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CONVERGENCE OF COHEN-GROSSBERG NEURAL
NETWORKS WITH DELAYS AND TIME-VARYING

COEFFICIENTS

QIYUAN ZHOU, JIANYING SHAO

Abstract. In this paper presents sufficient conditions for all solutions of the

Cohen-Grossberg neural networks with delays and time-varying coefficients to

converge exponentially to zero.

1. Introduction

Consider the Cohen-Grossberg neural network (CGNN), with delay and time-
varying coefficients,

ẋi(t) = −ai(t, xi(t))
[
bi(t, xi(t))−

n∑
j=1

cij(t)fj(xj(t− τij(t)))

−
n∑

j=1

dij(t)gj

( ∫ ∞

0

Kij(u)xj(t− u)du
)

+ Ii(t)
]
, i = 1, 2, . . . , n,

(1.1)

where ai and bi are continuous functions on R2, fj , gj , cij , dij and Ii are continuous
functions on R; n corresponds to the number of units in a neural network; xi(t)
denotes the potential (or voltage) of cell i at time t; ai represents an amplifica-
tion function; bi is an appropriately behaved function; cij(t) and dij(t) denote the
strengths of connectivity between cell i and j at time t respectively; the activa-
tion functions fi(·) and gi(·) show how the ith neuron reacts to the input, τij ≥ 0
corresponds to the transmission delay of the ith unit along the axon of the jth
unit at the time t, and Ii(t) denotes the ith component of an external input source
introduced from outside the network to cell i at time t for i, j = 1, 2, . . . , n.

Since the model CGNNs was introduced by Cohen and Grossberg [3], the dynam-
ical characteristics (including stable, unstable and periodic oscillatory) of CGNNs
have been widely investigated for the sake of theoretical interest as well as ap-
plication considerations. Many good results on the problem of the existence and
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stability of the equilibriums for system (1.1) are given out in the literature. We
refer the reader to the references in this article and the references cited therein.
Suppose that the following conditions are satisfied.

(H0) ai(t, xi) = ai(0, xi) and bi(t, xi) = bi(0, xi) for all t, and cij , dij , Ij , : R → R
are constants, where i, j = 1, 2, . . . , n.

(H0*) For each j ∈ {1, 2, . . . , n}, there exist nonnegative constants L̃j and Lj such
that

|fj(u)− fj(v)| ≤ L̃j |u− v|, |gj(u)− gj(v)| ≤ Lj |u− v|, ∀u, v ∈ R.

Most authors of bibliographies listed above obtained that all solutions of system
(1.1) converge to the equilibrium point. However, to the best of our knowledge, no
author has considered the convergence of all solutions without assumptions (H0)
and (H0*). Thus, it is worth to investigate the convergence for (1.1) in this case.
The main purpose of this paper is to give a new criteria for the convergence for all
solutions of (1.1). By applying mathematical analysis techniques, without assuming
(H0) and (H0*), we derive some sufficient conditions ensuring that all solutions of
(1.1) converge exponentially to zero, which are new and complement of previously
known results. Moreover, we provide an example that illustrates our results.

Throughout this paper, for i, j = 1, 2, . . . , n, it will be assumed that Kij :
[0,+∞) → R are continuous functions, and there exists a constant τ such that

τ = max
1≤i,j≤n

{
sup
t∈R

τij(t)
}
. (1.2)

We also assume that the following conditions.
(H1) For each j ∈ {1, 2, . . . , n}, there exist nonnegative constants L̃j and Lj such

that
|fj(u)| ≤ L̃j |u|, |gj(u)| ≤ Lj |u|, ∀u ∈ R. (1.3)

(H2) For i = 1, 2, . . . , n, there exist positive constants such that ai, ai and T1

such that

ai ≤ ai(t, u) ≤ ai, for all t > T1, u ∈ R.

(H3) For i = 1, 2, . . . , n, there exist positive constants bi and T2 such that

bi|u| ≤ sign(u)bi(t, u), for all t > T2, u ∈ R.

(H4) There exist constants T3 > 0, η > 0, λ > 0 and ξi > 0, i = 1, 2, . . . , n, such
that for all t > T3,

−[aibi−λ]ξi+
n∑

j=1

|cij(t)|aie
λτ L̃jξj +

n∑
j=1

|dij(t)|ai

∫ ∞

0

|Kij(u)|eλuduLjξj < −η < 0,

where i = 1, 2, . . . , n.
(H5) Ii(t) = O(e−λt), i = 1, 2, . . . , n.

The initial conditions associated with (1.1) are

xi(s) = ϕi(s), s ∈ (−∞, 0], i = 1, 2, . . . , n, (1.4)

where ϕi(·) denotes a real-valued bounded continuous function defined on (−∞, 0].
For Z(t) = (x1(t), x2(t), . . . , xn(t))T , we define the norm

‖Z(t)‖ξ = max
i=1,2,...,n

|ξ−1
i xi(t)|.
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The remaining part of this paper is organized as follows. In Section 2, we present
sufficient conditions to ensure that all solutions of (1.1) converge exponentially to
the zero. In Section 3, we shall give some examples and remarks to illustrate the
results obtained in the previous sections.

2. Main Results

Theorem 2.1. Assume that (H1)–(H5) hold. Then every solution

Z(t) = (x1(t), x2(t), . . . , xn(t))T

of (1.1), corresponding to any initial value ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T , satisfies

xi(t) = O(e−λt), i = 1, 2, . . . , n.

Proof. From (H5), we can choose constants F > 0 and T > max{T1, T2, T3} such
that

ai|Ii(t)| <
1
2
Fe−λt, for all t ≥ T, i = 1, 2, . . . , n. (2.1)

Set Z(t) = (x1(t), x2(t), . . . , xn(t))T be a solution of (1.1) with any initial value
ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T , and let it be an index such that

ξ−1
it
|xit

(t)| = ‖Z(t)‖ξ. (2.2)

Calculating the upper right derivative of eλs|xis
(s)| along (1.1), in view of (2.1),

(H1), (H2) and (H3), we have

D+(eλs|xis(s)|)|s=t

= λeλt|xit
(t)|+ eλt sign(xit

(t)){−ait
(t, xit

(t))[bit
(t, xit

(t))

−
n∑

j=1

citj(t)fj(xj(t− τitj(t)))

−
n∑

j=1

ditj(t)gj(
∫ ∞

0

Kitj(u)xj(t− u)du) + Iit
(t)]}

≤ eλt{−(ait
bit

− λ)|xit
(t)|ξ−1

it
ξit

+
n∑

j=1

|citj(t)|aiL̃j |xj(t− τitj(t))|ξ−1
j ξj

+
n∑

j=1

|ditj(t)|aiLj

∫ ∞

0

|Kitj(u)||xj(t− u)|ξ−1
j duξj}+

1
2
Fe−λteλt,

(2.3)

where t > T . Let
M(t) = max

s≤t
{eλs‖Z(s)‖ξ}. (2.4)

It is obvious that eλt‖Z(t)‖ξ ≤ M(t), and M(t) is non-decreasing. Now, we consider
two cases.
Case (i). If

M(t) > eλt‖Z(t)‖ξ for all t ≥ T. (2.5)

Then, we claim that

M(t) ≡ M(T ) is constant for all t ≥ T. (2.6)
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Assume, by way of contradiction, that (2.6) does not hold. Then, there exists
t1 > T such that M(t1) > M(T ). Since

eλt‖Z(t)‖ξ ≤ M(T ) for all t ≤ T,

there must exist β ∈ (T, t1) such that

eλβ‖Z(β)‖ξ = M(t1) ≥ M(β),

which contradicts to (2.5). This contradiction implies that (2.6) holds. It follows
that

eλt‖Z(t)‖ξ < M(t) = M(T ) for all t ≥ T. (2.7)
Case (ii). If there is a point t0 ≥ T such that M(t0) = eλt0‖Z(t0)‖ξ. Then, in

view of (2.3) and (H4), we obtain

D+(eλs|xis
(s)|)|s=t0

≤ eλt0{−(ait0
bit0

− λ)|xit0
(t0)|ξ−1

it0
ξit0

+
n∑

j=1

|cit0 j(t0)|ait0
L̃j |xj(t0 − τit0 j(t0))|ξ−1

j ξj

+
n∑

j=1

|dit0 j(t0)|ait0
Lj

∫ ∞

0

|Kit0 j(u)||xj(t0 − u)|ξ−1
j duξj}+

1
2
F

= −(ait0
bit0

− λ)|xit0
(t0)|eλt0ξ−1

it0
ξit0

+
n∑

j=1

|cit0 j(t0)|ait0
L̃j |xj(t0 − τit0 j(t0))|eλ(t0−τit0 j(t0))ξ−1

j eλτit0 j(t0)ξj

+
n∑

j=1

|dit0 j(t0)|ait0
Lj

∫ ∞

0

|Kit0 j(u)|eλu|xj(t0 − u)|eλ(t0−u)ξ−1
j duξj +

1
2
F

≤ {−(ait0
bit0

− λ)ξit0
+

n∑
j=1

|cit0 j(t0)|ait0
L̃je

λτξj

+
n∑

j=1

|dit0 j(t0)|ait0
Lj

∫ ∞

0

|Kit0 j(u)|eλuduξj}M(t0) +
1
2
F

< −1
2
ηM(t0) + F.

(2.8)
In addition, if M(t0) ≥ 2F

η , then M(t) is strictly decreasing in a small neighborhood
(t0, t0 + δ0). This contradicts that M(t) is non-decreasing. Hence,

eλt0‖Z(t0)‖ξ = M(t0) < 2
F

η
. (2.9)

For t > t0, by the same approach as the one used in the proof of (2.9), we have

eλt‖Z(t)‖ξ < 2
F

η
, if M(t) = eλt‖Z(t)‖ξ. (2.10)

On the other hand, if M(t) > eλt‖Z(t)‖ξ, t > t0, we can choose t0 ≤ t2 < t such
that

M(t2) = eλt2‖Z(t2)‖ξ < 2
F

η
, M(s) > eλs‖Z(s)‖ξ for all s ∈ (t2, t].
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Using a similar argument as in the proof of Case (i), we can show that

M(s) ≡ M(t2) is constant for all s ∈ (t2, t], (2.11)

which implies

eλt‖Z(t)‖ξ < M(t) = M(t2) < 2
F

η
.

In summary, there must exist N > 0 such that eλt‖Z(t)‖ξ < max{M(T ), 2F
η } holds

for all t > N . The proof is complete. �

3. An Example

In this section, we give an example to demonstrate the results obtained in pre-
vious sections. Consider the CGNN with delays and time-varying coefficients

x′1(t) = −(2 + ecos t 1
10π

arctanx1(t))[(2−
(100 + |t|) sin t

1 + 2|t|
)(x1(t) + 5x3

1(t))

+
1
8

(101 + |t|) sin t

1 + 4|t|
f1(x1(t− 2 sin2 t)) +

1
8

(102 + |t|) sin t

1 + 36|t|

× f2(x2(t− 3 sin2 t)) +
1
8

(103 + |t|) sin t

1 + 4|t|

∫ ∞

0

e−ug1(xj(t− u))du

+
1
8

(100 + |t|2) sin t

1 + 36|t|2

∫ ∞

0

e−ug2(xj(t− u))du + e−3t sin t],

x′2(t) = −(2 + esin t 1
10π

arctanx2(t))[(4−
(200 + |t|) cos t

1 + 2|t|
)(x2(t) + 15x3

2(t))

+
1
8

(200 + |t|) cos t

1 + 8|t|
f1(x1(t− 2 sin2 t))

+
1
8

(206 + |t|) cos t

1 + 5|t|
f(x2(t− 5 sin2 t))

+
1
8

(205 + |t|) cos t

1 + 6|t|

∫ ∞

0

e−ug1(xj(t− u))du

+
1
8

(204 + |t|) cos t

1 + 7|t|

∫ ∞

0

e−ug2(xj(t− u))du + e−t sin t],

(3.1)
where f1(x) = f2(x) = g1(x) = g2(x) = x sinx. Noting that

a1(t, x) = (2 + ecos t 1
10π

arctanx1), a2(t, x) = (2 + esin t 1
10π

arctanx2),

b1(t, x) = (2− (100 + |t|) sin t

1 + 2|t|
)(x1 + 5x3

1),

b2(t, x) = (4− (200 + |t|) cos t

1 + 2|t|
)(x2(t) + 15x3

2),

L1 = L2 = L̃1 = L̃2 = 1, τ = 5, Kij(u) = e−u, i, j = 1, 2,

c11(t) =
1
8

(101 + |t|) sin t

1 + 4|t|
, d11(t) =

1
8

(103 + |t|) sin t

1 + 4|t|
,

c12(t) =
1
8

(102 + |t|) sin t

1 + 36|t|
, d12(t) =

1
8

(100 + |t|2) sin t

1 + 36|t|2
,
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c21(t) =
1
8

(200 + |t|) cos t

1 + 8|t|
, d21(t) =

1
8

(205 + |t|) cos t

1 + 6|t|
,

c22(t) =
1
8

(206 + |t|) cos t

1 + 5|t|
, d22(t) =

1
8

(204 + |t|) cos t

1 + 7|t|
.

It follows that

1 = ai ≤ ai(t, u) ≤ ai = 4, for all t, u ∈ R, i = 1, 2;

|u| = bi|u| ≤ sign(u)bi(t, u), for all t, u ∈ R, i = 1, 2.

Then, we can choose a sufficient large constant T0 > 0 and a positive constant
η̄ = 1

2 and ξi = 1, i = 1, 2, such that for all t > T0, there holds

− aibiξi +
2∑

j=1

|cij(t)|aiL̃jξj +
2∑

j=1

|dij(t)|ai

∫ ∞

0

|Kij(u)|duLjξj

= −aibi +
2∑

j=1

|cij(t)|aiL̃j +
2∑

j=1

|dij(t)|aiLj

= −1 + 4
2∑

j=1

|cij(t)|+ 4
2∑

j=1

|dij(t)| < −1
2

= −η̄ < 0, i = 1, 2.

Then, we can choose constants η > 0 and λ > 0 such that

− [aibi − λ]ξi +
2∑

j=1

|cij(t)|aie
λτ L̃jξj +

2∑
j=1

|dij(t)|ai

∫ ∞

0

|Kij(u)|eλuduLjξj

< −η < 0, i = 1, 2, t > T0,

which implies that (3.1) satisfies (H1)–(H5). Hence, from Theorem 2.1, all solutions
of system (3.1) converge exponentially to the zero point (0, 0, . . . , 0)T .

Remark 3.1. Since f1(x) = f2(x) = g1(x) = g2(x) = x sinx and (3.1) is a very
simple form of delayed Cohen-Grossberg neural network with time-varying coeffi-
cients. It is clear that the conditions (H0) and (H0*) are not satisfied. Therefore,
the results in the references of this article are not applicable for proving that the
solutions to (3.1) converge exponentially to the zero. This implies that the results
of this paper are essentially new.
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