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POWER SERIES SOLUTION FOR THE MODIFIED KDV
EQUATION

TU NGUYEN

Abstract. We use the method developed by Christ [3] to prove local well-
posedness of a modified Korteweg de Vries equation in FLs,p spaces.

1. Introduction

The modified Korteweg de Vries (mKdV) equation on a torus T has the form

∂tu + ∂3
xu + u2∂xu = 0

u(·, 0) = u0

(1.1)

where (x, t) ∈ T×R, u is a real-valued function. If u is a smooth solution of (1.1),
then ‖u(·, t)‖L2(T) = ‖u0‖L2(T) for all t; therefore, ũ(x, t) = u(x + 1

2π‖u0‖2L2(T)t, t)
is a solution of

∂tu + ∂3
xu +

(
u2 − 1

2π

∫
T

u2(x, t)dx
)
∂xu = 0

u(·, 0) = u0

(1.2)

Thus, (1.2) and (1.1) are essentially equivalent. Using Fourier restriction norm
method, Bourgain [1] proved that (1.2) is locally well-posed for initial data u0 ∈
Hs(T) when s ≥ 1/2, and the solution map is uniformly continuous. In [2], he
also showed that the solution map is not C3 in Hs(T) when s < 1/2. Takaoka and
Tsutsumi [10] proved local-wellposedness of (1.2) when 1/2 > s > 3/8, and they
showed that solution map is not uniformly continuous for this range of s. For (1.1),
Kappeler and Topalov [8] used inverse scattering method to show wellposedness
when s ≥ 0 and Christ, Colliander and Tao [4] showed that uniformly continuous
dependence on the initial data does not hold when s < 1/2. Thus, there is a gap
between known local well-posedness results and the space H−1/2(T) suggested by
the standard scaling argument.

Recently, Grünrock and Vega [7] showed local well-posedness of the mKdV equa-
tion on R with initial data in

Ĥr
s (R) := {f ∈ D′(R) : ‖f‖cHr

s
:= ‖〈·〉sf̂(·)‖Lr′ < ∞},
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when 2 ≥ r > 1 and s ≥ 1
2 −

1
2r . (for r > 4

3 , this was obtained by Grünrock
[5]). This is an extension of the result of Kenig, Ponce and Vega [9] that local-
wellposedness holds in Hs(R) when s ≥ 1/4. Furthermore, as Ĥr

s scales like Hσ

with σ = s + 1
2 −

1
r , this result covers spaces that have scaling exponent − 1

2+.
There is also a related recent work of Grünrock and Herr [6] on the derivative

nonlinear Schrödinger equation on T. Both [7] and [6] used a version of Bourgain’s
method.

In this paper, we apply the new method of solution developed by Christ [3] to
investigate the local well-posedness of (1.2) with initial data in

FLs,p(T) := {f ∈ D′(T) : ‖f‖FLs,p := ‖〈·〉sf̂(·)‖lp < ∞}.

Let B(0, R) be the ball of radius R centered at 0 in FLs,p(T). Our main result is
the following.

Theorem 1.1. Suppose s ≥ 1/2, 1 ≤ p < ∞ and p′(s + 1/4) > 1. Let W be the
solution map for smooth initial data of (1.2). Then for any R > 0 there is T > 0
such that the solution map W extends to a uniformly continuous map from B(0, R)
to C([0, T ],FLs,p(T)).

We note that the FLs,p(T) spaces that are covered by Theorem 1.1 have scaling
index 1

4+. The restriction s ≥ 1/2 is due to the presence of the derivative in the
nonlinear term, and is only used to bound the operator S2 in section 3. The same
restriction on s is also required in the work on the derivative nonlinear Schrödinger
equation on T by Grünrock and Herr [6]. We believe that the range of p in Theorem
1.1 is not sharp.

Concerning (1.1), we have the following result.

Corollary 1.2. Suppose s ≥ 1/2, 1 ≤ p < ∞ and p′(s + 1/4) > 1. Let W̃ be the
solution map for smooth initial data of (1.1). Then for any R > 0 there is T > 0
such that for any c > 0, the solution map W̃ extends to a uniformly continuous
map from B(0, R) ∩ {ϕ : ‖ϕ‖L2 = c} ⊂ FLs,p(T) to C([0, T ],FLs,p(T)).

As in [3], the solution map W obtained in Theorem 1.1 gives a weak solution
of (1.2) in the following sense. Let TN be defined by TNu = (χ[−N,N ]û)∨. Let
Nu :=

(
u2 − 1

2π

∫
T u2(x, t)dx

)
∂xu be the limit in C([0, T ],D′(T)) of N (TNu) as

N →∞, provided it exists.

Proposition 1.3. Let s and p be as in Theorem 1.1. Let ϕ ∈ FLs,p and u := Wϕ ∈
C([0, T ],FLs,p). Then Nu exists and u satisfies (1.2) in the sense of distribution
in (0, T )× T.

To prove these results, we formally expand the solution map into a sum of
multilinear operators. These multilinear operators are described in the section 2.
Then we will show that if u(·, 0) ∈ FLs,p then the sum of these operators converges
in FLs,p for small time t, when s and p satisfy the conditions of Theorem 1.1.
Furthermore, this gives a weak solution of (1.2), justifying our formal derivation.
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2. Multilinear operators

We rewrite (1.2) as a system of ordinary differential equations of the spatial
Fourier series of u (see [10, formula (1.9)], and [1, Lemma 8.16]).

dû(n, t)
dt

− in3û(n, t)

= −i
∑

n1+n2+n3=n

û(n1, t)û(n2, t)n3û(n3, t) + i
∑
n1

û(n1, t)û(−n1, t)nû(n, t)

=
−in

3

∗∑
n1+n2+n3=n

û(n1, t)û(n2, t)û(n3, t) + inû(n, t)û(−n, t)û(n, t),

(2.1)

where the star means the sum is taken over the triples satisfying nj 6= n, j = 1, 2, 3.
We note that these are precisely the triples with σ(n1, n2, n3) 6= 0.

Let a(n, t) = e−in3tû(n, t), then an(t) satisfy

da(n, t)
dt

= − in

3

∗∑
n1+n2+n3=n

eiσ(n1,n2,n3)ta(n1, t)a(n2, t)a(n3, t)

+ ina(n, t)a(−n, t)a(n, t),

where

σ(n1, n2, n3) = n3
1 + n3

2 + n3
3 − (n1 + n2 + n3)3 = −3(n1 + n2)(n2 + n3)(n3 + n1).

Or, in integral form,

a(n, t) = a(n, 0)− in

3

∫ t

0

∗∑
n1+n2+n3=n

eiσ(n1,n2,n3)sa(n1, s)a(n2, s)a(n3, s)ds

+ in

∫ t

0

|a(n, s)|2a(n, s)ds.

(2.2)

If, a is sufficiently nice, say a ∈ C([0, T ], l1) (which is the case if u ∈ C([0, T ],Hs(T))
for large s) then we can exchange the order of the integration and summation to
obtain

a(n, t) = a(n, 0)− in

3

∗∑
n1+n2+n3=n

∫ t

0

eiσ(n1,n2,n3)sa(n1, s)a(n2, s)a(n3, s)ds

+ in

∫ t

0

|a(n, s)|2a(n, s)ds.

(2.3)

Replacing the a(nj , s) in the right hand side by their equations obtained using (2.3),
we get

a(n, t) = a(n, 0)− in

3

∗∑
n1+n2+n3=n

a(n1, 0)a(n2, 0)a(n3, 0)
∫ t

0

eiσ(n1,n2,n3)sds

+ in|a(n, 0)|2a(n, 0)
∫ t

0

ds + additional terms

= a(n, 0)− n

3

∗∑
n1+n2+n3=n

a(n1, 0)a(n2, 0)a(n3, 0)
σ(n1, n2, n3)

(eiσ(n1,n2,n3)t − 1)

+ int|a(n, 0)|2a(n, 0) + additional terms

(2.4)
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The additional terms are those which depend not only on a(·, 0). An example of
the additional terms is

− nn3

9

∗∑
n1+n2+n3=n

a(n1, 0)a(n2, 0)
∗∑

m1+m2+m3=n3

∫ t

0

eiσ(n1,n2,n3)s

∫ s

0

eiσ(m1,m2,m3)s
′

× a(m1, s
′)a(m2, s

′)a(m3, s
′)ds′ds

Then we can again use (2.3) for each appearance of a(m, ·) in the additional terms,
and obtain more and more complicated additional terms. We refer to section 2 of
[3] for more detailed description of these additional terms. Continuing this process
indefinitely, we get a formal expansion of a(n, t) as a sum of multilinear operators
of a(·, 0).

We will now describe these operators and then show that their sum converges.
Again, we refer to section 3 of [3] for more detailed explanations. Each of our
multilinear operators will be associated to a tree, which has the property that each
of its node has either zero or three children. We will only consider trees with this
property. If a node v of T has three children, they will be denoted by v1, v2, v3. We
denote by T 0 the set of non-terminal nodes of T , and T∞ the set of terminal nodes
of T . Clearly, if |T | = 3k + 1 then |T 0| = k and |T∞| = 2k + 1.

Definition 2.1. Let T be a tree. Then J (T ) is the set of j ∈ ZT such that if
v ∈ T 0 then

jv = jv1 + jv2 + jv3 ,

and either jvi
6= jv for all i, or jv1 = −jv2 = jv3 = jv. We will denote by v(T ) be

the root of T and j(T ) = j(v(T )). For j ∈ J (T ) and v ∈ T 0,

σ(j, v) := σ(j(v1), j(v2), j(v3)).

Also define

R(T, t) = {s ∈ RT 0

+ : if v < w then 0 ≤ sv ≤ sw ≤ t}.
Using the above definitions, we can rewrite (2.4) as

a(n, t) = a(n, 0) +
∑
|T |=4

ωT

∑
j∈J (T ),j(T )=n

na(j(v(T )1), 0)a(j(v(T )2), 0)

× a(j(v(T )3), 0)
∫
R(T,t)

c(j, v(T ), s)ds + additional terms,

here c(j, v, s) = eiσ(j,v)s, and ωT is a constant with |ωT | ≤ 1.
Continuing this replacement process, it leads to

a(n, t) = a(n, 0) +
∑

|T |<3k+1

ωT

∑
j∈J (T ),j(T )=n

∏
u∈T 0

ju

∏
v∈T∞

a(jv, 0)
∫
R(T,t)

c(j, s)ds

+ additional terms

where
c(j, s) =

∏
v∈T 0

c(j, v, sv)

We will show that the series

a(n, 0) +
∑
T

ωT

∑
j∈J (T ),j(T )=n

∏
u∈T 0

ju

∏
v∈T∞

a(jv, 0)
∫
R(T,t)

c(j, s)ds

converges in C([0, T ], lp) when a(·, 0) ∈ lp.
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3. lp convergence

Let T be a tree and j ∈ J (T ). We define

IT (t, j) =
∫
R(T,t)

c(j, s)ds,

and
ST (t)(av)v∈T∞(n) = ωT

∑
j∈J (T ),j(T )=n

∏
u∈T 0

ju

∏
v∈T∞

av(jv)IT (t, j).

We first give an estimate for IT (t, j) which allows us to bound ST .

Lemma 3.1. For 0 ≤ t ≤ 1,

|IT (j, t)| ≤ (Ct)|T
0|/2

∏
v∈T 0

〈σ(j, v)〉−1/2.

Proof. For v ∈ T 0, define the level of v, denoted l(v), to be the length of the unique
path connecting v(T ) and v. Let O be the set of v ∈ T 0 for which l(v) is odd, and
E those v for which l(v) is even.

First we fix the variables sv with v ∈ E, and take the integration in the variables
sv with v ∈ O. For each v ∈ O, the result of the integration is

1
σ(j, v)

(
eiσ(j,v)sṽ − eiσ(j,v) max{sv(1),sv(2),sv(3)}

)
if σ(j, v) 6= 0, and

sṽ −max{sv(1), sv(2), sv(3)}.
if σ(j, v) = 0. Here ṽ is the parent of v. Thus, we obtain the factor∏

v∈O

〈σ(j, v〉−1

and an integral in sv, v ∈ E where the integrand is bounded by 2|O|. As the domain
of integration in sv with v ∈ E has measure less than t|E|, we see that

|IT (j, t)| ≤ 2|T
0|t|E|

∏
v∈O

〈σ(j, v)〉−1.

By switching the role of O and E, we get

|IT (j, t)| ≤ 2|T
0|t|O|

∏
v∈E

〈σ(j, v)〉−1.

Combining these two estimates, we obtain the lemma. �

By Lemma 3.1,

|ST (t)(av)v∈T∞(n)| ≤ (Ct)|T
0|/2

∑
j∈J (T ):j(T )=n

∏
u∈T 0

〈σ(j, u)〉−1/2|ju|
∏

v∈T∞

|av(jv)|.

Let
S̃T (av)v∈T∞(n) =

∑
j∈J (T ):j(T )=n

∏
u∈T 0

〈σ(j, u)〉−1/2|ju|
∏

v∈T∞

|av(jv)|,

and

S̃(a1, a2, a3)(n) =
∗∑

n1+n2+n3=n

|n|〈σ(n1, n2, n3)〉−1/2
3∏

i=1

|ai(ni)|+ |n|
3∏

i=1

|ai(n)|.
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It is clear that

S̃T (av)v∈T∞ = S̃(S̃T1(av)v∈T∞1
, S̃T2(av)v∈T∞2

, S̃T3(av)v∈T∞3
).

where Ti is the subtree of T that contains all nodes u such that u ≤ v(T )i (recall
that v(T ) is the root of T ). Hence, to bound ST , it suffices to bound S̃. For this
purpose, we will use the following simple lemma.

Lemma 3.2. Let S be the multilinear operator defined by

S(a1, a2, a3)(n) =
∑

n1+n2+n3=n

m(n1, n2, n3)
3∏

j=1

aj(nj),

Let 1 ≤ p ≤ ∞. Then for any pair of indices i 6= j ∈ {1, 2, 3},

‖S(a1, a2, a3)‖lp ≤ sup
n
‖m(n1, n2, n3)‖lp

′
i,j

3∏
k=1

‖ak‖lp .

Proof. By Hölder’s inequality, for any n,

|S(a1, a2, a3)(n)| ≤ ‖m(n1, n2, n3)‖lp
′

i,j

‖
3∏

k=1

ak‖lpi,j

≤ sup
n
‖m(n1, n2, n3)‖lp

′
i,j

‖
3∏

k=1

ak‖lpi,j

Taking lp-norm in n we obtain the lemma. �

Showing that S̃ is a bounded multilinear map on ls,p := {a : 〈·〉s a ∈ lp} is
equivalent to showing that S is bounded on lp where S is the operator with kernel

m(n1, n2, n3) =
〈n〉s|n|

〈σ(n1, n2, n3)〉1/2
∏3

k=1〈nk〉s

where n1 + n2 + n3 = n. We split S into sum of two operators S1 and S2 where S1

has kernel

m1(n1, n2, n3) =
〈n〉s|n|∏3

k=1〈nk〉s〈n− nk〉1/2
if n = n1 + n2 + n3, ni 6= n

and S2 has kernel

m2(n1, n2, n3) = n/〈n〉2s if n1 = −n2 = n3 = n.

Clearly, S2 is bounded on lp if and only if s ≥ 1/2.
It remains to bound S1, for which we have the following result.

Proposition 3.3. S1 is bounded in lp×lp×lp to lp when s ≥ 1/4 and p′(s+ 1
4 ) > 1.

Proof. In the proof, all the sums are taken over the triples (n1, n2, n3) that satisfy
the additional property that ni 6= n, for all 1 ≤ i ≤ 3. Clearly, we can assume
n > 0. Note that if say |n1| ≥ 5n then as |n2 + n3| = |n− n1| ≥ 4n, at least one of
n2 and n3 has absolute value bigger than 2n. Also, we cannot have |ni| ≤ n/4 for
all i. Thus, up to permutation, there are four cases.

(1) |n1|, |n2|, |n3| ∈ [n/4, 5n]
(2) |n1|, |n2| ∈ [n/4, 5n], |n3| ≤ n/4
(3) |n1| ∈ [n/4, 5n], |n2|, |n3| ≤ n/4
(4) |n1|, |n2| ≥ 2n
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By Lemma 3.2, it suffices to show that in each of these four regions, for some i 6= j

the lp
′

i,j-norm of m is bounded.
Case 1. As 3n =

∑
(n−ni) for some index i, say i = 3, we must have |n−n3| ∼ n.

Since we also have |n1|, |n2| & n,

|m(n1, n2, n3)| .
〈n〉1/2−s

〈n3〉s|(n− n1)(n− n2)|1/2
.

We will use the inequality

| 1
n3(n− n2)

| = | 1
n1

( 1
n3

− 1
n− n2

)
| ≤ 1

|n1|

( 1
|n3|

+
1

|n− n2|

)
.

(1) If 1/4 ≤ s ≤ 1/2: then 〈n3〉p
′(1/2−s) . 〈n〉p′(1/2−s), so

‖m‖p′

lp
′

1,2

.
∑

|n1|≤5n

〈n〉p′(1/2−s)

|n− n1|p′/2

∑
|n2|≤5n

〈n3〉p
′(1/2−s)

(〈n3〉|n− n2|)p′/2

.
∑

|n1|≤5n

〈n〉p′(1/2−s)

|n− n1|p′/2

∑
|n2|≤5n

〈n〉p′(1/2−s)

|n1|p′/2

( 1
|n− n2|p′/2

+
1

|n− n1 − n2|p′/2

)
.

∑
|n1|≤5n

〈n〉p′(1−2s)An

|(n− n1)n1|p′/2

. 〈n〉p
′(1−2s)An

∑
|n1|≤5n

( 1
n

(
1

|n− n1|
+

1
|n1|

)
)p′/2

. 〈n〉p
′(1/2−2s)A2

n.

where
∑

0<j<5n j−p′/2 = An. As

An .


n1−p′/2 if p′ < 2
log〈n〉 if p′ = 2
1 if p′ > 2

we easily check that 〈n〉(1/2−2s)p′A2
n is bounded by a constant, under our hypothesis

on s and p′.
(2) If s > 1/2: then 〈n− n2〉p

′(s−1/2) . 〈n〉p′(s−1/2), so

‖m‖p′

lp
′

1,2

.
∑

|n1|≤5n

〈n〉p′(1/2−s)

|n− n1|p′/2

∑
|n2|≤5n

〈n− n2〉p
′(s−1/2)

(〈n3〉|n− n2|)p′s

.
∑

|n1|≤5n

〈n〉p′(1/2−s)

|n− n1|p′/2

∑
|n2|≤5n

〈n〉p′(s−1/2)

|n1|p′s
( 1
|n− n2|p′s

+
1

|n− n1 − n2|p′s
)

.
∑

|n1|≤5n

Bn

|n− n1|p′/2|n1|p′s

. Bn

∑
|n1|≤5n

|n− n1|p
′(s−1/2)

( 1
n

(
1

|n− n1|
+

1
|n1|

)
)p′s

. 〈n〉−p′/2B2
n.
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where Bn =
∑

0<j<5n j−p′s. As

Bn .


n1−p′s if p′s < 1
log〈n〉 if p′s = 1
1 if p′s > 1

we easily check that 〈n〉−p′/2B2
n is bounded by a constant, under our hypothesis on

s and p′.
Case 2 This case can be treated in exactly the same way as the first case, except
when n3 = 0. In the region n3 = 0,

‖m‖p′

lp
′

1,3

.
∑
n1

〈n〉p′(1/2−s)

|n1(n− n1)|p′/2
≤

∑
n1

〈n〉−p′s
( 1
|n1|p′/2

+
1

|n− n1|p′/2

)
. 〈n〉−p′sAn . 1

Case 3 As |n1|, |n− n2|, |n− n3| ∼ n,

|m(n1, n2, n3)| .
1

〈n2〉s〈n3〉s|n2 + n3|1/2
.

Without loss of generality, we assume that |n3| ≥ |n2|.
(1) If |n2| < |n3|/2:

‖m‖p′

lp
′

2,3

.
∑

0≤|n2|≤n/4

1
〈n2〉p′s

∑
n/4≥|n3|>2n2

1
〈n3〉p′(s+1/2)

.
∑

0≤|n2|≤n/4

1
〈n2〉p′(2s+1/2)−1

. 1

if (s + 1/4)p′ > 1.
(2) If |n2| ≥ |n3|/2:

‖m‖p′

lp
′

2,3

.
∑

|n3|≤n/4

1
〈n3〉2p′s

∑
|n3|≥n2≥|n3|/2

1
〈n3 + n2〉p′/2

.
∑

|n3|≤n/4

1
〈n3〉2p′s

max{log〈n3〉, 〈n3〉−p′/2+1}

.
∑

|n3|≤n/4

log〈n3〉
〈n3〉2p′s

+
∑

|n3|≤n/4

1
〈n3〉p′(2s+1/2)−1

. 1

as 2p′s ≥ p′(s + 1/4) > 1.
Case 4 |n1|, |n2| > 2n: Note that in this case, |n1| ∼ |n− n1| and |n2| ∼ |n− n3|.
(1) If |n3|, |n− n3| ≥ n/2 : we have

|m(n1, n2, n3)| .
〈n〉1/2

〈n1〉s+1/2〈n2〉s+1/2
,

hence

‖m‖p′

lp
′

1,2

. 〈n〉p
′/2

∑
|n1|,|n2|>2n

1
〈n1〉p′(s+1/2)〈n2〉p′(s+1/2)

.
〈n〉p′/2

〈2n〉p′(2s+1)−2
. 1.
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(2) If |n3| < n/2: then |n1| ∼ |n2| and |n− n3| ≥ n/2, so

|m(n1, n2, n3)| .
ns+1/2

〈n1〉2s+1〈n3〉s
,

hence

‖m‖p′

lp
′

1,3

. Bn

∑
|n1|>2n

np′(s+1/2)

〈n1〉p′(2s+1)
.

Bn

np′(s+1/2)−1
. 1

(3) If |n− n3| < n/2: then |n1| ∼ |n2| and |n3| ∼ n. Hence,

|m(n1, n2, n3)| .
n

〈n1〉2s+1〈n− n3〉1/2
.

Therefore,

‖m‖p′

lp
′

1,3

.
∑

|n1|≥2n

∑
n/2<n3<3n/2

np′

〈n1〉p′(2s+1)〈n− n3〉p′/2

.
∑

|n1|≥2n

Annp′

〈n1〉p′(2s+1)
.

An

n2p′s−1
. 1

This concludes the proof of the proposition. �

Proof of Theorem 1.1. Let u0 ∈ FLs,p and a(n) = û0(n). By Proposition 3.3,

‖ST ((av)v∈T∞)‖ls,p ≤ C |T 0|t|T
0|/2

∏
v∈T∞

‖av‖ls,p .

Hence,

‖a(n) +
∑
T

ωT

∑
j∈J (T ),j(T )=n

∏
u∈T 0

ju

∏
v∈T∞

a(jv)
∫
R(T,t)

c(j, s)ds‖ls,p

≤ ‖a‖ls,p +
∑
T

‖ST (a, . . . , a)‖ls,p

≤
∞∑

k=0

(Ct)k/2‖a‖2k+1
ls,p =

‖u0‖FLs,p

1−
√

Ct‖u0‖2FLs,p

(3.1)

for all t . min{1, ‖u0‖−4
FLs,p}.

Let T ∼ min{1, ‖u0‖−4
FLs,p}, then for t ∈ [0, T ] we can define

a(n, t) = a(n) +
∑
T

ωT

∑
j∈J (T ),j(T )=n

∏
u∈T 0

ju

∏
v∈T∞

a(jv)
∫
R(T,t)

c(j, s)ds

and the solution map u = Wu0 by

û(n, t) = e−in3ta(n, t).

It follows from (3.1) that W is uniformly continuous. The same argument as that
of [3] shows that u is limit of classical solutions. �

The proof of Proposition 1.2 is basically the same as that of [3, Proposition 1.4],
hence we omit it.
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