Electronic Journal of Differential Equations, Vol. 2008(2008), No. 71, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POWER SERIES SOLUTION FOR THE MODIFIED KDV EQUATION

TU NGUYEN

Abstract

We use the method developed by Christ [3] to prove local wellposedness of a modified Korteweg de Vries equation in $\mathcal{F} L^{s, p}$ spaces.

1. Introduction

The modified Korteweg de Vries (mKdV) equation on a torus \mathbb{T} has the form

$$
\begin{gather*}
\partial_{t} u+\partial_{x}^{3} u+u^{2} \partial_{x} u=0 \tag{1.1}\\
u(\cdot, 0)=u_{0}
\end{gather*}
$$

where $(x, t) \in \mathbb{T} \times \mathbb{R}, u$ is a real-valued function. If u is a smooth solution of (1.1), then $\|u(\cdot, t)\|_{L^{2}(\mathbb{T})}=\left\|u_{0}\right\|_{L^{2}(\mathbb{T})}$ for all t; therefore, $\widetilde{u}(x, t)=u\left(x+\frac{1}{2 \pi}\left\|u_{0}\right\|_{L^{2}(\mathbb{T})}^{2} t, t\right)$ is a solution of

$$
\begin{gather*}
\partial_{t} u+\partial_{x}^{3} u+\left(u^{2}-\frac{1}{2 \pi} \int_{\mathbb{T}} u^{2}(x, t) d x\right) \partial_{x} u=0 \tag{1.2}\\
u(\cdot, 0)=u_{0}
\end{gather*}
$$

Thus, 1.2 and 1.1 are essentially equivalent. Using Fourier restriction norm method, Bourgain [1] proved that (1.2) is locally well-posed for initial data $u_{0} \in$ $H^{s}(\mathbb{T})$ when $s \geq 1 / 2$, and the solution map is uniformly continuous. In [2], he also showed that the solution map is not C^{3} in $H^{s}(\mathbb{T})$ when $s<1 / 2$. Takaoka and Tsutsumi [10] proved local-wellposedness of (1.2) when $1 / 2>s>3 / 8$, and they showed that solution map is not uniformly continuous for this range of s. For (1.1), Kappeler and Topalov [8] used inverse scattering method to show wellposedness when $s \geq 0$ and Christ, Colliander and Tao [4] showed that uniformly continuous dependence on the initial data does not hold when $s<1 / 2$. Thus, there is a gap between known local well-posedness results and the space $H^{-1 / 2}(\mathbb{T})$ suggested by the standard scaling argument.

Recently, Grünrock and Vega [7] showed local well-posedness of the mKdV equation on \mathbb{R} with initial data in

$$
\widehat{H_{s}^{r}}(\mathbb{R}):=\left\{f \in \mathcal{D}^{\prime}(\mathbb{R}):\|f\|_{\widehat{H_{s}^{r}}}:=\left\|\langle\cdot\rangle^{s} \hat{f}(\cdot)\right\|_{L^{r^{\prime}}}<\infty\right\},
$$

2000 Mathematics Subject Classification. 35Q53.
Key words and phrases. Local well-posedness; KdV equation.
© 2008 Texas State University - San Marcos.
Submitted April 10, 2008. Published May 13, 2008.
when $2 \geq r>1$ and $s \geq \frac{1}{2}-\frac{1}{2 r}$. (for $r>\frac{4}{3}$, this was obtained by Grünrock [5]). This is an extension of the result of Kenig, Ponce and Vega 9 that localwellposedness holds in $H^{s}(\mathbb{R})$ when $s \geq 1 / 4$. Furthermore, as $\widehat{H_{s}^{r}}$ scales like H^{σ} with $\sigma=s+\frac{1}{2}-\frac{1}{r}$, this result covers spaces that have scaling exponent $-\frac{1}{2}+$.

There is also a related recent work of Grünrock and Herr [6] on the derivative nonlinear Schrödinger equation on \mathbb{T}. Both [7] and [6] used a version of Bourgain's method.

In this paper, we apply the new method of solution developed by Christ 3 to investigate the local well-posedness of $\sqrt{1.2}$ with initial data in

$$
\mathcal{F} L^{s, p}(\mathbb{T}):=\left\{f \in \mathcal{D}^{\prime}(\mathbb{T}):\|f\|_{\mathcal{F} L^{s, p}}:=\left\|\langle\cdot\rangle^{s} \hat{f}(\cdot)\right\|_{l^{p}}<\infty\right\}
$$

Let $B(0, R)$ be the ball of radius R centered at 0 in $\mathcal{F} L^{s, p}(\mathbb{T})$. Our main result is the following.

Theorem 1.1. Suppose $s \geq 1 / 2,1 \leq p<\infty$ and $p^{\prime}(s+1 / 4)>1$. Let W be the solution map for smooth initial data of 1.2 . Then for any $R>0$ there is $T>0$ such that the solution map W extends to a uniformly continuous map from $B(0, R)$ to $C\left([0, T], \mathcal{F} L^{s, p}(\mathbb{T})\right)$.

We note that the $\mathcal{F} L^{s, p}(\mathbb{T})$ spaces that are covered by Theorem 1.1 have scaling index $\frac{1}{4}+$. The restriction $s \geq 1 / 2$ is due to the presence of the derivative in the nonlinear term, and is only used to bound the operator S_{2} in section 3 . The same restriction on s is also required in the work on the derivative nonlinear Schrödinger equation on \mathbb{T} by Grünrock and Herr [6]. We believe that the range of p in Theorem 1.1 is not sharp.

Concerning (1.1), we have the following result.
Corollary 1.2. Suppose $s \geq 1 / 2,1 \leq p<\infty$ and $p^{\prime}(s+1 / 4)>1$. Let \widetilde{W} be the solution map for smooth initial data of 1.1). Then for any $R>0$ there is $T>0$ such that for any $c>0$, the solution map W extends to a uniformly continuous map from $B(0, R) \cap\left\{\varphi:\|\varphi\|_{L^{2}}=c\right\} \subset \mathcal{F} L^{s, p}(\mathbb{T})$ to $C\left([0, T], \mathcal{F} L^{s, p}(\mathbb{T})\right)$.

As in [3], the solution map W obtained in Theorem 1.1 gives a weak solution of 1.2 in the following sense. Let T_{N} be defined by $T_{N} u=\left(\chi_{[-N, N]} \widehat{u}\right)^{\vee}$. Let $\mathcal{N} u:=\left(u^{2}-\frac{1}{2 \pi} \int_{\mathbb{T}} u^{2}(x, t) d x\right) \partial_{x} u$ be the limit in $C\left([0, T], \mathcal{D}^{\prime}(\mathbb{T})\right)$ of $\mathcal{N}\left(T_{N} u\right)$ as $N \rightarrow \infty$, provided it exists.

Proposition 1.3. Let s and p be as in Theorem 1.1. Let $\varphi \in \mathcal{F} L^{s, p}$ and $u:=W \varphi \in$ $C\left([0, T], \mathcal{F} L^{s, p}\right)$. Then $\mathcal{N} u$ exists and u satisfies 1.2 in the sense of distribution in $(0, T) \times \mathbb{T}$.

To prove these results, we formally expand the solution map into a sum of multilinear operators. These multilinear operators are described in the section 2. Then we will show that if $u(\cdot, 0) \in \mathcal{F} L^{s, p}$ then the sum of these operators converges in $\mathcal{F} L^{s, p}$ for small time t, when s and p satisfy the conditions of Theorem 1.1. Furthermore, this gives a weak solution of $(1.2$, justifying our formal derivation.

2. Multilinear operators

We rewrite 1.2 as a system of ordinary differential equations of the spatial Fourier series of u (see [10, formula (1.9)], and [1, Lemma 8.16]).

$$
\begin{align*}
& \frac{d \hat{u}(n, t)}{d t}-i n^{3} \hat{u}(n, t) \\
& =-i \sum_{n_{1}+n_{2}+n_{3}=n} \hat{u}\left(n_{1}, t\right) \hat{u}\left(n_{2}, t\right) n_{3} \hat{u}\left(n_{3}, t\right)+i \sum_{n_{1}} \hat{u}\left(n_{1}, t\right) \hat{u}\left(-n_{1}, t\right) n \hat{u}(n, t) \tag{2.1}\\
& =\frac{-i n}{3} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} \hat{u}\left(n_{1}, t\right) \hat{u}\left(n_{2}, t\right) \hat{u}\left(n_{3}, t\right)+i n \hat{u}(n, t) \hat{u}(-n, t) \hat{u}(n, t),
\end{align*}
$$

where the star means the sum is taken over the triples satisfying $n_{j} \neq n, j=1,2,3$. We note that these are precisely the triples with $\sigma\left(n_{1}, n_{2}, n_{3}\right) \neq 0$.

Let $a(n, t)=e^{-i n^{3} t} \hat{u}(n, t)$, then $a_{n}(t)$ satisfy

$$
\begin{aligned}
\frac{d a(n, t)}{d t}= & -\frac{i n}{3} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} e^{i \sigma\left(n_{1}, n_{2}, n_{3}\right) t} a\left(n_{1}, t\right) a\left(n_{2}, t\right) a\left(n_{3}, t\right) \\
& +\operatorname{ina}(n, t) a(-n, t) a(n, t)
\end{aligned}
$$

where

$$
\sigma\left(n_{1}, n_{2}, n_{3}\right)=n_{1}^{3}+n_{2}^{3}+n_{3}^{3}-\left(n_{1}+n_{2}+n_{3}\right)^{3}=-3\left(n_{1}+n_{2}\right)\left(n_{2}+n_{3}\right)\left(n_{3}+n_{1}\right)
$$

Or, in integral form,

$$
\begin{align*}
a(n, t)= & a(n, 0)-\frac{i n}{3} \int_{0}^{t} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} e^{i \sigma\left(n_{1}, n_{2}, n_{3}\right) s} a\left(n_{1}, s\right) a\left(n_{2}, s\right) a\left(n_{3}, s\right) d s \tag{2.2}\\
& +i n \int_{0}^{t}|a(n, s)|^{2} a(n, s) d s
\end{align*}
$$

If, a is sufficiently nice, say $a \in C\left([0, T], l^{1}\right)$ (which is the case if $u \in C\left([0, T], H^{s}(\mathbb{T})\right)$ for large s) then we can exchange the order of the integration and summation to obtain

$$
\begin{align*}
a(n, t)= & a(n, 0)-\frac{i n}{3} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} \int_{0}^{t} e^{i \sigma\left(n_{1}, n_{2}, n_{3}\right) s} a\left(n_{1}, s\right) a\left(n_{2}, s\right) a\left(n_{3}, s\right) d s \tag{2.3}\\
& +i n \int_{0}^{t}|a(n, s)|^{2} a(n, s) d s
\end{align*}
$$

Replacing the $a\left(n_{j}, s\right)$ in the right hand side by their equations obtained using (2.3), we get

$$
\begin{align*}
a(n, t)= & a(n, 0)-\frac{i n}{3} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} a\left(n_{1}, 0\right) a\left(n_{2}, 0\right) a\left(n_{3}, 0\right) \int_{0}^{t} e^{i \sigma\left(n_{1}, n_{2}, n_{3}\right) s} d s \\
& +i n|a(n, 0)|^{2} a(n, 0) \int_{0}^{t} d s+\text { additional terms } \tag{2.4}\\
= & a(n, 0)-\frac{n}{3} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} \frac{a\left(n_{1}, 0\right) a\left(n_{2}, 0\right) a\left(n_{3}, 0\right)}{\sigma\left(n_{1}, n_{2}, n_{3}\right)}\left(e^{i \sigma\left(n_{1}, n_{2}, n_{3}\right) t}-1\right) \\
& +i n t|a(n, 0)|^{2} a(n, 0)+\text { additional terms }
\end{align*}
$$

The additional terms are those which depend not only on $a(\cdot, 0)$. An example of the additional terms is

$$
\begin{aligned}
& -\frac{n n_{3}}{9} \sum_{n_{1}+n_{2}+n_{3}=n}^{*} a\left(n_{1}, 0\right) a\left(n_{2}, 0\right) \sum_{m_{1}+m_{2}+m_{3}=n_{3}}^{*} \int_{0}^{t} e^{i \sigma\left(n_{1}, n_{2}, n_{3}\right) s} \int_{0}^{s} e^{i \sigma\left(m_{1}, m_{2}, m_{3}\right) s^{\prime}} \\
& \times a\left(m_{1}, s^{\prime}\right) a\left(m_{2}, s^{\prime}\right) a\left(m_{3}, s^{\prime}\right) d s^{\prime} d s
\end{aligned}
$$

Then we can again use 2.3 for each appearance of $a(m, \cdot)$ in the additional terms, and obtain more and more complicated additional terms. We refer to section 2 of [3] for more detailed description of these additional terms. Continuing this process indefinitely, we get a formal expansion of $a(n, t)$ as a sum of multilinear operators of $a(\cdot, 0)$.

We will now describe these operators and then show that their sum converges. Again, we refer to section 3 of [3] for more detailed explanations. Each of our multilinear operators will be associated to a tree, which has the property that each of its node has either zero or three children. We will only consider trees with this property. If a node v of T has three children, they will be denoted by v_{1}, v_{2}, v_{3}. We denote by T^{0} the set of non-terminal nodes of T, and T^{∞} the set of terminal nodes of T. Clearly, if $|T|=3 k+1$ then $\left|T^{0}\right|=k$ and $\left|T^{\infty}\right|=2 k+1$.
Definition 2.1. Let T be a tree. Then $\mathcal{J}(T)$ is the set of $j \in \mathbb{Z}^{T}$ such that if $v \in T^{0}$ then

$$
j_{v}=j_{v_{1}}+j_{v_{2}}+j_{v_{3}}
$$

and either $j_{v_{i}} \neq j_{v}$ for all i, or $j_{v_{1}}=-j_{v_{2}}=j_{v_{3}}=j_{v}$. We will denote by $v(T)$ be the root of T and $j(T)=j(v(T))$. For $j \in \mathcal{J}(T)$ and $v \in T^{0}$,

$$
\sigma(j, v):=\sigma\left(j\left(v_{1}\right), j\left(v_{2}\right), j\left(v_{3}\right)\right)
$$

Also define

$$
\mathcal{R}(T, t)=\left\{s \in \mathbb{R}_{+}^{T^{0}}: \text { if } v<w \text { then } 0 \leq s_{v} \leq s_{w} \leq t\right\}
$$

Using the above definitions, we can rewrite 2.4 as

$$
\begin{aligned}
a(n, t)= & a(n, 0)+\sum_{|T|=4} \omega_{T} \sum_{j \in \mathcal{J}(T), j(T)=n} n a\left(j\left(v(T)_{1}\right), 0\right) a\left(j\left(v(T)_{2}\right), 0\right) \\
& \times a\left(j\left(v(T)_{3}\right), 0\right) \int_{\mathcal{R}(T, t)} c(j, v(T), s) d s+\text { additional terms }
\end{aligned}
$$

here $c(j, v, s)=e^{i \sigma(j, v) s}$, and ω_{T} is a constant with $\left|\omega_{T}\right| \leq 1$.
Continuing this replacement process, it leads to

$$
\begin{aligned}
a(n, t)= & a(n, 0)+\sum_{|T|<3 k+1} \omega_{T} \sum_{j \in \mathcal{J}(T), j(T)=n} \prod_{u \in T^{0}} j_{u} \prod_{v \in T^{\infty}} a\left(j_{v}, 0\right) \int_{\mathcal{R}(T, t)} c(j, s) d s \\
& + \text { additional terms }
\end{aligned}
$$

where

$$
c(j, s)=\prod_{v \in T^{0}} c\left(j, v, s_{v}\right)
$$

We will show that the series

$$
a(n, 0)+\sum_{T} \omega_{T} \sum_{j \in \mathcal{J}(T), j(T)=n} \prod_{u \in T^{0}} j_{u} \prod_{v \in T^{\infty}} a\left(j_{v}, 0\right) \int_{\mathcal{R}(T, t)} c(j, s) d s
$$

converges in $C\left([0, T], l^{p}\right)$ when $a(\cdot, 0) \in l^{p}$.

3. l^{p} CONVERGENCE

Let T be a tree and $j \in \mathcal{J}(T)$. We define

$$
I_{T}(t, j)=\int_{\mathcal{R}(T, t)} c(j, s) d s
$$

and

$$
S_{T}(t)\left(a_{v}\right)_{v \in T^{\infty}}(n)=\omega_{T} \sum_{j \in \mathcal{J}(T), j(T)=n} \prod_{u \in T^{0}} j_{u} \prod_{v \in T^{\infty}} a_{v}\left(j_{v}\right) I_{T}(t, j)
$$

We first give an estimate for $I_{T}(t, j)$ which allows us to bound S_{T}.
Lemma 3.1. For $0 \leq t \leq 1$,

$$
\left|I_{T}(j, t)\right| \leq(C t)^{\left|T^{0}\right| / 2} \prod_{v \in T^{0}}\langle\sigma(j, v)\rangle^{-1 / 2}
$$

Proof. For $v \in T^{0}$, define the level of v, denoted $l(v)$, to be the length of the unique path connecting $v(T)$ and v. Let O be the set of $v \in T^{0}$ for which $l(v)$ is odd, and E those v for which $l(v)$ is even.

First we fix the variables s_{v} with $v \in E$, and take the integration in the variables s_{v} with $v \in O$. For each $v \in O$, the result of the integration is

$$
\frac{1}{\sigma(j, v)}\left(e^{i \sigma(j, v) s_{\tilde{v}}}-e^{i \sigma(j, v) \max \left\{s_{v(1)}, s_{v(2)}, s_{v(3)}\right\}}\right)
$$

if $\sigma(j, v) \neq 0$, and

$$
s_{\tilde{v}}-\max \left\{s_{v(1)}, s_{v(2)}, s_{v(3)}\right\}
$$

if $\sigma(j, v)=0$. Here \widetilde{v} is the parent of v. Thus, we obtain the factor

$$
\prod_{v \in O}\left\langle\sigma(j, v\rangle^{-1}\right.
$$

and an integral in $s_{v}, v \in E$ where the integrand is bounded by $2^{|O|}$. As the domain of integration in s_{v} with $v \in E$ has measure less than $t^{|E|}$, we see that

$$
\left|I_{T}(j, t)\right| \leq 2^{\left|T^{0}\right|} t^{|E|} \prod_{v \in O}\langle\sigma(j, v)\rangle^{-1}
$$

By switching the role of O and E, we get

$$
\left|I_{T}(j, t)\right| \leq 2^{\mid T^{0}} \mid t^{|O|} \prod_{v \in E}\langle\sigma(j, v)\rangle^{-1}
$$

Combining these two estimates, we obtain the lemma.
By Lemma 3.1

$$
\left|S_{T}(t)\left(a_{v}\right)_{v \in T^{\infty}}(n)\right| \leq(C t)^{\left|T^{0}\right| / 2} \sum_{j \in \mathcal{J}(T): j(T)=n} \prod_{u \in T^{0}}\langle\sigma(j, u)\rangle^{-1 / 2}\left|j_{u}\right| \prod_{v \in T^{\infty}}\left|a_{v}\left(j_{v}\right)\right| .
$$

Let

$$
\widetilde{S}_{T}\left(a_{v}\right)_{v \in T^{\infty}}(n)=\sum_{j \in \mathcal{J}(T): j(T)=n} \prod_{u \in T^{0}}\langle\sigma(j, u)\rangle^{-1 / 2}\left|j_{u}\right| \prod_{v \in T^{\infty}}\left|a_{v}\left(j_{v}\right)\right|,
$$

and

$$
\widetilde{S}\left(a_{1}, a_{2}, a_{3}\right)(n)=\sum_{n_{1}+n_{2}+n_{3}=n}^{*}|n|\left\langle\sigma\left(n_{1}, n_{2}, n_{3}\right)\right\rangle^{-1 / 2} \prod_{i=1}^{3}\left|a_{i}\left(n_{i}\right)\right|+|n| \prod_{i=1}^{3}\left|a_{i}(n)\right| .
$$

It is clear that

$$
\widetilde{S}_{T}\left(a_{v}\right)_{v \in T^{\infty}}=\widetilde{S}\left(\widetilde{S}_{T_{1}}\left(a_{v}\right)_{v \in T_{1}^{\infty}}, \widetilde{S}_{T_{2}}\left(a_{v}\right)_{v \in T_{2}^{\infty}}, \widetilde{S}_{T_{3}}\left(a_{v}\right)_{v \in T_{3}^{\infty}}\right)
$$

where T_{i} is the subtree of T that contains all nodes u such that $u \leq v(T)_{i}$ (recall that $v(T)$ is the root of $T)$. Hence, to bound S_{T}, it suffices to bound \widetilde{S}. For this purpose, we will use the following simple lemma.

Lemma 3.2. Let S be the multilinear operator defined by

$$
S\left(a_{1}, a_{2}, a_{3}\right)(n)=\sum_{n_{1}+n_{2}+n_{3}=n} m\left(n_{1}, n_{2}, n_{3}\right) \prod_{j=1}^{3} a_{j}\left(n_{j}\right),
$$

Let $1 \leq p \leq \infty$. Then for any pair of indices $i \neq j \in\{1,2,3\}$,

$$
\left\|S\left(a_{1}, a_{2}, a_{3}\right)\right\|_{l^{p}} \leq \sup _{n}\left\|m\left(n_{1}, n_{2}, n_{3}\right)\right\|_{l_{i, j}^{p^{\prime}}} \prod_{k=1}^{3}\left\|a_{k}\right\|_{l^{p}} .
$$

Proof. By Hölder's inequality, for any n,

$$
\begin{aligned}
\left|S\left(a_{1}, a_{2}, a_{3}\right)(n)\right| & \leq\left\|m\left(n_{1}, n_{2}, n_{3}\right)\right\|_{l_{i, j}^{p^{\prime}}}\left\|\prod_{k=1}^{3} a_{k}\right\|_{l_{i, j}^{p}} \\
& \leq \sup _{n}\left\|m\left(n_{1}, n_{2}, n_{3}\right)\right\|_{l_{i, j}^{p^{\prime}}}\left\|\prod_{k=1}^{3} a_{k}\right\|_{l_{i, j}^{p}}
\end{aligned}
$$

Taking l^{p}-norm in n we obtain the lemma.
Showing that \widetilde{S} is a bounded multilinear map on $l^{s, p}:=\left\{a:\langle\cdot\rangle^{s} a \in l^{p}\right\}$ is equivalent to showing that S is bounded on l^{p} where S is the operator with kernel

$$
m\left(n_{1}, n_{2}, n_{3}\right)=\frac{\langle n\rangle^{s}|n|}{\left\langle\sigma\left(n_{1}, n_{2}, n_{3}\right)\right\rangle^{1 / 2} \prod_{k=1}^{3}\left\langle n_{k}\right\rangle^{s}}
$$

where $n_{1}+n_{2}+n_{3}=n$. We split S into sum of two operators S_{1} and S_{2} where S_{1} has kernel

$$
m_{1}\left(n_{1}, n_{2}, n_{3}\right)=\frac{\langle n\rangle^{s}|n|}{\prod_{k=1}^{3}\left\langle n_{k}\right\rangle^{s}\left\langle n-n_{k}\right\rangle^{1 / 2}} \quad \text { if } n=n_{1}+n_{2}+n_{3}, n_{i} \neq n
$$

and S_{2} has kernel

$$
m_{2}\left(n_{1}, n_{2}, n_{3}\right)=n /\langle n\rangle^{2 s} \quad \text { if } n_{1}=-n_{2}=n_{3}=n
$$

Clearly, S_{2} is bounded on l^{p} if and only if $s \geq 1 / 2$.
It remains to bound S_{1}, for which we have the following result.
Proposition 3.3. S_{1} is bounded in $l^{p} \times l^{p} \times l^{p}$ to l^{p} when $s \geq 1 / 4$ and $p^{\prime}\left(s+\frac{1}{4}\right)>1$.
Proof. In the proof, all the sums are taken over the triples $\left(n_{1}, n_{2}, n_{3}\right)$ that satisfy the additional property that $n_{i} \neq n$, for all $1 \leq i \leq 3$. Clearly, we can assume $n>0$. Note that if say $\left|n_{1}\right| \geq 5 n$ then as $\left|n_{2}+n_{3}\right|=\left|n-n_{1}\right| \geq 4 n$, at least one of n_{2} and n_{3} has absolute value bigger than $2 n$. Also, we cannot have $\left|n_{i}\right| \leq n / 4$ for all i. Thus, up to permutation, there are four cases.
(1) $\left|n_{1}\right|,\left|n_{2}\right|,\left|n_{3}\right| \in[n / 4,5 n]$
(2) $\left|n_{1}\right|,\left|n_{2}\right| \in[n / 4,5 n],\left|n_{3}\right| \leq n / 4$
(3) $\left|n_{1}\right| \in[n / 4,5 n],\left|n_{2}\right|,\left|n_{3}\right| \leq n / 4$
(4) $\left|n_{1}\right|,\left|n_{2}\right| \geq 2 n$

By Lemma 3.2, it suffices to show that in each of these four regions, for some $i \neq j$ the $l_{i, j}^{p^{\prime}}$-norm of m is bounded.
Case 1. As $3 n=\sum\left(n-n_{i}\right)$ for some index i, say $i=3$, we must have $\left|n-n_{3}\right| \sim n$. Since we also have $\left|n_{1}\right|,\left|n_{2}\right| \gtrsim n$,

$$
\left|m\left(n_{1}, n_{2}, n_{3}\right)\right| \lesssim \frac{\langle n\rangle^{1 / 2-s}}{\left\langle n_{3}\right\rangle^{s}\left|\left(n-n_{1}\right)\left(n-n_{2}\right)\right|^{1 / 2}}
$$

We will use the inequality

$$
\left|\frac{1}{n_{3}\left(n-n_{2}\right)}\right|=\left|\frac{1}{n_{1}}\left(\frac{1}{n_{3}}-\frac{1}{n-n_{2}}\right)\right| \leq \frac{1}{\left|n_{1}\right|}\left(\frac{1}{\left|n_{3}\right|}+\frac{1}{\left|n-n_{2}\right|}\right)
$$

(1) If $1 / 4 \leq s \leq 1 / 2$: then $\left\langle n_{3}\right\rangle^{p^{\prime}(1 / 2-s)} \lesssim\langle n\rangle^{p^{\prime}(1 / 2-s)}$, so

$$
\begin{aligned}
\|m\|_{l_{1,2}^{p^{\prime}}}^{p^{\prime}} & \lesssim \sum_{\left|n_{1}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(1 / 2-s)}}{\left|n-n_{1}\right|^{p^{\prime} / 2}} \sum_{\left|n_{2}\right| \leq 5 n} \frac{\left\langle n_{3}\right\rangle^{p^{\prime}(1 / 2-s)}}{\left(\left\langle n_{3}\right\rangle\left|n-n_{2}\right|\right)^{p^{\prime} / 2}} \\
& \lesssim \sum_{\left|n_{1}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(1 / 2-s)}}{\left|n-n_{1}\right|^{p^{\prime} / 2}} \sum_{\left|n_{2}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(1 / 2-s)}}{\left|n_{1}\right|^{p^{\prime} / 2}}\left(\frac{1}{\left|n-n_{2}\right|^{p^{\prime} / 2}}+\frac{1}{\left|n-n_{1}-n_{2}\right|^{p^{\prime} / 2}}\right) \\
& \lesssim \sum_{\left|n_{1}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(1-2 s)} A_{n}}{\left|\left(n-n_{1}\right) n_{1}\right|^{p^{\prime} / 2}} \\
& \lesssim\langle n\rangle^{p^{\prime}(1-2 s)} A_{n} \sum_{\left|n_{1}\right| \leq 5 n}\left(\frac{1}{n}\left(\frac{1}{\left|n-n_{1}\right|}+\frac{1}{\left|n_{1}\right|}\right)\right)^{p^{\prime} / 2} \\
& \lesssim\langle n\rangle^{p^{\prime}(1 / 2-2 s)} A_{n}^{2} .
\end{aligned}
$$

where $\sum_{0<j<5 n} j^{-p^{\prime} / 2}=A_{n}$. As

$$
A_{n} \lesssim \begin{cases}n^{1-p^{\prime} / 2} & \text { if } p^{\prime}<2 \\ \log \langle n\rangle & \text { if } p^{\prime}=2 \\ 1 & \text { if } p^{\prime}>2\end{cases}
$$

we easily check that $\langle n\rangle^{(1 / 2-2 s) p^{\prime}} A_{n}^{2}$ is bounded by a constant, under our hypothesis on s and p^{\prime}.
(2) If $s>1 / 2$: then $\left\langle n-n_{2}\right\rangle^{p^{\prime}(s-1 / 2)} \lesssim\langle n\rangle^{p^{\prime}(s-1 / 2)}$, so

$$
\begin{aligned}
\|m\|_{l_{1,2}}^{p^{\prime}} & \lesssim \sum_{\left|n_{1}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(1 / 2-s)}}{\left|n-n_{1}\right|^{p^{\prime} / 2}} \sum_{\left|n_{2}\right| \leq 5 n} \frac{\left\langle n-n_{2}\right\rangle^{p^{\prime}(s-1 / 2)}}{\left(\left\langle n_{3}\right\rangle\left|n-n_{2}\right|\right)^{p^{\prime} s}} \\
& \lesssim \sum_{\left|n_{1}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(1 / 2-s)}}{\left|n-n_{1}\right|^{p^{\prime} / 2}} \sum_{\left|n_{2}\right| \leq 5 n} \frac{\langle n\rangle^{p^{\prime}(s-1 / 2)}}{\left|n_{1}\right|^{p^{\prime} s}}\left(\frac{1}{\left|n-n_{2}\right|^{p^{\prime} s}}+\frac{1}{\left|n-n_{1}-n_{2}\right|^{p^{\prime} s}}\right) \\
& \lesssim \sum_{\left|n_{1}\right| \leq 5 n} \frac{B_{n}}{\left|n-n_{1}\right|^{p^{\prime} / 2}\left|n_{1}\right|^{p^{\prime} s}} \\
& \lesssim B_{n} \sum_{\left|n_{1}\right| \leq 5 n}\left|n-n_{1}\right|^{p^{\prime}(s-1 / 2)}\left(\frac{1}{n}\left(\frac{1}{\left|n-n_{1}\right|}+\frac{1}{\left|n_{1}\right|}\right)\right)^{p^{\prime} s} \\
& \lesssim\langle n\rangle^{-p^{\prime} / 2} B_{n}^{2} .
\end{aligned}
$$

where $B_{n}=\sum_{0<j<5 n} j^{-p^{\prime} s}$. As

$$
B_{n} \lesssim \begin{cases}n^{1-p^{\prime} s} & \text { if } p^{\prime} s<1 \\ \log \langle n\rangle & \text { if } p^{\prime} s=1 \\ 1 & \text { if } p^{\prime} s>1\end{cases}
$$

we easily check that $\langle n\rangle^{-p^{\prime} / 2} B_{n}^{2}$ is bounded by a constant, under our hypothesis on s and p^{\prime}.
Case 2 This case can be treated in exactly the same way as the first case, except when $n_{3}=0$. In the region $n_{3}=0$,

$$
\begin{aligned}
\|m\|_{l_{1,3}^{p^{\prime}}}^{p^{\prime}} & \lesssim \sum_{n_{1}} \frac{\langle n\rangle^{p^{\prime}(1 / 2-s)}}{\left|n_{1}\left(n-n_{1}\right)\right|^{p^{\prime} / 2}} \leq \sum_{n_{1}}\langle n\rangle^{-p^{\prime} s}\left(\frac{1}{\left|n_{1}\right|^{p^{\prime} / 2}}+\frac{1}{\left|n-n_{1}\right|^{p^{\prime} / 2}}\right) \\
& \lesssim\langle n\rangle^{-p^{\prime} s} A_{n} \lesssim 1
\end{aligned}
$$

Case 3 As $\left|n_{1}\right|,\left|n-n_{2}\right|,\left|n-n_{3}\right| \sim n$,

$$
\left|m\left(n_{1}, n_{2}, n_{3}\right)\right| \lesssim \frac{1}{\left\langle n_{2}\right\rangle^{s}\left\langle n_{3}\right\rangle^{s}\left|n_{2}+n_{3}\right|^{1 / 2}}
$$

Without loss of generality, we assume that $\left|n_{3}\right| \geq\left|n_{2}\right|$.
(1) If $\left|n_{2}\right|<\left|n_{3}\right| / 2$:

$$
\begin{aligned}
\|m\|_{l_{2,3}^{p^{\prime}}}^{p^{\prime}} & \lesssim \sum_{0 \leq\left|n_{2}\right| \leq n / 4} \frac{1}{\left\langle n_{2}\right\rangle^{p^{\prime} s}} \sum_{n / 4 \geq\left|n_{3}\right|>2 n_{2}} \frac{1}{\left\langle n_{3}\right\rangle^{p^{\prime}(s+1 / 2)}} \\
& \lesssim \sum_{0 \leq\left|n_{2}\right| \leq n / 4} \frac{1}{\left\langle n_{2}\right\rangle^{p^{\prime}(2 s+1 / 2)-1}} \lesssim 1
\end{aligned}
$$

if $(s+1 / 4) p^{\prime}>1$.
(2) If $\left|n_{2}\right| \geq\left|n_{3}\right| / 2$:

$$
\begin{aligned}
\|m\|_{l_{2,3}^{p^{\prime}}}^{p^{\prime}} & \lesssim \sum_{\left|n_{3}\right| \leq n / 4} \frac{1}{\left\langle n_{3}\right\rangle^{2 p^{\prime} s}} \sum_{\left|n_{3}\right| \geq n_{2} \geq\left|n_{3}\right| / 2} \frac{1}{\left\langle n_{3}+n_{2}\right\rangle^{p^{\prime} / 2}} \\
& \lesssim \sum_{\left|n_{3}\right| \leq n / 4} \frac{1}{\left\langle n_{3}\right\rangle^{2 p^{\prime} s}} \max \left\{\log \left\langle n_{3}\right\rangle,\left\langle n_{3}\right\rangle^{-p^{\prime} / 2+1}\right\} \\
& \lesssim \sum_{\left|n_{3}\right| \leq n / 4} \frac{\log \left\langle n_{3}\right\rangle}{\left\langle n_{3}\right\rangle^{2 p^{\prime} s}}+\sum_{\left|n_{3}\right| \leq n / 4} \frac{1}{\left\langle n_{3}\right\rangle^{p^{\prime}(2 s+1 / 2)-1}} \lesssim 1
\end{aligned}
$$

as $2 p^{\prime} s \geq p^{\prime}(s+1 / 4)>1$.
Case $4\left|n_{1}\right|,\left|n_{2}\right|>2 n$: Note that in this case, $\left|n_{1}\right| \sim\left|n-n_{1}\right|$ and $\left|n_{2}\right| \sim\left|n-n_{3}\right|$.
(1) If $\left|n_{3}\right|,\left|n-n_{3}\right| \geq n / 2$: we have

$$
\left|m\left(n_{1}, n_{2}, n_{3}\right)\right| \lesssim \frac{\langle n\rangle^{1 / 2}}{\left\langle n_{1}\right\rangle^{s+1 / 2}\left\langle n_{2}\right\rangle^{s+1 / 2}}
$$

hence

$$
\begin{aligned}
\|m\|_{l_{1,2}^{p^{\prime}}}^{p^{\prime}} & \lesssim\langle n\rangle^{p^{\prime} / 2} \sum_{\left|n_{1}\right|,\left|n_{2}\right|>2 n} \frac{1}{\left\langle n_{1}\right\rangle^{p^{\prime}(s+1 / 2)}\left\langle n_{2}\right\rangle^{p^{\prime}(s+1 / 2)}} \\
& \lesssim \frac{\langle n\rangle^{p^{\prime} / 2}}{\langle 2 n\rangle^{p^{\prime}(2 s+1)-2}} \lesssim 1
\end{aligned}
$$

(2) If $\left|n_{3}\right|<n / 2$: then $\left|n_{1}\right| \sim\left|n_{2}\right|$ and $\left|n-n_{3}\right| \geq n / 2$, so

$$
\left|m\left(n_{1}, n_{2}, n_{3}\right)\right| \lesssim \frac{n^{s+1 / 2}}{\left\langle n_{1}\right\rangle^{2 s+1}\left\langle n_{3}\right\rangle^{s}}
$$

hence

$$
\|m\|_{l_{1,3}^{p^{\prime}}}^{p^{\prime}} \lesssim B_{n} \sum_{\left|n_{1}\right|>2 n} \frac{n^{p^{\prime}(s+1 / 2)}}{\left\langle n_{1}\right\rangle^{p^{\prime}(2 s+1)}} \lesssim \frac{B_{n}}{n^{p^{\prime}(s+1 / 2)-1}} \lesssim 1
$$

(3) If $\left|n-n_{3}\right|<n / 2$: then $\left|n_{1}\right| \sim\left|n_{2}\right|$ and $\left|n_{3}\right| \sim n$. Hence,

$$
\left|m\left(n_{1}, n_{2}, n_{3}\right)\right| \lesssim \frac{n}{\left\langle n_{1}\right\rangle^{2 s+1}\left\langle n-n_{3}\right\rangle^{1 / 2}}
$$

Therefore,

$$
\begin{aligned}
\|m\|_{l_{1,3}^{p^{\prime}}}^{p^{\prime}} & \lesssim \sum_{\left|n_{1}\right| \geq 2 n} \sum_{n / 2<n_{3}<3 n / 2} \frac{n^{p^{\prime}}}{\left\langle n_{1}\right\rangle^{p^{\prime}(2 s+1)}\left\langle n-n_{3}\right\rangle^{p^{\prime} / 2}} \\
& \lesssim \sum_{\left|n_{1}\right| \geq 2 n} \frac{A_{n} n^{p^{\prime}}}{\left.\left\langle n_{1}\right\rangle\right\rangle^{p^{\prime}(2 s+1)}} \lesssim \frac{A_{n}}{n^{2 p^{\prime} s-1}} \lesssim 1
\end{aligned}
$$

This concludes the proof of the proposition.
Proof of Theorem 1.1. Let $u_{0} \in \mathcal{F} L^{s, p}$ and $a(n)=\widehat{u_{0}}(n)$. By Proposition 3.3,

$$
\left\|S_{T}\left(\left(a_{v}\right)_{v \in T^{\infty}}\right)\right\|_{l^{s, p}} \leq C^{\left|T^{0}\right|} t^{\left|T^{0}\right| / 2} \prod_{v \in T^{\infty}}\left\|a_{v}\right\|_{l^{s, p}}
$$

Hence,

$$
\begin{align*}
& \left\|a(n)+\sum_{T} \omega_{T} \sum_{j \in \mathcal{J}(T), j(T)=n} \prod_{u \in T^{0}} j_{u} \prod_{v \in T^{\infty}} a\left(j_{v}\right) \int_{\mathcal{R}(T, t)} c(j, s) d s\right\|_{l^{s, p}} \\
& \leq\|a\|_{l^{s, p}}+\sum_{T}\left\|S_{T}(a, \ldots, a)\right\|_{l^{s, p}} \tag{3.1}\\
& \leq \sum_{k=0}^{\infty}(C t)^{k / 2}\|a\|_{l^{s, p}}^{2 k+1}=\frac{\left\|u_{0}\right\|_{\mathcal{F} L^{s, p}}}{1-\sqrt{C t}\left\|u_{0}\right\|_{\mathcal{F} L^{s, p}}^{2}}
\end{align*}
$$

for all $t \lesssim \min \left\{1,\left\|u_{0}\right\|_{\mathcal{F} L^{s, p}}^{-4}\right\}$.
Let $T \sim \min \left\{1,\left\|u_{0}\right\|_{\mathcal{F} L^{s, p}}^{-4}\right\}$, then for $t \in[0, T]$ we can define

$$
a(n, t)=a(n)+\sum_{T} \omega_{T} \sum_{j \in \mathcal{J}(T), j(T)=n} \prod_{u \in T^{0}} j_{u} \prod_{v \in T^{\infty}} a\left(j_{v}\right) \int_{\mathcal{R}(T, t)} c(j, s) d s
$$

and the solution map $u=W u_{0}$ by

$$
\widehat{u}(n, t)=e^{-i n^{3} t} a(n, t)
$$

It follows from (3.1) that W is uniformly continuous. The same argument as that of [3] shows that u is limit of classical solutions.

The proof of Proposition 1.2 is basically the same as that of [3, Proposition 1.4], hence we omit it.

Acknowledgement. I would like to thank my advisor Prof. Carlos Kenig for suggesting this topic and for his helpful conversations. I would also like to thank Profs. Axel Grünrock and Sebastian Herr for their valuable comments and suggestions.

References

[1] J. Bourgain; Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. MR 1215780 (95d:35160b)
[2] J. Bourgain; Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), no. 2, 115-159. MR1466164 (2000i:35173)
[3] M. Christ; Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 131-155. MR 2333210
[4] Michael Christ, James Colliander, and Terrence Tao; Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235-1293. MR 2018661 (2005d:35223)
[5] Axel Grünrock; An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not. (2004), no. 61, 3287-3308. MR 2096258 (2006f:35242)
[6] Axel Grünrock and Sebastian Herr; Low regularity local well-posedness of the Derivative Nonlinear Schrödinger Equation with periodic initial data, SIAM J. Math. Anal., to appear.
[7] Axel Grünrock and Luis Vega; Local well-posedness for the modified KdV equation in almost critical $\widehat{H_{s}^{r}}$-spaces, Trans. AMS., to appear.
[8] T. Kappeler and P. Topalov; Global well-posedness of $m K d V$ in $L^{2}(\mathbb{T}, \mathbb{R})$, Comm. Partial Differential Equations 30 (2005), no. 1-3, 435-449. MR 2131061 (2005m:35256)
[9] Carlos E. Kenig, Gustavo Ponce, and Luis Vega; Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527-620. MR 1211741 (94h:35229)
[10] Hideo Takaoka and Yoshio Tsutsumi; Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Int. Math. Res. Not. (2004), no. 56, 30093040. MR 2097834 (2006e:35295)

Tu Nguyen
Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA

E-mail address: tu@math.uchicago.edu

