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POSITIVE SOLUTIONS FOR A HIGH-ORDER MULTI-POINT
BOUNDARY-VALUE PROBLEM IN BANACH SPACES

WEIHUA JIANG

Abstract. Using the fixed point theory of strict set contractions, we study

the existence of at least one, two, and multiple positive solutions for higher
order multiple point boundary-value problems in Banach spaces. Our result

extends some of the existing results.

1. Introduction

In the previous 30 years, the theory of ordinary differential equations in Banach
spaces has become a new important branch (see, for example, [2, 5, 6, 13] and refer-
ences cited therein). In 1988, Guo and Lakshmikantham [8] discussed the existence
of multiple solutions for two-point boundary-value problem of ordinary differen-
tial equations in Banach spaces. Since then, nonlinear second-order multi-point
boundary-value problems in Banach spaces have been studied by several authors
(see, for example, [4, 14, 15] and references cited therein). On the other hand,
recently, high-order multi-point boundary-value problems for scalar ordinary dif-
ferential equations have received a great deal of attention in the literature (see,
for instance, [3, 7, 12] and references cited therein). However, to the best of our
knowledge, no one has considered the existence of multiple positive solutions (at
least three or more) for high-order multi-point boundary-value problems in Banach
spaces. We will fill this gap in the literature. In this paper, we shall discuss the
existence of at least one, two, and multiple positive solutions for the nth-order
m-point boundary-value problem value problem

y(n)(t) + f(t, y) = θ, 0 < t < 1, (1.1)

y(0) = y′(0) = · · · = y(n−2)(0) = θ, y(1) =
m−2∑
i=1

kiy(ξi) (1.2)

in a real Banach space E, where n ≥ 2, θ is the zero element of E, 0 < ξ1 < ξ2 <
· · · < ξm−2 < 1, ki > 0, i = 1, 2, . . . ,m − 2. In the scalar case, the existence of
positive solutions to (1.1)-(1.2) had been solved in [3, 7]; So our result extends those
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results, to some degree. The key tool in our approach is the following fixed point
theorem of strict-set-contractions.

Theorem 1.1 ([1, 16]). Let K be a cone of the real Banach space X and Kr,R =
{x ∈ K : r ≤ ‖x‖ ≤ R} with R > r > 0. Suppose that A : Kr,R → K is a strict set
contraction such that one of the following two conditions is satisfied

(i) Ax 6≤ x, for all x ∈ K, ‖x‖ = r and Ax 6≥ x, for all x ∈ K, ‖x‖ = R.
(ii) Ax 6≥ x, for all x ∈ K, ‖x‖ = r and Ax 6≤ x, for all x ∈ K, ‖x‖ = R.

Then A has at least one fixed point x ∈ K satisfying r < ‖x‖ < R.

Let the real Banach space E with norm ‖ · ‖ be partially ordered by a normal
cone P of E; i.e., x ≤ y if and only if y−x ∈ P , and P ∗ denotes the dual cone of P .
Denote the normal constant of P by N ; i.e., θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. Take
I = [0, 1]. For any x ∈ C[I, E], evidently, (C[I, E], ‖ · ‖c) is a Banach space with
‖x‖c = maxt∈I ‖x(t)‖, and Q = {x ∈ C[I, E] : x(t) ≥ θ for t ∈ I} is a cone of the
Banach space C[I, E]. A function x ∈ Cn[I, E] is called a positive solution of the
boundary-value problem (1.1)-(1.2) if it satisfies (1.1)-(1.2) and x ∈ Q, x(t) 6≡ θ.

For a bounded set S in a Banach space, we denote α(S) the Kuratowski measure
of non-compactness. In this paper, we denote α(·) the Kuratowski measure of non-
compactness of a bounded set in E and C[I, E]. The closed balls in spaces E and
C[I, E] are denoted by Tr = {x ∈ E : ‖x‖ ≤ r}(r > 0) and Br = {y ∈ C[I, E] :
‖y‖c ≤ r}(r > 0), respectively.

For convenience, we set

a0 =
m−2∑
i=1

kiξ
n−1
i , a1 =

m−2∑
i=1

kiξ
n−1
i (1− ξm−2)n.

In this paper, we assume the following conditions.
(H1) n ≥ 2, ki > 0, i = 1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,

0 < a0 < 1.
(H2) P is a normal cone of E and N is the normal constant; f : I × P → P ,

f(t, θ) = θ, for all t ∈ I; for any r > 0, f(t, x) is uniformly continuous and
bounded on I × (P ∩ Tr) and there exists a constant Lr with 0 ≤ Lr <
(n−1)!(1−a0)

4 such that

α(f(I ×D)) ≤ Lrα(D), ∀D ⊂ P ∩ Tr.

2. Preliminary lemmas

Lemma 2.1. Suppose a0 6= 1, then for h(t) ∈ C[I, E], the problem

y(n)(t) + h(t) = θ, 0 < t < 1, (2.1)

y(0) = y′(0) = · · · = y(n−2)(0) = θ, y(1) =
m−2∑
i=1

kiy(ξi) (2.2)

has a unique solution

y(t) =−
∫ t

0

(t− s)n−1

(n− 1)!
h(s)ds +

tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
h(s)ds

− tn−1

1− a0

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
h(s)ds.

(2.3)
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The proof of the above lemma is easy, so we omit it.

Lemma 2.2. Let (H1) hold. If h ∈ Q, then the unique solution y of (2.1)-(2.2)
satisfies y(t) ≥ θ, t ∈ I, that is y ∈ Q.

Proof. By (2.3), we get

y(t) = −
∫ t

0

(t− s)n−1

(n− 1)!
h(s)ds +

tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
h(s)ds

− tn−1

1− a0

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
h(s)ds

≥ tn−1

1− a0

m−2∑
i=1

kiξ
n−1
i

∫ 1

ξi

(1− s)n−1

(n− 1)!
h(s)ds ≥ θ.

The proof is complete. �

Lemma 2.3. Assume (H1). If h ∈ Q, then the unique solution y of (2.1)-(2.2)
satisfies

y(t) ≥ γy(s), ∀t ∈ [ξm−2, 1], s ∈ I,

where

γ = min{km−2(1− ξm−2)
1− km−2ξm−2

, km−2ξ
n−1
m−2, k1ξ

n−1
1 , ξn−1

m−2}.

Proof. For any ϕ ∈ P ∗, we have ϕ(h(t)) ≥ 0, t ∈ I. It follows from

ϕ(y(t)) = −
∫ t

0

(t− s)n−1

(n− 1)!
ϕ(h(s))ds +

tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
ϕ(h(s))ds

− tn−1

1− a0

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
ϕ(h(s))ds

and [7, Lemma 3.2] that

ϕ(y(t)) ≥ γϕ(y(s)), ∀t ∈ [ξm−2, 1], s ∈ I.

So, we have
ϕ(y(t)− γy(s)) ≥ 0, ∀t ∈ [ξm−2, 1], s ∈ I.

Since ϕ ∈ P ∗ is arbitrary, we get

y(t)− γy(s) ≥ θ, ∀t ∈ [ξm−2, 1], s ∈ I.

The proof is complete. �

Define an operator A : Q → C[I, E] as follows

A(y(t)) := −
∫ t

0

(t− s)n−1

(n− 1)!
f(s, y(s))ds +

tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
f(s, y(s))ds

− tn−1

1− a0

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
f(s, y(s))ds.

(2.4)

By Lemmas 2.1 and 2.2, we get that A : Q → Cn[I, E] ∩Q, and y(t) is a positive
solution of (1.1)-(1.2) if and only if y(t) ∈ Cn[I, E]∩Q and y(t) 6≡ θ is a fixed point
of the operator A.
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Lemma 2.4. Suppose (H1)–(H2) hold. Then, for any r > 0, the operator A is a
strict set contraction on Q ∩Br.

Proof. Since f(t, x) is uniformly continuous and bounded on I × (P ∩ Tr), we see
from (2.4) that A is continuous and bounded on Q ∩ Br. For any S ⊂ Q ∩ Br,
by (2.4), we can easily show that the functions A(S) = {Ay|y ∈ S} are uniformly
bounded and equicontinuous. By [13], we have

α(A(S)) = sup
t∈I

α(A(S(t))), (2.5)

where A(S(t)) = {Ay(t) : y ∈ S, t ∈ I is fixed}. For any y ∈ C[I, E], g ∈ C[I, I],
by

∫ t

0
g(s)y(s)ds ∈ co({g(t)y(t)|t ∈ I} ∪ {θ}) ⊂ co({y(t)|t ∈ I} ∪ {θ}), we get

α(A(S(t))) = α({−
∫ t

0

(t− s)n−1

(n− 1)!
f(s, y(s))ds +

tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
f(s, y(s))ds

− tn−1

1− a0

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
f(s, y(s))ds|y ∈ S})

≤ 1
(n− 1)!

α(co({f(s, y(s))|s ∈ I, y ∈ S} ∪ {θ}))

+
1

(1− a0)(n− 1)!
α(co({f(s, y(s))|s ∈ I, y ∈ S} ∪ {θ}))

+
a0

(1− a0)(n− 1)!
α(co({f(s, y(s))|s ∈ I, y ∈ S} ∪ {θ}))

=
2

(1− a0)(n− 1)!
α({f(s, y(s))|s ∈ I, y ∈ S})

≤ 2
(1− a0)(n− 1)!

α(f(I ×B)),

where B = {y(s) : s ∈ I, y ∈ S} ⊂ P ∩ Tr. By (H2), we get

α(A(S(t))) ≤ 2
(1− a0)(n− 1)!

Lrα(B). (2.6)

For each ε > 0, there exists a partition S =
⋃l

j=1 Sj such that

diam(Sj) < α(S) +
ε

3
, j = 1, 2, . . . , l. (2.7)

Now, choose yj ∈ Sj , j = 1, 2, . . . , l and a partition 0 = t0 < t1 < · · · < tk = 1 such
that

‖yj(t)− yj(t)‖ <
ε

3
, ∀t, t ∈ [ti−1, ti], j = 1, 2, . . . , l, i = 1, 2, . . . , k. (2.8)

Obviously, B = ∪l
j=1 ∪k

i=1 Bij , where Bij = {y(t) : y ∈ Sj , t ∈ [ti−1, ti]}. For any
y(t), y(t) ∈ Bij , by (2.7) and (2.8), we obtain

‖y(t)− y(t)‖ ≤ ‖y(t)− yj(t)‖+ ‖yj(t)− yj(t)‖+ ‖yj(t)− y(t)‖

≤ ‖y − yj‖c +
ε

3
+ ‖yj − y‖c

≤ 2 diam(Sj) +
ε

3
< 2α(S) + ε,
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which implies diam(Bij) ≤ 2α(S)+ε, and so, α(B) ≤ 2α(S)+ε. Since ε is arbitrary,
we get

α(B) ≤ 2α(S). (2.9)
It follows from (2.5), (2.6) and (2.9) that

α(A(S)) ≤ 4
(n− 1)!(1− a0)

Lrα(S), ∀S ⊂ Q ∩Br.

By (H2), we get that A is a strict set contraction on Q ∩Br. �

3. Main results

Let K = {y ∈ Q : y(t) ≥ γy(s), ∀t ∈ [ξm−2, 1], s ∈ I}. Clearly, K ⊂ Q is a cone
of C[I, E]. By Lemma 2.2 and Lemma 2.3, we get AQ ⊂ K. So, AK ⊂ K.

For convenience, for any x ∈ P and ϕ ∈ P ∗, we set

f0 = lim sup
‖x‖→0

sup
t∈I

‖f(t, x)‖
‖x‖

, f∞ = lim sup
‖x‖→∞

sup
t∈I

‖f(t, x)‖
‖x‖

,

fϕ
0 = lim inf

‖x‖→0
inf
t∈I

ϕ(f(t, x))
ϕ(x)

, fϕ
∞ = lim inf

‖x‖→∞
inf
t∈I

ϕ(f(t, x))
ϕ(x)

.

Then we list the following assumptions:

(H3) There exists ϕ ∈ P ∗ with ϕ(x) > 0, for all x > θ such that n!(1−a0)
γa1

< fϕ
0 ≤

∞.
(H4) There exists ϕ ∈ P ∗ with ϕ(x) > 0, for all x > θ such that n!(1−a0)

γa1
< fϕ

∞ ≤
∞.

(H5) 0 ≤ f0 < n!(1−a0)
N .

(H6) 0 ≤ f∞ < n!(1−a0)
N .

(H7) There exists r0 > 0 such that supt∈I, x∈P∩Tr0
‖f(t, x)‖ < n!(1−a0)

N r0.
(H8) There exist R0 > 0 and ϕ ∈ P ∗ with ϕ(x) > 0 for any x > θ such that

inf
t∈[ξm−2,1], x∈P, γR0/N≤‖x‖≤R0

ϕ(f(t, x))
ϕ(x)

>
n!(1− a0)

γa1
.

Theorem 3.1. Suppose (H1)–(H2) hold. In addition suppose (H4) and (H5) or
(H3) and (H6) are satisfied. Then (1.1)-(1.2) has at least one positive solution.

Proof. (i) Suppose (H4) and (H5) hold. By (H4), there exist constants

M >
n!(1− a0)

γa1
(3.1)

and r1 > 0 such that

ϕ(f(t, x)) ≥ Mϕ(x), ∀t ∈ I, x ∈ P, ‖x‖ > r1. (3.2)

For R > N
γ r1, we will show that

Ay 6≤ y, ∀y ∈ K, ‖y‖c = R. (3.3)

In fact, if not, there exists y0 ∈ K, ‖y0‖c = R such that Ay0 ≤ y0. By

y0(t) ≥ γy0(s) ≥ θ, ∀t ∈ [ξm−2, 1], s ∈ I, (3.4)

we have
‖y0(t)‖ ≥

γ

N
‖y0‖c > r1, ∀t ∈ [ξm−2, 1]. (3.5)
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By (2.4), for any t ∈ I, we have

A(y0(t)) = −
∫ t

0

(t− s)n−1

(n− 1)!
f(s, y0(s))ds +

tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
f(s, y0(s))ds

− tn−1

1− a0

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
f(s, y0(s))ds.

≥ a0t
n−1

1− a0

∫ 1

ξm−2

(1− s)n−1

(n− 1)!
f(s, y0(s))ds.

This, together with (3.2), (3.4) and (3.5), implies

ϕ(Ay0(1)) ≥ a0

1− a0

∫ 1

ξm−2

(1− s)n−1

(n− 1)!
Mγϕ(y0(1))ds

=
a1

n!(1− a0)
Mγϕ(y0(1)).

Considering Ay0 ≤ y0, we get

ϕ(y0(1)) ≥ γa1

n!(1− a0)
Mϕ(y0(1)). (3.6)

It is easy to see that ϕ(y0(1)) > 0 (In fact, if ϕ(y0(1)) = 0, by (3.4), we get
ϕ(y0(1)) ≥ γϕ(y0(s)) ≥ 0, for all s ∈ I. So, we have ϕ(y0(s)) ≡ 0, for all s ∈ I,
that is y0(s) ≡ θ. This is a contradiction with ‖y0‖c = R). So, (3.6) contradicts
with (3.1). Therefore, (3.3) is true.

On the other hand, by (H5) and f(t, θ) = θ, we get that there exist constants
ε ∈ (0, n!(1− a0)/N) and 0 < r2 < R such that

‖f(t, x)‖ ≤ ε‖x‖, ∀t ∈ I, x ∈ P, ‖x‖ < r2. (3.7)

For any 0 < r < r2, we now prove

Ay 6≥ y, ∀y ∈ K, ‖y‖c = r. (3.8)

In fact, if not, there exists y0 ∈ K, ‖y0‖c = r such that Ay0 ≥ y0. Since (2.4)
implies

Ay0(t) ≤
tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
f(s, y0(s))ds, ∀t ∈ I, (3.9)

we have

θ ≤ y0(t) ≤
tn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
f(s, y0(s))ds, ∀t ∈ I.

This, together with (3.7), implies

‖y0(t)‖ ≤
Nε

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
‖y0(s)‖ds ≤ Nε‖y0‖c

n!(1− a0)
, ∀t ∈ I.

Therefore, we get ε ≥ n!(1− a0)/N . This is a contradiction. So, (3.8) is true.
By (3.3), (3.8), Lemma 2.4 and Theorem 1.1, we get that the operator A has at

least one fixed point y ∈ K satisfying r < ‖y‖c < R.
(ii) Suppose (H3) and (H6) hold. By (H3), in the same way as establishing (3.3)
we can assert that there exists r2 > 0 such that for any 0 < r < r2,

Ay 6≤ y, ∀y ∈ K, ‖y‖c = r. (3.10)
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On the other hand, by (H6), we get that there exist constants 0 < ε < n!(1−a0)/N
and r1 > 0 such that

‖f(t, x)‖ ≤ ε‖x‖, ∀t ∈ I, x ∈ P, ‖x‖ > r1.

By (H2), we get
sup

t∈I, x∈P∩Tr1

‖f(t, x)‖ := b < ∞.

So, we have
‖f(t, x)‖ ≤ ε‖x‖+ b, ∀t ∈ I, x ∈ P. (3.11)

Take R > max{r2,
Nb

n!(1−a0)−Nε}. We will prove that

Ay 6≥ y, ∀y ∈ K, ‖y‖c = R. (3.12)

In fact, if there exists y0 ∈ K, ‖y0‖c = R such that Ay0 ≥ y0. Then, by (3.9) and
(3.11), we get

‖y0(t)‖ ≤
Ntn−1

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
(ε‖y0(s)‖+ b)ds ≤ N

n!(1− a0)
(ε‖y0‖c + b), ∀t ∈ I.

So, we have

‖y0‖c ≤
Nb

n!(1− a0)−Nε
< R.

A contradiction. Therefore, (3.12) holds.
By (3.10), (3.12), Lemma 2.4 and Theorem 1.1, the operator A has at least one

fixed point y ∈ K satisfying r < ‖y‖c < R. The proof is complete. �

Theorem 3.2. Suppose (H1) and (H2) hold. In addition suppose that one of the
following conditions is satisfied

(i) (H3), (H4), (H7) hold.
(ii) (H5), (H6), (H8) hold.

Then (1.1)-(1.2) has at least two positive solutions.

Proof. (i) By (H3), (H4) and the proof of Theorem 3.1, there exist r, R with 0 <
r < r0 < R such that

Ay 6≤ y, ∀y ∈ K, ‖y‖c = r.

Ay 6≤ y, ∀y ∈ K, ‖y‖c = R.
(3.13)

Now, we will prove
Ay 6≥ y, ∀y ∈ K, ‖y‖c = r0. (3.14)

In fact, if there exists y0 ∈ K, ‖y0‖c = r0 such that Ay0 ≥ y0. By (3.9) and (H7),
we get

‖y0‖c <
N

1− a0

∫ 1

0

(1− s)n−1

(n− 1)!
· n!(1− a0)

N
r0ds = r0.

A contradiction. So, (3.14) is true. By (3.12)-(3.14), Lemma 2.4 and Theorem 1.1,
we get that the operator A has at least two fixed points y1, y2 ∈ K satisfying

r < ‖y1‖c < r0 < ‖y2‖c < R.

(ii) By (H5), (H6) and the proof of Theorem 3.1, there exist r, R with 0 < r <
R0 < R such that

Ay 6≥ y, ∀y ∈ K, ‖y‖c = r. (3.15)

Ay 6≥ y, ∀y ∈ K, ‖y‖c = R. (3.16)
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On the other hand, by (H8) and the methods used in the proof of (3.3), we can
prove that

Ay 6≤ y, ∀y ∈ K, ‖y‖c = R0. (3.17)

By (3.15)-(3.17), Lemma 2.4 and Theorem 1.1, the operator A has at least two
fixed points y1, y2 ∈ K satisfying

r < ‖y1‖c < R0 < ‖y2‖c < R.

The proof is complete. �

Similar to the proofs of Theorem 3.1 and Theorem 3.2, we can easily get the
following corollaries.

Corollary 3.3. Suppose (H1), (H2) hold. In addition suppose that one of the
following conditions is satisfied

(i) (H4), (H5), (H7), (H8) hold with R0 < r0.
(ii) (H3), (H6), (H7), (H8) hold with r0 < R0.

Then (1.1)-(1.2) has at least three positive solutions.

Corollary 3.4. Suppose (H1), (H2) hold. In addition suppose that one of the
following conditions is satisfied

(i) (H5)–(H7) hold, and there exist Ri > 0, ϕi ∈ P ∗ with ϕi(x) > 0 for x > θ,
i = 1, 2 such that

inf
t∈[ξm−2,1], x∈P, γRi/N≤‖x‖≤Ri

ϕi(f(t, x))
ϕi(x)

>
n!(1− a0)

γa1
, i = 1, 2,

where R1 < r0 < R2.
(ii) (H3), (H4), (H8) hold, and there exist r1, r2 > 0 such that

sup
t∈I, x∈P∩Tri

‖f(t, x)‖ <
n!(1− a0)

N
ri, i = 1, 2,

where r1 < R0 < r2.

Then (1.1)-(1.2) has at least four positive solutions.

We can easily obtain the existence of multiple positive solutions for (1.1)-(1.2).

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. Consider the boundary value problem

y
′′′

i (t) + fi(t, y1, y2, . . . , yl) = 0, 0 < t < 1, (4.1)

yi(0) = y′i(0) = 0, yi(1) = yi(
1
2
), i = 1, 2, . . . , l, (4.2)

where fi(t, y1, y2, . . . , yl) = y
2
3
i+1+e−ty

3
2
i+2, i = 1, 2, . . . , l−2, fl−1(t, y1, y2, . . . , yl) =

y
2
3
l + e−ty

3
2
1 , fl(t, y1, y2, . . . , yl) = y

2
3
1 + e−ty

3
2
2 .

Conclusion. The problem (4.1)-(4.2) has at least two positive solutions.
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Proof. Let E = Rl = {y = (y1, y2, . . . , yl)|yi ∈ R, i = 1, 2, . . . , l} with the norm
‖y‖ = max

1≤i≤l
|yi|, and P = {y = (y1, y2, . . . , yl)|yi ≥ 0, i = 1, 2, . . . , l}. Then P is a

normal cone in E and the normal constant N = 1. Corresponding to (1.1)-(1.2),
we get n = m = 3, k1 = 1, ξ1 = 1

2 , a0 = 1
4 , a1 = 1

32 , γ = 1
4 . Obviously, (H1)

is satisfied. Set θ = (0, 0, . . . , 0) and f = (f1, f2, . . . , fl). Then f : I × P → P
is continuous and f(t, θ) = θ, for all t ∈ I. It is clear that α(f(D)) = 0 for any
D ⊂ P ∩ Tr. So, (H2) holds. It is easy to see that P ∗ = P . So, we choose
ϕ = (1, 1, . . . , 1), and then

ϕ(f(t, y))
ϕ(y)

=

l∑
i=1

fi(t, y1, y2, . . . , yl)

l∑
i=1

yi

.

We now prove that the conditions (H3) and (H4) are satisfied.
For any y ∈ P, y 6= θ, we can easily get ϕ(y) > 0 and

ϕ(f(t, y))
ϕ(y)

=

l∑
i=1

y
2
3
i + e−t

l∑
i=1

y
3
2
i

l∑
i=1

yi

≥
max
1≤i≤l

y
2
3
i

n max
1≤i≤l

yi
=

1
n

1

max
1≤i≤l

y
1
3
i

→∞, (‖y‖ → 0).

and

ϕ(f(t, y))
ϕ(y)

=

l∑
i=1

y
2
3
i + e−t

l∑
i=1

y
3
2
i

l∑
i=1

yi

≥
e−1 max

1≤i≤l
y

3
2
i

n max
1≤i≤l

yi
=

1
ne

max
1≤i≤l

y
1
2
i →∞, (‖y‖ → ∞).

So, (H3) and (H4) hold. Finally, we will show (H7) is satisfied.
Since n!(1−a0)

N r0 = 4.5r0, taking r0 = 1, we get

sup
t∈I, y∈P∩Tr0

‖f(t, y)‖ ≤ max
1≤i≤l

y
2
3
i + max

1≤i≤l
y

3
2
i ≤ 2.

Therefore, (H7) holds. By Theorem 3.2 (i), we get that the problem (4.1)-(4.2) has
at least two positive solutions. �

Example 4.2. The boundary value problem

y
′′′

i (t) + eat sin2(
π

2
yi) = 0, 0 < t < 1, (4.3)

yi(0) = y′i(0) = 0, yi(1) = yi(
1
2
), i = 1, 2, . . . , l. (4.4)

has at least two positive solutions, where a > 2 ln 576l
sin2 π

8
.

Proof. Let E, ‖·‖, P, θ, ϕ be the same as in Example 4.1. Take f = (eat sin2(π
2 y1),

eat sin2(π
2 y2), . . . , eat sin2(π

2 yl)). Then f : I × P → P is continuous and f(t, θ) = θ,
for all t ∈ I. Similar to the proof of Example 4.1, we get that (H1) and (H2) are
satisfied. Now, we prove that (H5) and (H6) are satisfied. Because

‖f(t, y)‖
‖y‖

=
max
1≤i≤l

eat sin2(π
2 yi)

max
1≤i≤l

yi
≤ ea

max
1≤i≤l

sin2(π
2 yi)

max
1≤i≤l

yi
→ 0, (‖y‖ → 0),
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and

‖f(t, y)‖
‖y‖

=
max
1≤i≤l

eat sin2(π
2 yi)

max
1≤i≤l

yi
≤ ea

max
1≤i≤l

sin2(π
2 yi)

max
1≤i≤l

yi
→ 0, (‖y‖ → ∞),

(H5) and (H6) hold. Now, we prove that (H8) is satisfied. Since n!(1−a0)
γa1

= 576
(where, n, a0, a1 and γ are the same as in Example 4.1), taking R0 = 1, for
t ∈ [ 12 , 1], y ∈ P , 1

4 ≤ ‖y‖ ≤ 1, we have

ϕ(f(t, y))
ϕ(y)

=

l∑
i=1

eat sin2(π
2 yi)

l∑
i=1

yi

≥ e
a
2
sin2(π

8 )
l

> 576.

So, (H8) holds. By Theorem 3.2 (ii), we get that the problem (4.3)-(4.4) has at
least two positive solutions. �
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