t) =
∫ t

0
ln(s) ds and ln(t) = M̂Knη(t). Then C(B+∞;E) is a Fréchet

space with the family of semi-norms ‖ · ‖n∈N.
We transform (1.1)–(1.2) into a fixed-point problem. Consider the operator

N : B+∞ → B+∞ defined by

N(y)(t) =


φ(t), if t ∈ (−∞, 0];
U(t, 0)φ(0) +

∫ t

0
U(t, s)f(s, ys) ds

+
∫ t

0
U(t, s)g(s, ys) ds, if t ∈ J.

(3.3)

Clearly, the fixed points of the operator N are mild solutions of (1.1)–(1.2).
For φ ∈ B, we define the function x(.) : R → E by

x(t) =

{
φ(t), if t ∈ (−∞, 0];
U(t, 0)φ(0), if t ∈ J.

Then x0 = φ. For each function z ∈ B+∞, set

y(t) = z(t) + x(t). (3.4)

It is obvious that y satisfies (3.1) if and only if z satisfies z0 = 0 and

z(t) =
∫ t

0

U(t, s)f(s, zs + xs) ds+
∫ t

0

U(t, s)g(s, zs + xs) ds for t ∈ J.

Let B0
+∞ = {z ∈ B+∞ : z0 = 0}. Define the operators F,G : B0

+∞ → B0
+∞ by

F (z)(t) =
∫ t

0

U(t, s)f(s, zs + xs) ds for t ∈ J, (3.5)

G(z)(t) =
∫ t

0

U(t, s)g(s, zs + xs) ds for t ∈ J. (3.6)

Obviously the operator N having a fixed point is equivalent to F +G having a fixed
point. That F +G has a fixed point will be proved in several steps. First we show
that F is continuous and compact.
Step 1: F is continuous. Let (zk)k∈N be a sequence in B0

+∞ such that zk → z in
B0

+∞. Then

|F (zk)(t)− F (z)(t)| =
∣∣∣ ∫ t

0

U(t, s)[f(s, zks
+ xs)− f(s, zs + xs)] ds

∣∣∣
≤

∫ t

0

‖U(t, s)‖B(E)|f(s, zks
+ xs)− f(s, zs + xs)| ds

≤ M̂

∫ t

0

|f(s, zks
+ xs)− f(s, zs + xs)| ds→ 0 as k → +∞.

Thus F is continuous.
Step 2: F maps bounded sets of B0

+∞ into bounded sets. For any d > 0, there
exists a positive constant ` such that for each z ∈ Bd = {z ∈ B0

+∞ : ‖z‖n ≤ d} one
has ‖F (z)‖n ≤ `.
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Let z ∈ Bd. By the hypotheses (H1) and (H2), we have for each t ∈ J

|F (z)(t)| =
∣∣ ∫ t

0

U(t, s)f(s, zs + xs) ds
∣∣

≤
∫ t

0

‖U(t, s)‖B(E)|f(s, zs + xs)| ds

≤ M̂

∫ t

0

p(s)ψ(‖zs + xs)‖B) ds.

Using the assumption (A1), we get

‖zs + xs‖B ≤ ‖zs‖B + ‖xs‖B
≤ K(s)|z(s)|+M(s)‖z0‖B +K(s)|x(s)|+M(s)‖x0‖B
≤ Kn|z(s)|+Kn‖U(s, 0)‖B(E)|φ(0)|+Mn‖φ‖B
≤ Kn|z(s)|+KnM̂ |φ(0)|+Mn‖φ‖B
≤ Kn|z(s)|+KnM̂H‖φ‖B +Mn‖φ‖B
≤ Kn|z(s)|+ (KnM̂H +Mn)‖φ‖B.

Set
cn := (KnM̂H +Mn)‖φ‖B, Dn := Knd+ cn.

Then
‖zs + xs‖B ≤ Kn|z(s)|+ cn ≤ Dn. (3.7)

Using the nondecreasing character of ψ, we get

|F (z)(t)| ≤ M̂ψ(Dn)
∫ t

0

p(s) ds.

Thus
‖F (z)‖+∞ ≤ M̂ψ(Dn)‖p‖L1 := `.

Step 3: F maps bounded sets into equicontinuous sets of B0
+∞. We consider Bd

as in Step 2 and we show that F (Bd) is equicontinuous. Let τ1, τ2 ∈ J with τ2 > τ1
and z ∈ Bd. Then

|F (z)(τ2)− F (z)(τ1)| ≤
∣∣∣ ∫ τ1

0

[U(τ2, s)− U(τ1, s)]f(s, zs + xs) ds
∣∣∣

+
∣∣∣ ∫ τ2

τ1

U(τ2, s)|f(s, zs + xs)| ds
∣∣∣

≤
∫ τ1

0

‖U(τ2, s)− U(τ1, s)‖B(E)|f(s, zs + xs)| ds

+
∫ τ2

τ1

‖U(τ2, s)‖B(E)|f(s, zs + xs)| ds.

Using ‖zs + xs‖B ≤ Dn in (3.7) and the nondecreasing character of ψ, we get

|F (z)(τ2)− F (z)(τ1)|

≤ ψ(Dn)
∫ τ1

0

‖U(τ2, s)− U(τ1, s)‖B(E)p(s)ds+ M̂ψ(Dn)
∫ τ2

τ1

p(s)ds.

The right-hand of the above inequality tends to zero as τ2 − τ1 → 0, since U(t, s)
is a strongly continuous operator and the compactness of U(t, s) for t > s implies
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the continuity in the uniform operator topology (see [5, 35]). As a consequence of
Steps 1 to 3 together with the Arzelá-Ascoli theorem it suffices to show that the
operator F maps Bd into a precompact set in E.

Let t ∈ J be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ Bd

we define

Fε(z)(t) = U(t, t− ε)
∫ t−ε

0

U(t− ε, s)f(s, zs + xs) ds.

Since U(t, s) is a compact operator, the set Zε(t) = {Fε(z)(t) : z ∈ Bd} is pre-
compact in E for every ε, 0 < ε < t. Moreover

|F (z)(t)− Fε(z)(t)| ≤
∫ t

t−ε

‖U(t, s)‖B(E)|f(s, zs + xs)|ds.

Using ‖zs + xs‖B ≤ Dn in (3.7) and the nondecreasing character of ψ, we get

|F (z)(t)− F (z)ε(t)| ≤ M̂ψ(Dn)
∫ t

t−ε

p(s)ds.

Therefore the set Z(t) = {F (z)(t) : z ∈ Bd} is totally bounded. Hence the set
{F (z)(t) : z ∈ Bd} is relatively compact E. So we deduce from Steps 1, 2 and 3
that F is a compact operator.
Step 4: G is a contraction mapping. Let z, z ∈ B0

+∞, then using (H1) and (H3)
for each t ∈ [0, n] and n ∈ N

|G(z)(t)−G(z)(t)| ≤
∫ t

0

‖U(t, s)‖B(E)|g(s, zs + xs)− g(s, zs + xs)| ds

≤
∫ t

0

M̂η(s)‖zs + xs − zs − xs‖B ds

≤
∫ t

0

M̂η(s)‖zs − zs‖B ds.

Using (A1), we obtain

|G(z)(t)−G(z)(t)| ≤
∫ t

0

M̂η(s)(K(s)|z(s)− z(s)|+M(s)‖z0 − z0‖B) ds

≤
∫ t

0

M̂Knη(s)|z(s)− z(s)| ds

≤
∫ t

0

[ln(s)eτL∗
n(s)][e−τL∗

n(s)|z(s)− z(s)|] ds

≤
∫ t

0

[eτL∗
n(s)

τ

]′
ds‖z − z‖n

≤ 1
τ
eτL∗

n(t)‖z − z‖n.

Therefore,

‖G(z)−G(z)‖n ≤
1
τ
‖z − z‖n.

So, the operator G is a contraction for all n ∈ N.
Step 5: For applying Theorem 2.8, we must check (S2): i.e. it remains to show
that the set

E = {z ∈ B0
+∞ : z = λF (z) + λG

( z
λ

)
for some 0 < λ < 1}
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is bounded. Let z ∈ E . By (H1)–(H3), we have for each t ∈ [0, n]

|z(t)| ≤
∫ t

0

‖U(t, s)‖B(E)|f(s, zs + xs)|ds

+
∫ t

0

‖U(t, s)‖B(E)|g(s, zs + xs)− g(s, 0) + g(s, 0)|ds

≤ M̂

∫ t

0

p(s)ψ (‖zs + xs‖B) ds

+ M̂

∫ t

0

η(s)‖zs + xs‖Bds+ M̂

∫ t

0

|g(s, 0)|ds.

Using (3.7) we get
‖zs + xs‖B ≤ Kn|z(s)|+ cn.

The nondecreasing character of ψ gives

|z(t)| ≤ M̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds

+ M̂

∫ t

0

η(s)(Kn|z(s)|+ cn)ds+ M̂

∫ t

0

|g(s, 0)|ds.

Then

Kn|z(t)|+ cn ≤ KnM̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds

+KnM̂

∫ t

0

η(s)(Kn|z(s)|+ cn)ds+KnM̂

∫ t

0

|g(s, 0)|ds+ cn.

Set

αn := KnM̂

∫ t

0

|g(s, 0)|ds+ cn,

thus

Kn|z(t)|+ cn ≤KnM̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn)ds

+KnM̂

∫ t

0

η(s)(Kn|z(s)|+ cn)ds+ αn.

We consider the function µ defined by

µ(t) := sup{Kn|z(s)|+ cn : 0 ≤ s ≤ t}, 0 ≤ t < +∞.

Let t? ∈ [0, t] be such that

µ(t) = Kn|z(t?)|+ cn,

by the previous inequality, we have

µ(t) ≤ KnM̂

∫ t

0

p(s)ψ(µ(s))ds+KnM̂

∫ t

0

η(s)µ(s)ds+ αn

for t ∈ [0, n]. Let us denote the right-hand side of the above inequality as v(t).
Then, we have

µ(t) ≤ v(t) for all t ∈ [0, n].
From the definition of v, we have v(0) = αn and

v′(t) = KnM̂p(t)ψ(µ(t)) +KnM̂η(t)µ(t) a.e. t ∈ [0, n].
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Using the nondecreasing character of ψ, we get

v′(t) ≤ KnM̂p(t)ψ(v(t)) +KnM̂η(t)v(t) a.e. t ∈ [0, n].

This implies that for each t ∈ [0, n] and using (3.2), we get∫ v(t)

αn

ds

s+ ψ(s)
≤ KnM̂

∫ t

0

max(p(s), η(s))ds

≤ KnM̂

∫ n

0

max(p(s), η(s))ds

<

∫ +∞

αn

ds

s+ ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Nn such that v(t) ≤ Nn and hence
µ(t) ≤ Nn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Nn. This shows that the set E
is bounded. Then statement (S2) in Theorem 2.8 does not hold. The nonlinear
alternative of Avramescu implies that (S1) holds, we deduce that the operator
F + G has a fixed-point z?. Then y?(t) = z?(t) + x(t), t ∈ (−∞,+∞) is a fixed
point of the operator N , which is the mild solution of (1.1)–(1.2). �

4. Perturbed Neutral Evolution Equations

In this section, we give an existence result for the perturbed neutral evolution
problem with infinite delay (1.3)–(1.4). Firstly we define the mild solution.

Definition 4.1. We say that the function y(·) : R → E is a mild solution of
(1.3)–(1.4) if y(t) = φ(t) for all t ∈ (−∞, 0] and y satisfies the integral equation

y(t) = U(t, 0)[φ(0)− h(0, φ)] + h(t, yt) +
∫ t

0

U(t, s)A(s)h(s, ys)ds

+
∫ t

0

U(t, s)[f(s, ys) + g(s, ys)] ds for each t ∈ [0,+∞).
(4.1)

In what follows we need the following assumptions:
(H4) There exists a constant M0 > 0 such that

‖A−1(t)‖B(E) ≤M0 for all t ∈ J.

(H5) There exists a constant 0 < L < 1
M0Kn

such that

|A(t)h(t, φ)| ≤ L(‖φ‖B + 1) for all t ∈ J, φ ∈ B.
(H6) There exists a constant L∗ > 0 such that

|A(s)h(s, φ)−A(s)h(s, φ)| ≤ L∗(|s− s|+ ‖φ− φ‖B)

for all s, s ∈ J and φ, φ ∈ B.

Theorem 4.2. Suppose that hypotheses (H1)–(H6) are satisfied and∫ +∞

ζn

ds

s+ ψ(s)
>

M̂Kn

1−M0LKn

∫ n

0

max(L, η(s), p(s))ds for each n ∈ N (4.2)

with

ζn :=
Kn

1−M0LKn

[
M0L

(
1 + M̂ + cn + M̂‖φ‖B

)
+ M̂Ln+ M̂

∫ t

0

|g(s, 0)| ds
]

+ cn,

and cn := (KnM̂H +Mn)‖φ‖B. Then (1.3)–(1.4) has a mild solution.
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Proof. Consider the operator Ñ : B+∞ → B+∞ defined by

Ñ(y)(t) =


φ(t), if t ∈ (−∞, 0];
U(t, 0)[φ(0)− h(0, φ)] + h(t, yt)
+

∫ t

0
U(t, s)A(s)h(s, ys)ds

+
∫ t

0
U(t, s)[f(s, ys) + g(s, ys)]ds, if t ∈ J.

(4.3)

Note that the fixed points of the operator Ñ are mild solutions of (1.3)–(1.4).
For φ ∈ B, we define the function x : R → E by

x(t) =

{
φ(t), if t ∈ (−∞, 0];
U(t, 0)φ(0), if t ∈ J.

Then x0 = φ. For each function z ∈ B+∞, set

y(t) = z(t) + x(t). (4.4)

It is obvious that y satisfies (4.1) if and only if z satisfies z0 = 0. For t ∈ J , we get

z(t) = h(t, zt + xt)− U(t, 0)h(0, φ) +
∫ t

0

U(t, s)A(s)h(s, zs + xs)ds

+
∫ t

0

U(t, s)f(s, zs + xs)ds+
∫ t

0

U(t, s)g(s, zs + xs)ds.

Define the operators F̃ , G̃ : B0
+∞ → B0

+∞ by

F̃ (z)(t) =
∫ t

0

U(t, s)f(s, zs + xs)ds (4.5)

and

G̃(z)(t) = h(t, zt + xt)− U(t, 0)h(0, φ) +
∫ t

0

U(t, s)A(s)h(s, zs + xs)ds

+
∫ t

0

U(t, s)g(s, zs + xs)ds.
(4.6)

Obviously the operator Ñ having a fixed point is equivalent to F̃ +G̃ having a fixed
point. The proof that F̃ + G̃ has a fixed point is done in several steps.
Step 1: F̃ is continuous and compact. This can be shown as we did for F in
Section 3.
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Step 2: G̃ is a contraction mapping. Let z, z ∈ B0
+∞, then using (H1), (H3)–(H6)

for each t ∈ [0, n] and n ∈ N,

|G̃(z)(t)− G̃(z)(t)|
≤ |h(t, zt + xt)− h(t, zt + xt)|

+
∫ t

0

‖U(t, s)‖B(E)|A(s)[h(s, zs + xs)− h(s, zs + xs)]| ds

+
∫ t

0

‖U(t, s)‖B(E)|g(s, zs + xs)− g(s, zs + xs)| ds

≤ ‖A−1(s)‖|A(t)h(t, zt + xt)−A(t)h(t, zt + xt)|

+
∫ t

0

M̂ |A(s)h(s, zs + xs)−A(s)h(s, zs + xs)| ds

+
∫ t

0

M̂ |g(s, zs + xs)− g(s, zs + xs)| ds

≤M0L∗‖zt + xt − zt − xt‖B +
∫ t

0

M̂L∗‖zs + xs − zs − xs‖B ds

+
∫ t

0

M̂η(s)‖zs + xs − zs − xs‖B ds

≤M0L∗‖zt − zt‖B +
∫ t

0

M̂ [L∗ + η(s)]‖zs − zs‖B ds.

Using (A1), we obtain

|G̃(z)(t)− G̃(z)(t)| ≤M0L∗
(
K(t)|z(t)− z(t)|+M(t)‖z0 − z0‖B

)
+

∫ t

0

M̂ [L∗ + η(s)]
(
K(s)|z(s)− z(s)|+M(s)‖z0 − z0‖B

)
ds

≤M0L∗Kn|z(t)− z(t)|+
∫ t

0

M̂Kn[L∗ + η(s)]|z(s)− z(s)| ds.

Let ln(t) = M̂Kn[L∗ + η(t)] for the family seminorms {‖ · ‖n}n∈N. Then

|G̃(z)(t)− G̃(z)(t)| ≤M0L∗Kn|z(t)− z(t)|+
∫ t

0

ln(s)]|z(s)− z(s)| ds

≤
[
M0L∗Kne

τL∗
n(t)

][
e−τL∗

n(t)|z(t)− z(t)|
]

+
∫ t

0

[
ln(s)eτL∗

n(s)
][
e−τL∗

n(s)|z(s)− z(s)|
]
ds

≤M0L∗Kne
τL∗

n(t)‖z − z‖n +
∫ t

0

[eτL∗
n(s)

τ

]′
ds‖z − z‖n

≤M0L∗Kne
τL∗

n(t)‖z − z‖n +
1
τ
eτL∗

n(t)‖z − z‖n

≤
[
M0L∗Kn +

1
τ

]
eτL∗

n(t)‖z − z‖n.

Therefore,

‖G̃(z)− G̃(z)‖n ≤ [M0L∗Kn +
1
τ

]‖z − z‖n.
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So, for [M0L∗Kn + 1
τ ] < 1, the operator G̃ is a contraction for all n ∈ N.

Step 3: The set

Ẽ =
{
z ∈ B0

+∞ : z = λF̃ (z) + λG̃
( z
λ

)
for some 0 < λ < 1

}
is bounded. Let z ∈ Ẽ . Then, we have

|z(t)| ≤ |h(t, zt + xt)|+ ‖U(t, 0)‖B(E)|h(0, φ)|

+
∫ t

0

‖U(t, s)‖B(E)|A(s)h(s, zs + xs)| ds

+
∫ t

0

‖U(t, s)‖B(E)|f(s, zs + xs)| ds

+
∫ t

0

‖U(t, s)‖B(E)|g(s, zs + xs)− g(s, 0) + g(s, 0)| ds.

By (A1) and (H1)–(H6), we have

|z(t)| ≤ ‖A−1(s)‖|A(t)h(t, zt + xt)|+ M̂‖A−1(s)‖|A(t)h(0, φ)|

+ M̂

∫ t

0

|A(s)h(s, zs + xs)| ds+ M̂

∫ t

0

f(s, zs + xs) ds

+ M̂

∫ t

0

|g(s, zs + xs)− g(s, 0)| ds+ M̂

∫ t

0

|g(s, 0)| ds

≤M0L(‖zt + xt‖B + 1) + M̂M0L(‖φ‖B + 1)

+ M̂L

∫ t

0

(‖zs + xs‖B + 1) ds+ M̂

∫ t

0

p(s)ψ(‖zs + xs)‖B) ds

+ M̂

∫ t

0

η(s)‖zs + xs‖B ds+ M̂

∫ t

0

|g(s, 0)| ds

≤M0L‖zt + xt‖B +M0L+ M̂M0L+ M̂Ln+ M̂M0L‖φ‖B

+ M̂

∫ t

0

|g(s, 0)| ds+ M̂L

∫ t

0

‖zs + xs‖B ds

+ M̂

∫ t

0

p(s)ψ(‖zs + xs)‖B) ds+ M̂

∫ t

0

η(s)‖zs + xs‖B ds.

Using ‖zs + xs‖B ≤ Kn|z(s)| + cn in (3.7) and the nondecreasing character of ψ,
we get

|z(t)| ≤M0L(Kn|z(t)|+ cn) +M0L+ M̂M0L+ M̂Ln+ M̂M0L‖φ‖B

+ M̂

∫ t

0

|g(s, 0)| ds+ M̂L

∫ t

0

(Kn|z(s)|+ cn) ds

+ M̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn) ds+ M̂

∫ t

0

η(s)(Kn|z(s)|+ cn) ds.
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Then

(1−M0LKn)|z(t)| ≤M0L(cn + 1 + M̂ [1 + ‖φ‖B]) + M̂Ln

+ M̂

∫ t

0

|g(s, 0)| ds+ M̂L

∫ t

0

(Kn|z(s)|+ cn) ds

+ M̂

∫ t

0

p(s)ψ(Kn|z(s)|+ cn) ds

+ M̂

∫ t

0

η(s)(Kn|z(s)|+ cn) ds.

Set

ζn :=
Kn

1−M0LKn

[
M0L

(
1 + M̂ + cn + M̂‖φ‖B

)
+ M̂Ln+ M̂

∫ t

0

|g(s, 0)| ds
]

+ cn.

Thus

Kn|z(t)|+ cn ≤ ζn +
M̂LKn

1−M0LKn

∫ t

0

(Kn|z(s)|+ cn) ds

+
M̂Kn

1−M0LKn

∫ t

0

p(s)ψ(Kn|z(s)|+ cn) ds

+
M̂Kn

1−M0LKn

∫ t

0

η(s)(Kn|z(s)|+ cn) ds.

Consider the function µ defined by

µ(t) := sup{Kn|z(s)|+ cn : 0 ≤ s ≤ t}, 0 ≤ t < +∞.

Let t? ∈ [0, t] be such that µ(t) = Kn|z(t?)| + cn, by the previous inequality, we
have

µ(t) ≤ ζn +
M̂LKn

1−M0LKn

∫ t

0

µ(s) ds+
M̂Kn

1−M0LKn

∫ t

0

η(s)µ(s) ds

+
M̂Kn

1−M0LKn

∫ t

0

p(s)ψ(µ(s)) ds for t ∈ [0, n].

Let us denote the right-hand side of the above inequality as v(t). Then, we have

µ(t) ≤ v(t) for all t ∈ [0, n].

From the definition of v, we have v(0) = ζn and

v′(t) =
M̂Kn

1−M0LKn

[Lµ(t) + η(t)µ(t) + p(t)ψ(µ(t))] a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤ M̂Kn

1−M0LKn

[Lv(t) + η(t)v(t) + p(t)ψ(v(t))] a.e. t ∈ [0, n].
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This implies that for each t ∈ [0, n] and using the condition (4.2), we get

∫ v(t)

ζn

ds

s+ ψ(s)
≤ M̂Kn

1−M0LKn

∫ t

0

max(L, η(s), p(s))ds

≤ M̂Kn

1−M0LKn

∫ n

0

max(L, η(s), p(s))ds

<

∫ +∞

ζn

ds

s+ ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Ñn such that v(t) ≤ Ñn and
hence µ(t) ≤ Ñn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Ñn. This shows that the
set Ẽ is bounded. Then the statement (S2) in Theorem 2.8 does not hold. The
nonlinear alternative of Avramescu implies that (S1) holds, we deduce that the
operator F̃ + G̃ has a fixed-point z?. Then y?(t) = z?(t) + x(t), t ∈ (−∞,+∞) is
a fixed point of the operator Ñ , which is the mild solution of (1.3)–(1.4). �

5. Applications

To illustrate the previous results, we give in this section two applications.

Example 5.1. Consider the model

∂v

∂t
(t, ξ) = a(t, ξ)

∂2v

∂ξ2
(t, ξ) +

∫ 0

−∞
P (θ)r(t, v(t+ θ, ξ))dθ

+
∫ 0

−∞
Q(θ)s(t, v(t+ θ, ξ))dθ, t ∈ [0,+∞), ξ ∈ [0, π]

v(t, 0) = v(t, π) = 0 t ∈ [0,+∞)

v(θ, ξ) = v0(θ, ξ) −∞ < θ ≤ 0, ξ ∈ [0, π],

(5.1)

where a(t, ξ) is a continuous function and is uniformly Hölder continuous in t;
P,Q : (−∞, 0] → R; r, s : [0,+∞) × R → R and v0 : (−∞, 0] × [0, π] → R are
continuous functions.

Consider E = L2([0, π],R) and define A(t) by A(t)w = a(t, ξ)w′′ with domain

D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) (see
[24]).

For the phase space B, we choose the well known space BUC(R−, E), the space
of uniformly bounded continuous functions endowed with the norm

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B.
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If we put for ϕ ∈ BUC(R−, E) and ξ ∈ [0, π],

y(t)(ξ) = v(t, ξ), t ∈ [0,+∞), ξ ∈ [0, π],

φ(θ)(ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

f(t, ϕ)(ξ) =
∫ 0

−∞
P (θ)r(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π],

g(t, ϕ)(ξ) =
∫ 0

−∞
Q(θ)s(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π].

Then, (5.1) takes the abstract partial perturbed evolution form (1.1)–(1.2). To
show the existence of mild solutions to (5.1), we assume the following hypotheses:

• The function s is Lipschitz continuous with respect to its second argument.
Let lip(s) denote the Lipschitz constant of s.

• There exist p ∈ L1([0,+∞),R+) and a nondecreasing continuous function
ψ : [0,+∞) → (0,∞) such that

|r(t, u)| ≤ p(t)ψ(|u|), for t ∈ [0,+∞), u ∈ R.

• P and Q are integrable on (−∞, 0].

By the dominated convergence theorem, one can show that f is a continuous
function from B to E. Moreover the mapping g is Lipschitz continuous in its
second argument, in fact, we have

|g(t, ϕ1)− g(t, ϕ2)| ≤ lip(s)
∫ 0

−∞
|Q(θ)| dθ|ϕ1 − ϕ2|, for ϕ1, ϕ2 ∈ B.

On the other hand, for ϕ ∈ B and ξ ∈ [0, π] we have

|f(t, ϕ)(ξ)| ≤
∫ 0

−∞
|p(t)P (θ)|ψ(|(ϕ(θ))(ξ)|)dθ.

Since the function ψ is nondecreasing, it follows that

|f(t, ϕ)| ≤ p(t)
∫ 0

−∞
|P (θ)|dθψ(|ϕ|), for ϕ ∈ B.

Proposition 5.2. Under the above assumptions, if we assume that condition (3.2)
in Theorem 3.2 is true, ϕ ∈ B, then the problem (5.1) has a mild solution which is
defined in (−∞,+∞).

Example 5.3. Consider the model

∂

∂t

[
v(t, ξ)−

∫ 0

−∞
T (θ)u(t, v(t+ θ, ξ))dθ

]
= a(t, ξ)

∂2v

∂ξ2
(t, ξ) +

∫ 0

−∞
P (θ)r(t, v(t+ θ, ξ))dθ

+
∫ 0

−∞
Q(θ)s(t, v(t+ θ, ξ))dθ t ∈ [0,+∞), ξ ∈ [0, π]

v(t, 0) = v(t, π) = 0, t ∈ [0,+∞)

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

(5.2)



EJDE-2008/69 PERTURBED EVOLUTION EQUATIONS WITH INFINITE DELAY 17

where a(t, ξ) is a continuous function and is uniformly Hölder continuous in t;
T, P,Q : (−∞, 0] → R; u, r, s : [0,+∞)× R → R and v0 : (−∞, 0]× [0, π] → R are
continuous functions.

Consider E = L2([0, π],R) and define A(t) by A(t)w = a(t, ξ)w′′ with domain

D(A) = {w ∈ E : w, w′ are absolutely continuous , w′′ ∈ E, w(0) = w(π) = 0}
Then A(t) generates an evolution system U(t, s) satisfying assumptions (H1) and
(H4) (see [24]).

For the phase space B, we choose the well known space BUC(R−, E) : the space
of uniformly bounded continuous functions endowed with the norm

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B.

If we put for ϕ ∈ BUC(R−, E) and ξ ∈ [0, π],

y(t)(ξ) = v(t, ξ), t ∈ [0,+∞), ξ ∈ [0, π],

φ(θ)(ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

h(t, ϕ)(ξ) =
∫ 0

−∞
T (θ)u(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π],

f(t, ϕ)(ξ) =
∫ 0

−∞
P (θ)r(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π]

g(t, ϕ)(ξ) =
∫ 0

−∞
Q(θ)s(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π].

Then, (5.2) takes the abstract neutral perturbed evolution form (1.3)–(1.4). To
show the existence of the mild solution to (5.2), we assume the following hypotheses:

• the functions u and s are Lipschitz with respect to its second argument,
and constants lip(u) and lip(s) respectively.

• There exist p ∈ L1([0,+∞),R+) and a nondecreasing continuous function
ψ : [0,+∞) → (0,∞) such that

|r(t, u)| ≤ p(t)ψ(|u|), for t ∈ [0,+∞), u ∈ R.
• T , P and Q are integrable on (−∞, 0].

By the dominated convergence theorem, one can show that f is a continuous
function from B to E. Moreover the mapping h and g are Lipschitz continuous in
its second argument, in fact, we have

|g(t, ϕ1)− g(t, ϕ2)| ≤ lip(s)
∫ 0

−∞
|Q(θ)|dθ|ϕ1 − ϕ2|, for ϕ1, ϕ2 ∈ B,

|h(t, ϕ1)− h(t, ϕ2)| ≤M0L∗ lip(u)
∫ 0

−∞
|T (θ)|dθ|ϕ1 − ϕ2|, for ϕ1, ϕ2 ∈ B.

On the other hand, for ϕ ∈ B and ξ ∈ [0, π] we have

|f(t, ϕ)(ξ)| ≤
∫ 0

−∞
|p(t)P (θ)|ψ(|(ϕ(θ))(ξ)|)dθ.

Since the function ψ is nondecreasing, it follows that

|f(t, ϕ)| ≤ p(t)
∫ 0

−∞
|P (θ)|dθψ(|ϕ|), for ϕ ∈ B.
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Proposition 5.4. Under the above assumptions, if we assume that condition (4.2)
in Theorem 4.2 is true, ϕ ∈ B, then (5.2) has a mild solution which is defined in
(−∞,+∞).
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