Electronic Journal of Differential Equations, Vol. 2008(2008), No. 74, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR SYSTEMS OF NONLINEAR SINGULAR DIFFERENTIAL EQUATIONS

YANYAN YUAN, CHENGLONG ZHAO, YANSHENG LIU

Abstract

By constructing a special cone and using the fixed point theorem of cone expansion and compression, this paper shows the existence of positive solutions for two-point boundary-value problems of nonlinear singular differential systems. To illustrate the applications of our main results, some examples are given.

1. Introduction

Recently, singular boundary value problems (SBVP for short) have been studied extensively (see [1, 3, 4, 5, 6, 7, 8, 9, 10, and references therein). Under the superlinear effect, Wei and Zhang [8] obtained necessary and sufficient conditions for the existence of $C^{2}[0,1]$ and $C^{3}[0,1]$ positive solutions for fourth-order singular boundary value problems by using the fixed point theorem of cone expansion and compression. Under the sublinear effect, Wei [7] obtained necessary and sufficient conditions for the existence of positive solutions for fourth-order singular boundary value problems by using the upper and lower solution method and the maximal principal. However, in this paper, we will investigate the existence of positive solutions of second and fourth order singular boundary value problems of nonlinear singular differential systems. We obtain necessary and sufficient conditions for the existence of $C^{2}[0,1] \times C[0,1]$ and $C^{3}[0,1] \times C^{1}[0,1]$ positive solutions for the coupled systems. Two examples are given to show the applications of our results.

In this article, we investigate the boundary-value problem

$$
\begin{gather*}
u^{(4)}=f(t, u, v) \\
-v^{\prime \prime}=g(t, u, v) \tag{1.1}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \\
v(0)=v(1)=0
\end{gather*}
$$

where $t \in(0,1), f, g \in C[(0,1) \times[0, \infty) \times[0, \infty),[0, \infty)]$; that is, f, g may be singular at $t=0$ and $t=1$.

[^0]Let

$$
\begin{aligned}
E=\{ & (u, v) \in C^{2}[0,1] \times C[0,1]: u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0, \\
& v(0)=v(1)=0\}
\end{aligned}
$$

with the norm $\|(u, v)\|=\|u\|_{2}+\|v\|_{0}$, where $\|u\|_{2}=\max _{t \in J}\left|u^{\prime \prime}(t)\right|,\|v\|_{0}=$ $\max _{t \in J}|v(t)|, J=[0,1]$. Then $(E,\|\cdot\|)$ is a Banach space. In this paper, E will be the basic space to study (1.1). Define

$$
\begin{aligned}
P=\{ & (u, v) \in E: v(t) \geq t(1-t) v(s), u(t) \geq t(1-t) u(s) \\
& u(t) \geq-t(1-t) u^{\prime \prime}(s) / 30, u^{\prime \prime}(t) \leq t(1-t) u^{\prime \prime}(s) \leq 0 \text { and } \\
& u(t), v(t) \text { are nonnegative concave functions, for all } t, s \in J\} .
\end{aligned}
$$

It is easy to see that P is a cone of E.
A pair (u, v) is said to be a $C^{2}[0,1] \times C[0,1]$ positive solution of 1.1 if $u \in$ $C^{2}[0,1] \cap C^{(4)}(0,1), v \in C[0,1] \cap C^{2}(0,1)$ satisfy 1.1 and $u(t)>0, u^{\prime \prime}(t) \leq 0$, $v(t)>0$ for $t \in(0,1)$. In addition, if (u, v) is a $C^{2}[0,1] \times C[0,1]$ positive solution of (1.1) and both $u^{\prime \prime \prime}\left(0^{+}\right), u^{\prime \prime \prime}\left(1^{-}\right), v^{\prime}\left(0^{+}\right)$and $v^{\prime}\left(1^{-}\right)$exist, then (u, v) is said to be a $C^{3}[0,1] \times C^{1}[0,1]$ positive solution of (1.1).

Now, we state a lemma which will be used in Section 2.
Lemma 1.1 ([1]). Let P be a cone of real Banach space $E, \Omega_{1}, \Omega_{2}$ be bounded open sets of E, and θ be in $\bar{\Omega}_{1} \subset \Omega_{2}$. Suppose that $A: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is completely continuous such that one of the following two conditions is satisfied:
(i) $\|A x\| \leq\|x\|$ for $x \in P \cap \partial \Omega_{1} ;\|A x\| \geq\|x\|$ for $x \in P \cap \partial \Omega_{2}$.
(ii) $\|A x\| \leq\|x\|$ for $x \in P \cap \partial \Omega_{2} ;\|A x\| \geq\|x\|$ for $x \in P \cap \partial \Omega_{1}$.

Then, A has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

2. Main Results

Let us list some conditions to be used later.
(H1) $g \in C[(0,1) \times[0, \infty) \times[0, \infty),[0, \infty)]$ and satisfy

$$
\int_{0}^{1} t(1-t) f(t, t(1-t), 1) d t<\infty, \quad \int_{0}^{1} t(1-t) g(t, t(1-t), 1) d t<\infty
$$

(H2)

$$
\int_{0}^{1} f(t, t(1-t), t(1-t)) d t<\infty, \quad \int_{0}^{1} g(t, t(1-t), t(1-t)) d t<\infty
$$

(H3) f is quasi-homogeneous with respect to the last two variables, that is, there are constants $\lambda_{1}, \mu_{1}, \alpha_{1}, \beta_{1}, N_{1}, M_{1}, N_{2}, M_{2}$ with $0 \leq \lambda_{1} \leq \mu_{1}<+\infty, 0 \leq$ $\alpha_{1} \leq \beta_{1} \leq 1, \mu_{1}+\beta_{1}<1,0<N_{1} \leq 1 \leq M_{1}, 0<N_{2} \leq 1 \leq M_{2}$ such that for all $0<t<1, u \geq 0, v \geq 0$ satisfying
(a) $c^{\mu_{1}} f(t, u, v) \leq f(t, c u, v) \leq c^{\lambda_{1}} f(t, u, v), 0<c \leq N_{1}$; $c^{\lambda_{1}} f(t, u, v) \leq f(t, c u, v) \leq c^{\mu_{1}} f(t, u, v), c \geq M_{1} ;$
(b) $c^{\beta_{1}} f(t, u, v) \leq f(t, u, c v) \leq c^{\alpha_{1}} f(t, u, v), 0<c \leq N_{2}$; $c^{\alpha_{1}} f(t, u, v) \leq f(t, u, c v) \leq c^{\beta_{1}} f(t, u, v), c \geq M_{2}$.
(H4) g is quasi-homogeneous with respect to the last two variables; that is, there are constants $\lambda_{2}, \mu_{2}, \alpha_{2}, \beta_{2}, N_{3}, M_{3}, N_{4}, M_{4}$ with $0 \leq \lambda_{2} \leq \mu_{2}<+\infty, 0 \leq$ $\alpha_{2} \leq \beta_{2} \leq 1, \mu_{2}+\beta_{2}<1,0<N_{3} \leq 1 \leq M_{3}, 0<N_{4} \leq 1 \leq M_{4}$ such that for all $0<t<1, u \geq 0, v \geq 0$ satisfying
(a) $c^{\mu_{2}} g(t, u, v) \leq g(t, c u, v) \leq c^{\lambda_{2}} g(t, u, v), 0<c \leq N_{3}$; $c^{\lambda_{2}} g(t, u, v) \leq g(t, c u, v) \leq c^{\mu_{2}} g(t, u, v), c \geq M_{3}$
(b) $c^{\beta_{2}} g(t, u, v) \leq g(t, u, c v) \leq c^{\alpha_{2}} g(t, u, v), 0<c \leq N_{4}$; $c^{\alpha_{2}} g(t, u, v) \leq g(t, u, c v) \leq c^{\beta_{2}} g(t, u, v), c \geq M_{4}$.
(H5) There exist $0<\gamma_{i}<1, k_{i} \geq 0(i=1,2)$ such that

$$
f(t, u, v) \geq k_{1}(u+v)^{\gamma_{1}}, \quad g(t, u, v) \geq k_{2}(u+v)^{\gamma_{2}}
$$

for any $t \in J,(u, v) \in P$.
The main results of this paper are as follows.
Theorem 2.1. Suppose (H3)-(H5) hold. Then 1.1) has a $C^{2}[0,1] \times C[0,1]$ positive solution (u, v), if and only if (H1) holds.
Theorem 2.2. Suppose (H3)-(H5) hold. Then 1.1) has a $C^{3}[0,1] \times C^{1}[0,1]$ positive solution (u, v), if and only if (H2) holds.

To prove Theorems 2.1 and 2.2 , we need some preliminary lemmas.
Lemma 2.3. The functions $u \in C^{2}[0,1] \cap C^{(4)}(0,1), v \in C[0,1] \cap C^{2}(0,1)$ form a solution to (1.1) if and only if (u, v) is a fixed point of the integral operator $A(u, v)=\left(A_{1}(u, v), A_{2}(u, v)\right)$ in $C^{2}[0,1] \times C[0,1]$, where

$$
\begin{gather*}
A_{1}(u, v)(t)=\int_{0}^{1} G(t, s) \int_{0}^{1} G(s, \tau) f(\tau, u(\tau), v(\tau)) d \tau d s \\
A_{2}(u, v)(t)=\int_{0}^{1} G(t, s) g(s, u(s), v(s)) d s \tag{2.1}\\
G(t, s)= \begin{cases}t(1-s), & 0 \leq t \leq s \leq 1 \\
s(1-t), & 0 \leq s \leq t \leq 1\end{cases}
\end{gather*}
$$

The proof of the above lemma is obvious; we omit it.
Lemma 2.4. Assume that (H1), (H3), (H4) hold. Then $A: P \rightarrow P$ is a completely continuous operator.
Proof. First of all, we show that $A(P) \subset P$. Note that $G(t, s) \geq t(1-t) G(s, \tau)$ for all $\tau, s \in J$. Then

$$
\begin{aligned}
A_{1}(u, v)(t) & =\int_{0}^{1} G(t, \tau) \int_{0}^{1} G(\tau, \xi) f(\xi, u(\xi), v(\xi)) d \xi d \tau \\
& \geq t(1-t) \int_{0}^{1} G(s, \tau) \int_{0}^{1} G(\tau, \xi) f(\xi, u(\xi), v(\xi)) d \xi d \tau \\
& =t(1-t) A_{1}(u, v)(s), \quad \forall t, s \in J,(u, v) \in P \\
\left(A_{1}(u, v)\right)^{\prime \prime}(t) & =-\int_{0}^{1} G(t, \tau) f(\tau, u(\tau), v(\tau)) d \tau \\
& \leq-t(1-t) \int_{0}^{1} G(s, \tau) f(\tau, u(\tau), v(\tau)) d \tau
\end{aligned}
$$

$$
\begin{aligned}
= & t(1-t)\left(A_{1}(u, v)\right)^{\prime \prime}(s) \leq 0, \quad \forall t, s \in J,(u, v) \in P \\
A_{2}(u, v)(t) & =\int_{0}^{1} G(t, s) g(s, u(s), v(s)) d s \\
\geq & t(1-t) \int_{0}^{1} G(s, \tau) g(\tau, u(\tau), v(\tau)) d \tau \\
& =t(1-t) A_{2}(u, v)(s), \quad \forall t, s \in J,(u, v) \in P \\
\left(A_{2}(u, v)\right)^{\prime \prime}(t) & =-g(t, u(t), v(t)) \leq 0, \quad \forall t \in J,(u, v) \in P .
\end{aligned}
$$

It is easy to see that $G(t, s) \geq s(1-s) t(1-t)$. Then

$$
\begin{aligned}
A_{1}(u, v)(t) & =-\int_{0}^{1} G(t, \tau)\left(A_{1}(u, v)\right)^{\prime \prime}(\tau) d \tau \\
& \geq-\int_{0}^{1} G(t, \tau) \tau(1-\tau)\left(A_{1}(u, v)\right)^{\prime \prime}(s) d \tau \\
& \geq-t(1-t) \int_{0}^{1} \tau^{2}(1-\tau)^{2}\left(A_{1}(u, v)\right)^{\prime \prime}(s) d \tau \\
& =-\frac{1}{30} t(1-t)\left(A_{1}(u, v)\right)^{\prime \prime}(s), \quad \forall t, s \in J, \quad(u, v) \in P
\end{aligned}
$$

Therefore $A(P) \subset P$.
Next we show that A is bounded. Suppose V is an any bounded set of P, then there exists a $M>0$ such that $\|(u, v)\| \leq M$ for any $(u, v) \in V$. It follows from $u(t)=\int_{0}^{1} G(t, s)\left(-u^{\prime \prime}(s)\right) d s$ that $u(t) \leq \frac{1}{2} t(1-t)\|u\|_{2}$. On the other hand, it follows from $u(t) \geq t(1-t) u(s)$, for all $t, s \in J$ that $u(t) \geq t(1-t)\|u\|_{0}$. Hence

$$
\begin{equation*}
t(1-t)\|u\|_{0} \leq u(t) \leq \frac{1}{2} t(1-t)\|u\|_{2}, \quad t \in J \tag{2.2}
\end{equation*}
$$

Choose positive numbers $c_{1} \geq \max \left\{M_{1}, \frac{M}{2 N_{1}}\right\}$ and $c_{2} \geq \max \left\{M_{2}, \frac{M}{N_{2}}\right\}$. For any $(u, v) \in V, t \in J$, we can get

$$
\begin{aligned}
\left|\left(A_{1}(u, v)\right)^{\prime \prime}(t)\right| & =\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s \\
& \leq \int_{0}^{1} s(1-s) f\left(s, c_{1} \frac{u(s)}{c_{1} s(1-s)} s(1-s), c_{2} \frac{v(s)}{c_{2}}\right) d s \\
& \leq c_{1}^{\mu_{1}} c_{2}^{\beta_{1}} \int_{0}^{1}\left(\frac{u(s)}{c_{1} s(1-s)}\right)^{\lambda_{1}}\left(\frac{v(s)}{c_{2}}\right)^{\alpha_{1}} s(1-s) f(s, s(1-s), 1) d s \\
& \leq c_{1}^{\mu_{1}}\left(\frac{1}{2 c_{1}}\right)^{\lambda_{1}}\|u\|_{2}^{\lambda_{1}} c_{2}^{\beta_{1}}\|v\|_{0}^{\alpha_{1}} c_{2}^{-\alpha_{1}} \int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s \\
& \leq 2^{-\lambda_{1}} c_{1}^{\mu_{1}-\lambda_{1}} c_{2}^{\beta_{1}-\alpha_{1}} M^{\lambda_{1}+\alpha_{1}} \int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s<+\infty
\end{aligned}
$$

Let $c_{3} \geq \max \left\{M_{3}, \frac{M}{2 N_{3}}\right\}$ and $c_{4} \geq \max \left\{M_{4}, \frac{M}{N_{4}}\right\}$. For any $(u, v) \in V, t \in J$, we have

$$
\begin{aligned}
\left|A_{2}(u, v)(t)\right| & =\int_{0}^{1} G(t, s) g(s, u(s), v(s)) d s \\
& \leq \int_{0}^{1} s(1-s) g\left(s, c_{3} \frac{u(s)}{c_{3} s(1-s)} s(1-s), c_{4} \frac{v(s)}{c_{4}}\right) d s
\end{aligned}
$$

$$
\leq 2^{-\lambda_{2}} c_{3}^{\mu_{2}-\lambda_{2}} c_{4}^{\beta_{2}-\alpha_{2}} M^{\lambda_{2}+\alpha_{2}} \int_{0}^{1} s(1-s) g(s, s(1-s), 1) d s<+\infty
$$

Consequently, A is bounded on P.
Thirdly, we show that $A V$ is equicontinuous for arbitrary bounded set $V \subset P$. Choose positive numbers $c_{1} \geq \max \left\{M_{1}, \frac{M}{2 N_{1}}\right\}, c_{2} \geq \max \left\{M_{2}, \frac{M}{N_{2}}\right\}$, it follows from

$$
A_{1}(u, v)(t)=\int_{0}^{1} G(t, s) \int_{0}^{1} G(s, \tau) f(\tau, u(\tau), v(\tau)) d \tau d s
$$

that

$$
\begin{aligned}
\left(A_{1}(u, v)\right)^{\prime \prime}(t)= & -\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s \\
& =-\int_{0}^{t} s(1-t) f(s, u(s), v(s)) d s-\int_{t}^{1} t(1-s) f(s, u(s), v(s)) d s \\
\left(A_{1}(u, v)\right)^{\prime \prime \prime}(t) & =\int_{0}^{t} s f(s, u(s), v(s)) d s-\int_{t}^{1}(1-s) f(s, u(s), v(s)) d s \\
& \leq \int_{0}^{t} s f(s, u(s), v(s)) d s+\int_{t}^{1}(1-s) f(s, u(s), v(s)) d s \\
& \leq c_{0}\left(\int_{0}^{t} s f(s, s(1-s), 1) d s+\int_{t}^{1}(1-s) f(s, s(1-s), 1) d s\right)
\end{aligned}
$$

where $c_{0}=2^{-\lambda_{1}} c_{1}^{\mu_{1}-\lambda_{1}} c_{2}^{\beta_{1}-\alpha_{1}} M^{\lambda_{1}+\alpha_{1}}$. Assume

$$
H(t)=c_{0}\left(\int_{0}^{t} s f(s, s(1-s), 1) d s+\int_{t}^{1}(1-s) f(s, s(1-s), 1) d s\right)
$$

So we can obtain

$$
\begin{align*}
\int_{0}^{1} H(t) d t= & c_{0}\left(\int_{0}^{1} d t \int_{0}^{t} s f(s, s(1-s), 1) d s\right. \\
& \left.+\int_{0}^{1} d t \int_{t}^{1}(1-s) f(s, s(1-s), 1) d s\right) \tag{2.3}\\
= & 2 c_{0} \int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s<+\infty
\end{align*}
$$

Thus for any given $t_{1}, t_{2} \in J$ with $t_{1} \leq t_{2}$ and all $(u, v) \in V$, we obtain

$$
\left.\left\|\left(A_{1}(u, v)\right)^{\prime \prime}\left(t_{2}\right)-\left(A_{1}(u, v)\right)^{\prime \prime}\left(t_{1}\right)\right\|=\mid \int_{t_{1}}^{t_{2}} A_{1}(u, v)\right)^{\prime \prime \prime}(t) d t \mid \leq \int_{t_{1}}^{t_{2}} H(t) d t
$$

From this inequality, 2.3 and the absolute continuity of integral, it follows that $A_{1} V$ is equicontinuous on J.

On the other hand

$$
\begin{aligned}
\left|\left(A_{2}(u, v)\right)^{\prime}(t)\right| & =-\int_{0}^{t} s g(s, u(s), v(s)) d s+\int_{t}^{1}(1-s) g(s, u(s), v(s)) d s \\
& \leq \int_{0}^{t} s g(s, u(s), v(s)) d s+\int_{t}^{1}(1-s) g(s, u(s), v(s)) d s
\end{aligned}
$$

Let $G(t)=\int_{0}^{t} s g(s, u(s), v(s)) d s+\int_{t}^{1}(1-s) g(s, u(s), v(s)) d s, c_{3} \geq \max \left\{M_{3}, \frac{M}{2 N_{3}}\right\}$ and $c_{4} \geq \max \left\{M_{4}, \frac{M}{N_{4}}\right\}$, then

$$
\begin{align*}
\int_{0}^{1} G(t) d t & =2 \int_{0}^{1} s(1-s) g(s, u(s), v(s)) d s \\
& \leq 2^{1-\lambda_{2}} c_{3}^{\mu_{2}-\lambda_{2}} c_{4}^{\beta_{2}-\alpha_{2}} M^{\lambda_{2}+\alpha_{2}} \int_{0}^{1} s(1-s) g(s, s(1-s), 1) d s<+\infty \tag{2.4}
\end{align*}
$$

Thus for any given $t_{1}, t_{2} \in J$ with $t_{1} \leq t_{2}$ and all $(u, v) \in V$, we obtain

$$
\left\|A_{2}(u, v)\left(t_{2}\right)-A_{2}(u, v)\left(t_{1}\right)\right\|=\left|\int_{t_{1}}^{t_{2}}\left(A_{2}(u, v)\right)^{\prime}(t) d t\right| \leq \int_{t_{1}}^{t_{2}} G(t) d t
$$

From this inequality, 2.4, and the absolute continuity of integral, it follows that $A_{2} V$ is equicontinuous on J. Therefore $A V$ are equicontinuous on J. It follows from the Ascoli-Arzela theorem that $A_{1} V$ and $A_{2} V$ is relatively compact.

Finally, we show that $A: P \rightarrow P$ is a continuous operator. Notice that A is continuous on $C^{2}[0,1] \times C[0,1]$ if and only if A_{1} is continuous on $C^{2}[0,1]$ and A_{2} is continuous on $C[0,1]$.

Suppose $\left\{\left(u_{n}, v_{n}\right)\right\} \subset P,(u, v) \in P$ and $\left\|u_{n}-u\right\|_{2} \rightarrow 0,\left\|v_{n}-v\right\|_{0} \rightarrow 0$ as $n \rightarrow \infty$. It follows from (2.2) that $\|u\|_{0} \leq \frac{1}{2}\|u\|_{2}$. So we can get $\left\|u_{n}-u\right\|_{0} \rightarrow 0(n \rightarrow \infty)$ from $\left\|u_{n}-u\right\|_{2} \rightarrow 0(n \rightarrow \infty)$. Then $u_{n}(t) \rightarrow u(t)$ and $v_{n}(t) \rightarrow v(t)$ as $n \rightarrow \infty$ uniformly with respect to $t \in J$. Therefore

$$
\begin{aligned}
& \left|\left(A_{1}\left(u_{n}, v_{n}\right)\right)^{\prime \prime}(t)-\left(A_{1}(u, v)\right)^{\prime \prime}(t)\right| \\
& =\left|\int_{0}^{1} G(t, s) f\left(s, u_{n}(s), v_{n}(s)\right) d s-\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s\right| \\
& \leq \int_{0}^{1} G(t, s)\left|f\left(s, u_{n}(s), v_{n}(s)\right)-f(s, u(s), v(s))\right| d s
\end{aligned}
$$

From (H1), (H3) and the Lebesgue dominated convergence theorem, it follows that

$$
\left|\left(A_{1}\left(u_{n}, v_{n}\right)\right)^{\prime \prime}(t)-\left(A_{1}(u, v)\right)^{\prime \prime}(t)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence one can conclude that

$$
\left\|A_{1}\left(u_{n}, v_{n}\right)-A_{1}(u, v)\right\|_{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

In fact, if this is not true, then there exist ϵ_{0} and $\left\{u_{n_{i}}\right\} \subset\left\{u_{n}\right\},\left\{v_{n_{i}}\right\} \subset\left\{v_{n}\right\}$ such that $\left\|A_{1}\left(u_{n_{i}}, v_{n_{i}}\right)-A_{1}(u, v)\right\|_{2} \geq \epsilon_{0}(i=1,2 \ldots)$. Since $\left\{A_{1}\left(u_{n}, v_{n}\right)\right\}$ is relatively compact, there exists a sequence of $\left\{A_{1}\left(u_{n}, v_{n}\right)\right\}$ which convergence in $C^{2}[0,1]$ to some y. Not loss of generality, we may assume that $\left\{A_{1}\left(u_{n_{i}}, v_{n_{i}}\right)\right\}$ itself converge to y, then $y=A_{1}(u, v)$. This is a contradiction. Consequently A_{1} is continuous. In the same way, we can get A_{2} is continuous, too. This completes the proof.

Lemma $2.5([2])$. Suppose $(u, v) \in P$ and $\mu \in\left(0, \frac{1}{2}\right)$. Then $u(t)+v(t) \geq \mu(1-$ $\mu)\left(\|u\|_{0}+\|v\|_{0}\right), t \in[\mu, 1-\mu]$.

The proof of the above lemma is obvious; we omit it.
In the following we prove Theorem 2.1 .

Proof. Sufficiency. From Lemma 2.5, we can choose $\mu=\frac{1}{4}$. Then $u(t)+v(t) \geq$ $\frac{3}{16}\left(\|u\|_{0}+\|v\|_{0}\right), t \in\left[\frac{1}{4}, \frac{3}{4}\right]$. First of all, we prove

$$
\begin{equation*}
\|A(u, v)\| \geq\|(u, v)\|, \quad \forall(u, v) \in \partial P_{r} \tag{2.5}
\end{equation*}
$$

where $P_{r}=\{\|(u, v)\|<r\}$,

$$
\begin{gathered}
r \leq \min \left\{2 N_{1}, N_{2}, 2 N_{3}, N_{4},\left(\frac{k_{1}}{2(160)^{\gamma_{1}}} \int_{1 / 4}^{3 / 4}[s(1-s)]^{1+\gamma_{1}} d s\right)^{\frac{1}{1-\gamma_{1}}}\right. \\
\left.\left(\frac{k_{2}}{2(160)^{\gamma_{2}}} \int_{1 / 4}^{3 / 4}[s(1-s)]^{1+\gamma_{2}} d s\right)^{\frac{1}{1-\gamma_{2}}}\right\} .
\end{gathered}
$$

From the definition of P, we know that $\|u\|_{0} \geq \frac{1}{30} t(1-t)\|u\|_{2}$ for any $(u, v) \in P, t \in$ J. By condition (H5) and Lemma 2.5, we obtain

$$
\begin{aligned}
-\left(A_{1}(u, v)\right)^{\prime \prime}(t) & =\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s \\
& \geq \frac{1}{4} \int_{1 / 4}^{3 / 4} s(1-s) f(s, u(s), v(s)) d s \\
& \geq \frac{1}{4} \int_{1 / 4}^{3 / 4} k_{1} s(1-s)(u(s)+v(s))^{\gamma_{1}} d s \\
& \geq \frac{k_{1}}{4} \int_{1 / 4}^{3 / 4} s(1-s)\left(\frac{3}{16}\left(\|u\|_{0}+\|v\|_{0}\right)\right)^{\gamma_{1}} d s \\
& \geq \frac{k_{1}}{4(160)^{\gamma_{1}}} r^{\gamma_{1}} \int_{1 / 4}^{3 / 4}[s(1-s)]^{1+\gamma_{1}} d s \\
& \geq \frac{r}{2}=\frac{\|(u, v)\|}{2}, \quad \forall t \in J,(u, v) \in \partial P_{r} .
\end{aligned}
$$

Consequently

$$
\left\|A_{1}(u, v)\right\|_{2} \geq \frac{\|(u, v)\|}{2}, \quad \forall(u, v) \in \partial P_{r} .
$$

For any $t \in J,(u, v) \in \partial P_{r}$, by virtue of (H5) and Lemma 2.5, one can see

$$
\begin{aligned}
A_{2}(u, v)(t) & =\int_{0}^{1} G(t, s) g(s, u(s), v(s)) d s \\
& \left.\geq \frac{1}{4} \int_{1 / 4}^{3 / 4} s(1-s)\right) g(s, u(s), v(s)) d s \\
& \geq \frac{k_{2}}{4} \int_{1 / 4}^{3 / 4} s(1-s)\left(\frac{3}{16}\left(\|u\|_{0}+\|v\|_{0}\right)\right)^{\gamma_{2}} d s \\
& \geq \frac{k_{2}}{4(160)^{\gamma_{2}}} r^{\gamma_{2}} \int_{1 / 4}^{3 / 4}[s(1-s)]^{1+\gamma_{2}} d s \\
& \geq \frac{r}{2}=\frac{\|(u, v)\|}{2}, \quad \forall t \in J,(u, v) \in \partial P_{r} .
\end{aligned}
$$

Therefore, $\left\|A_{2}(u, v)\right\|_{0} \geq \frac{\|(u, v)\|}{2}$, for all $(u, v) \in \partial P_{r}$. Consequently, 2.5 holds.
Next we claim that

$$
\begin{equation*}
\|A(u, v)\| \leq\|(u, v)\|, \forall(u, v) \in \partial P_{R} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
R \geq \max \{ & 2 N_{1} M_{1}, M_{2} N_{2}, 2 N_{3} M_{3}, M_{4} N_{4}, \\
& \left(2^{1-\mu_{1}} N_{1}^{\lambda_{1}-\mu_{1}} N_{2}^{\alpha_{1}-\beta_{1}} \int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s\right)^{\frac{1}{1-\left(\mu_{1}+\beta_{1}\right)}} \\
& \left.\left(2^{1-\mu_{2}} N_{3}^{\lambda_{2}-\mu_{2}} N_{4}^{\alpha_{2}-\beta_{2}} \int_{0}^{1} s(1-s) g(s, s(1-s), 1) d s\right)^{\frac{1}{1-\left(\mu_{2}+\beta_{2}\right)}}\right\},
\end{aligned}
$$

$P_{R}=\{\|(u, v)\|<R\}$.
Let $c_{1}=\frac{R}{2 N_{1}}$ and $c_{2}=\frac{N_{2}}{R}$. Then for any $(u, v) \in \partial P_{R}$, by virtue of (H3), we have

$$
\begin{aligned}
-\left(A_{1}(u, v)\right)^{\prime \prime}(t) & =\int_{0}^{1} G(t, s) f(s, u(s), v(s)) d s \\
& \leq \int_{0}^{1} s(1-s) f(s, u(s), v(s)) d s \\
& =\int_{0}^{1} s(1-s) f\left(s, c_{1} \frac{u(s)}{c_{1} s(1-s)} s(1-s), \frac{c_{2} v(s)}{c_{2}}\right) d s \\
& \leq \int_{0}^{1} s(1-s) c_{1}^{\mu_{1}}\left(\frac{u(s)}{c_{1} s(1-s)}\right)^{\lambda_{1}}\left(\frac{1}{c_{2}}\right)^{\beta_{1}}\left(c_{2} v(s)\right)^{\alpha_{1}} f(s, s(1-s), 1) d s \\
& \leq 2^{-\lambda_{1}} c_{1}^{\mu_{1}-\lambda_{1}} c_{2}^{\alpha_{1}-\beta_{1}} R^{\lambda_{1}+\alpha_{1}} \int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s \\
& =2^{-\mu_{1}} N_{1}^{\lambda_{1}-\mu_{1}} N_{2}^{\alpha_{1}-\beta_{1}} R^{\mu_{1}+\beta_{1}} \int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s \\
& \leq \frac{R}{2}=\frac{\|(u, v)\|}{2}
\end{aligned}
$$

Therefore, for any $(u, v) \in \partial P_{R}$, we have

$$
\left\|A_{1}(u, v)\right\|_{2} \leq \frac{\|(u, v)\|}{2}
$$

For any $(u, v) \in \partial P_{R}, t \in J$, by virtue of (H4), one can also see

$$
\begin{aligned}
A_{2}(u, v)(t) & =\int_{0}^{1} G(t, s) g(s, u(s), v(s)) d s \\
& \leq \int_{0}^{1} s(1-s) g(s, u(s), v(s)) d s \\
& \leq 2^{-\mu_{2}} N_{3}^{\lambda_{2}-\mu_{2}} N_{4}^{\alpha_{2}-\beta_{2}} R^{\mu_{2}+\beta_{2}} \int_{0}^{1} s(1-s) g(s, s(1-s), 1) d s \\
& \leq \frac{R}{2}=\frac{\|(u, v)\|}{2}
\end{aligned}
$$

Then for any $(u, v) \in \partial P_{R}$, we have

$$
\left\|A_{2}(u, v)\right\|_{0} \leq \frac{\|(u, v)\|}{2} .
$$

Consequently, 2.6) holds. By Lemma 1.1 and Lemma 2.4, we obtain that A has a fixed point (u, v) in $\overline{P_{R}} \backslash P_{r}$ and satisfies $u^{\prime \prime}(t)<0, u(t)>0, v(t)>0$, for all $t \in(0,1)$.

Necessity. Let $u \in C^{2}[0,1] \cap C^{(4)}(0,1), v \in C[0,1] \cap C^{2}(0,1)$ be a positive solution of 1.1. It follows from $u(0)=u(1)=0$ and $u^{\prime \prime}(t) \leq 0$ for $t \in J$ that there exist $0<m_{1}<1<m_{2}$ such that $m_{1} t(1-t) \leq u(t) \leq m_{2} t(1-t)$. In the same way, there also exist $0<n_{1}<1<n_{2}$ such that $n_{1} t(1-t) \leq v(t) \leq n_{2} t(1-t)$. There exists $t_{0} \in(0,1)$ such that $v^{\prime}\left(t_{0}\right)=0$. This together with $v^{\prime \prime}(t) \leq 0$ for $t \in(0,1)$ yields that $v^{\prime}(t) \geq 0$ as $t \in\left(0, t_{0}\right)$ and $v^{\prime}(t) \leq 0$ as $t \in\left(t_{0}, 1\right)$. Choose positive numbers $c_{3} \leq \min \left\{N_{3}, \frac{1}{m_{2} M_{3}}\right\}, c_{4} \leq \min \left\{N_{4}, \frac{1}{M_{4} n_{2}}\right\}$. Then

$$
\begin{aligned}
g(t, t(1-t), 1) & =g\left(t, c_{3} \frac{t(1-t)}{c_{3} u(t)} u(t), c_{4} \frac{1}{c_{4} v(t)} v(t)\right) \\
& \leq c_{3}^{\lambda_{2}}\left(\frac{t(1-t)}{c_{3} u(t)}\right)^{\mu_{2}} c_{4}^{\alpha_{2}}\left(\frac{1}{c_{4} v(t)}\right)^{\beta_{2}} g(t, u(t), v(t)) \\
& \leq c_{3}^{\lambda_{2}}\left(\frac{1}{c_{3} m_{1}}\right)^{\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}}\left(\frac{1}{v(t)}\right)^{\beta_{2}} g(t, u(t), v(t)) \\
& =c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}}(v(t))^{-\beta_{2}} g(t, u(t), v(t))
\end{aligned}
$$

Namely,

$$
\begin{equation*}
(v(t))^{\beta_{2}} g(t, t(1-t), 1) \leq c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} g(t, u(t), v(t)) \tag{2.7}
\end{equation*}
$$

Hence, integrate (2.7) from t_{0} to t to obtain

$$
\begin{aligned}
\int_{t_{0}}^{t}(v(s))^{\beta_{2}} g(s, s(1-s), 1) d s & \leq c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} \int_{t_{0}}^{t} g(s, u(s), v(s)) d s \\
& =c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} v^{\prime}(t)
\end{aligned}
$$

Since $v(t)$ is decreasing on $\left[t_{0}, 1\right]$, we get

$$
(v(t))^{\beta_{2}} \int_{t_{0}}^{t} g(s, s(1-s), 1) d s \leq-c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} v^{\prime}(t)
$$

namely,

$$
\begin{equation*}
\int_{t_{0}}^{t} g(s, s(1-s), 1) d s \leq-c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} \frac{v^{\prime}(t)}{(v(t))^{\beta_{2}}} \tag{2.8}
\end{equation*}
$$

Note that $\beta_{2}<1$, then integrate 2.8 from t_{0} to 1 to have

$$
\int_{t_{0}}^{1} d t \int_{t_{0}}^{t} g(s, s(1-s), 1) d s \leq-c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} \int_{t_{0}}^{1} \frac{v^{\prime}(t)}{(v(t))^{\beta_{2}}} d t
$$

Therefore,

$$
\int_{t_{0}}^{1}(1-s) g(s, s(1-s), 1) d s \leq c_{3}^{\lambda_{2}-\mu_{2}} c_{4}^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}}\left(1-\beta_{2}\right)^{-1}\left(v\left(t_{0}\right)\right)^{1-\beta_{2}}<\infty
$$

On the other hand, we can also prove

$$
\int_{0}^{t_{0}} s g(s, s(1-s), 1) d s<\infty
$$

Thus

$$
\int_{0}^{1} s(1-s) g(s, s(1-s), 1) d s<\infty
$$

Next, we prove that

$$
\int_{0}^{1} s(1-s) f(s, s(1-s), 1) d s<\infty
$$

Let $c_{1} \leq \min \left\{N_{1}, \frac{1}{m_{2} M_{1}}\right\}, c_{2} \leq \min \left\{N_{2}, \frac{1}{M_{2} n_{2}}\right\}$, then

$$
\begin{aligned}
f(t, t(1-t), 1) & =f\left(t, c_{1} \frac{t(1-t)}{c_{1} u(t)} u(t), c_{2} \frac{1}{c_{2} v(t)} v(t)\right) \\
& \leq c_{1}^{\lambda_{1}}\left(\frac{t(1-t)}{c_{1} u(t)}\right)^{\mu_{1}} c_{2}^{\alpha_{1}}\left(\frac{1}{c_{2} v(t)}\right)^{\beta_{1}} f(t, u(t), v(t)) \\
& \leq c_{1}^{\lambda_{1}}\left(\frac{1}{c_{1} m_{1}}\right)^{\mu_{1}} c_{2}^{\alpha_{1}-\beta_{1}}\left(\frac{1}{v(t)}\right)^{\beta_{1}} f(t, u(t), v(t)) \\
& =c_{1}^{\lambda_{1}-\mu_{1}} c_{2}^{\alpha_{1}-\beta_{1}} m_{1}^{-\mu_{1}}(v(t))^{-\beta_{1}} f(t, u(t), v(t)) .
\end{aligned}
$$

There exists $t_{0} \in(0,1)$ such that $u^{\prime \prime \prime}\left(t_{0}\right)=0$ from $u^{\prime \prime}(0)=u^{\prime \prime}(1)=0$. This together with $u^{(4)} \geq 0$ for $t_{0} \in(0,1)$ yields that $u^{\prime \prime \prime}(t) \geq 0$ as $t \in\left(0, t_{0}\right)$ and $u^{\prime \prime \prime}(t) \leq 0$ as $t \in\left(t_{0}, 1\right)$. Integrate $u^{(4)}(t)=f(t, u(t), v(t))$ from t to t_{0}, we can get

$$
-u^{(3)}(t)=\int_{t}^{t_{0}} f(s, u(s), v(s)) d s, t \in\left(0, t_{0}\right)
$$

However,

$$
\begin{aligned}
\int_{0}^{t_{0}} t f(t, t(1-t), 1) d t & =\int_{0}^{t_{0}} d t \int_{t}^{t_{0}} f(s, s(1-s), 1) d s \\
& \leq \int_{0}^{t_{0}} \int_{t}^{t_{0}} c_{1}^{\lambda_{1}-\mu_{1}} c_{2}^{\alpha_{1}-\beta_{1}} m_{1}^{-\mu_{1}}(v(s))^{-\beta_{1}} f(s, u(s), v(s)) d s
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
v(t) & =\int_{0}^{1} G(t, s) g(s, u(s), v(s)) d s \\
& \geq \frac{1}{4} \int_{1 / 4}^{3 / 4} s(1-s) g\left(s, s(1-s) c_{5} \frac{u(s)}{c_{5} s(1-s)}, c_{6} \frac{v(s)}{c_{6}}\right) d s
\end{aligned}
$$

Let $c_{5} \geq \max \left\{M_{1}, \frac{m_{2}}{N_{1}}\right\}, c_{6} \geq \max \left\{M_{2}, \frac{\|v\|_{0}}{N_{2}}\right\}$. Then

$$
v(t) \geq \frac{1}{4} c_{5}^{\lambda_{2}-\mu_{2}} c_{6}^{\alpha_{2}-\beta_{2}} m_{1}^{\mu_{2}} \int_{1 / 4}^{3 / 4} s(1-s)\left((v(s))^{\beta_{2}} g(s, s(1-s), 1) d s\right.
$$

However, one can see that $v(t) \geq \frac{1}{16}\|v\|_{0}$ as $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$. Hence, for $t \in J$,

$$
v(t) \geq 2^{-\left(2+4 \beta_{2}\right)} c_{5}^{\lambda_{2}-\mu_{2}} c_{6}^{\alpha_{2}-\beta_{2}} m_{1}^{\mu_{2}}\|v\|_{0}^{\beta_{2}} \int_{1 / 4}^{3 / 4} s(1-s) g(s, s(1-s), 1) d s
$$

Let

$$
\begin{aligned}
k_{0}= & c_{1}^{\lambda_{1}-\mu_{1}} c_{2}^{\alpha_{1}-\beta_{1}} m_{1}^{-\mu_{1}}\left(2^{-\left(2+4 \beta_{2}\right)} c_{5}^{\alpha_{2}-\mu_{2}} c_{6}^{\alpha_{2}-\beta_{2}} m_{1}{ }^{\mu_{2}}\|v\|_{0}^{\beta_{2}}\right. \\
& \left.\times \int_{1 / 4}^{3 / 4} s(1-s) g(s, s(1-s), 1) d s\right)^{-\beta_{1}}
\end{aligned}
$$

Thus

$$
\int_{0}^{t_{0}} t f(t, t(1-t), 1) d t \leq k_{0} \int_{0}^{t_{0}} d t \int_{t}^{t_{0}} f(s, u(s), v(s)) d s=k_{0}\left(-u^{\prime \prime}\left(t_{0}\right)\right)<\infty
$$

In the same way, we can also prove

$$
\int_{t_{0}}^{1}(1-t) f(t, t(1-t), 1) d t<+\infty
$$

Hence

$$
\int_{0}^{1} t(1-t) f(t, t(1-t), 1) d t<+\infty
$$

Proof of Theorem 2.2. Sufficiency. First of all, we prove that

$$
\int_{0}^{1} f(t, t(1-t), t(1-t)) d t<+\infty
$$

implies

$$
\int_{0}^{1} t(1-t) f(t, t(1-t), 1) d t<+\infty
$$

Choose positive number $c \geq \max \left\{M_{2}, \frac{1}{4 N_{2}}\right\}$. Then

$$
\begin{aligned}
f(t, t(1-t), t(1-t)) & =f\left(t, t(1-t), c \frac{t(1-t)}{c}\right) \\
& \geq c^{\alpha_{1}-\beta_{1}}(t(1-t))^{\beta_{1}} f(t, t(1-t), 1) \\
& \geq c^{\alpha_{1}-\beta_{1}} t(1-t) f(t, t(1-t), 1)
\end{aligned}
$$

Consequently, we can get

$$
\int_{0}^{1} f(t, t(1-t), t(1-t)) d t \geq c^{\alpha_{1}-\beta_{1}} \int_{0}^{1} t(1-t) f(t, t(1-t), 1) d t
$$

namely,

$$
\int_{0}^{1} t(1-t) f(t, t(1-t), 1) d t<+\infty
$$

On the other hand, we can also prove that

$$
\int_{0}^{1} g(t, t(1-t), t(1-t)) d t<+\infty
$$

This implies

$$
\int_{0}^{1} t(1-t) g(t, t(1-t), 1) d t<+\infty
$$

From above inequalities, we know that (1.1) exists a $C^{2}[0,1] \times C[0,1]$ positive solution (u, v). Therefore it suffices to show that $u^{\prime \prime \prime}\left(0^{+}\right), u^{\prime \prime \prime}\left(1^{-}\right), v^{\prime}\left(0^{+}\right)$and $v^{\prime}\left(1^{-}\right)$ exist. The same reason as the proof of Theorem 2.1 of necessity asserts that there exist $0<m_{1}<1<m_{2}$ and $0<n_{1}<1<n_{2}$ satisfying $m_{1} t(1-t) \leq u(t) \leq$ $m_{2} t(1-t)$ and $n_{1} t(1-t) \leq v(t) \leq n_{2} t(1-t), t \in J$.

Let $c_{1} \geq \max \left\{M_{1}, \frac{m_{2}}{N_{1}}\right\}$ and $c_{2} \geq \max \left\{M_{2}, \frac{n_{2}}{N_{2}}\right\}$, then we have

$$
\int_{0}^{1}\left|u^{(4)}(t)\right| d t=\int_{0}^{1} f(t, u(t), v(t)) d t
$$

$$
\begin{aligned}
& =\int_{0}^{1} f\left(t, c_{1} \frac{u(t)}{c_{1} t(1-t)} t(1-t), c_{2} \frac{v(t)}{c_{2} t(1-t)} t(1-t)\right) d t \\
& \leq c_{1}^{\mu_{1}}\left(\frac{u(t)}{c_{1} t(1-t)}\right)^{\lambda_{1}} c_{2}^{\beta_{1}}\left(\frac{v(t)}{c_{2} t(1-t)}\right)^{\alpha_{1}} \int_{0}^{1} f(t, t(1-t), t(1-t)) d t \\
& \leq c_{1}^{\mu_{1}-\lambda_{1}} c_{2}^{\beta_{1}-\alpha_{1}} m_{2}^{\lambda_{1}} n_{2}^{\alpha_{1}} \int_{0}^{1} f(t, t(1-t), t(1-t)) d t<+\infty
\end{aligned}
$$

This guarantees $u^{\prime \prime \prime}\left(0^{+}\right)$and $u^{\prime \prime \prime}\left(1^{-}\right)$exist.
On the other hand, let $c_{3} \geq \max \left\{M_{3}, \frac{m_{2}}{N_{3}}\right\}$ and $c_{4} \geq \max \left\{M_{4}, \frac{n_{2}}{N_{4}}\right\}$, then

$$
\begin{aligned}
\int_{0}^{1}\left|-v^{\prime \prime}(t)\right| d t & =\int_{0}^{1} g(t, u(t), v(t)) d t \\
& =\int_{0}^{1} g\left(t, c_{3} \frac{u(t)}{c_{3} t(1-t)} t(1-t), c_{4} \frac{v(t)}{c_{4} t(1-t)} t(1-t)\right) d t \\
& \leq c_{3}^{\mu_{2}-\lambda_{2}} c_{4}^{\beta_{2}-\alpha_{2}} m_{2}^{\lambda_{2}} n_{2}^{\alpha_{2}} \int_{0}^{1} g(t, t(1-t), t(1-t)) d t<+\infty
\end{aligned}
$$

This means that $v^{\prime}\left(0^{+}\right)$and $v^{\prime}\left(1^{-}\right)$exist.
Necessity. Let (u, v) be a $C^{3}[0,1] \times C^{1}[0,1]$ positive solution of 1.1). The same reason as the beginning of the proof of sufficiency asserts that there exist $0<$ $m_{1}<1<m_{2}$ and $0<n_{1}<1<n_{2}$ satisfying $m_{1} t(1-t) \leq u(t) \leq m_{2} t(1-t)$ and $n_{1} t(1-t) \leq v(t) \leq n_{2} t(1-t), t \in J$. Suppose $c_{1} \leq \min \left\{N_{1}, \frac{1}{M_{1} m_{2}}\right\}, c_{2} \leq$ $\min \left\{N_{2}, \frac{1}{M_{2} n_{2}}\right\}, c_{3} \leq \min \left\{N_{3}, \frac{1}{M_{3} m_{2}}\right\}$ and $c_{4} \leq \min \left\{N_{4}, \frac{1}{M_{4} n_{2}}\right\}$. Then we have

$$
\begin{aligned}
f(t, t(1-t), t(1-t)) & =f\left(t, c_{1} \frac{t(1-t)}{c_{1} u(t)} u(t), c_{2} \frac{t(1-t)}{c_{2} v(t)} v(t)\right) \\
& \leq c_{1}{ }^{\lambda_{1}}\left(\frac{t(1-t}{c_{1} u(t)}\right) c^{\mu_{1}} c_{2}^{\alpha_{1}}\left(\frac{t(1-t}{c_{1} v(t)}\right) \quad f(t, u(t), v(t)) \\
& \leq c_{1}^{\lambda_{1}{ }^{\beta_{1}-\mu_{1}} c_{2}^{\alpha_{1}-\beta_{1}} m_{1}^{-\mu_{1}} n_{1}{ }^{-\beta_{1}} f(t, u(t), v(t))} .
\end{aligned}
$$

Consequently,

$$
\int_{0}^{1} f(t, t(1-t), t(1-t)) d t \leq c_{1}^{\lambda_{1}-\mu_{1}} c_{2}{ }^{\alpha_{1}-\beta_{1}} m_{1}^{-\mu_{1}} n_{1}^{-\beta_{1}}\left[u^{\prime \prime \prime}\left(1^{-}\right)-u^{\prime \prime \prime}\left(0^{+}\right)\right]<+\infty
$$

On the other hand, we can also prove

$$
\int_{0}^{1} g(t, t(1-t), t(1-t)) d t \leq c_{3}^{\lambda_{2}-\mu_{2}} c_{4}{ }^{\alpha_{2}-\beta_{2}} m_{1}^{-\mu_{2}} n_{1}^{-\beta_{2}}\left[v^{\prime}\left(1^{-}\right)-v^{\prime}\left(0^{+}\right)\right]<+\infty
$$

Therefore, our conclusion follows.
In the following we give some examples to illustrate the theorems obtained in Section 2.

Example 2.6. Consider 1.1 with

$$
f(t, u, v)=p(t) u^{10} v^{1 / 3}+(u+v)^{1 / 3}, \quad g(t, u, v)=a(t) u^{2} v^{2 / 5}+(u+v)^{2 / 5}
$$

where $p, a \in C\left[(0,1), R^{+}\right]$and

$$
\int_{0}^{1}\left[p(t)(t(1-t))^{11}+(t(1-t))(t(1-t)+1)^{1 / 3}\right] d t<+\infty
$$

$$
\int_{0}^{1}\left[a(t)(t(1-t))^{3}+(t(1-t))(t(1-t)+1)^{2 / 5}\right] d t<+\infty
$$

It is obvious that f, g satisfy (H3)-(H5). So it is easy to see, by Theorem 2.1, that 1.1) has a $C^{2}[0,1] \times C[0,1]$ positive solution.

Example 2.7. In (1.1), let

$$
f(t, u, v)=q(t) u^{3} v^{1 / 4}+(u+v)^{1 / 4}, \quad g(t, u, v)=e(t) u^{3} v^{2 / 3}+(u+v)^{2 / 3}
$$

where $q, e \in C\left[(0,1), R^{+}\right]$and

$$
\begin{aligned}
& \int_{0}^{1}\left[q(t)(t(1-t))^{13 / 4}+(2 t(1-t))^{1 / 4}\right] d t<+\infty \\
& \int_{0}^{1}\left[e(t)(t(1-t))^{11 / 3}+(2 t(1-t))^{2 / 3}\right] d t<+\infty
\end{aligned}
$$

It is obvious that f, g satisfy (H3)-(H5). So it is easy to see, by Theorem 2.2 that (1.1) has a $C^{3}[0,1] \times C^{1}[0,1]$ positive solution.

Acknowledgements. The authors are grateful to the anonymous referees for their helpful comments.

References

[1] D. Guo, V. Lakshmikansham and X.Liu; Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers, Dordrecht, 1996.
[2] B. Liu; The existence of positive solutions of singular boundary value systems with Plaplacian, Acta Mathematica Sinica, 1(2005), 35-50. (in Chinese)
[3] Y. Liu; Existence and unboundness of positive solutions for singular boundary value problems on half line, Applied Mathematics and Computation, 144(2003), 543-556.
[4] H. Lv, H. Yu and Y. Liu; Positive solutions for singular boundary value problems of a coupled system of differential equations, J. Math. Anal. Appl., 302(2005), 14-29.
[5] D. O' Regan; Solvability of some fourth (and higher) order singular boundary value problems, J. Math. Anal. Appl., 161(1991), 78-116.
[6] G. Shi and S. Chen; Existence of positive solutions of fourth-order singular superlineaner boundary value problems, Indian J, pure appl.math., 34(2003), 997-1012.
[7] Z. Wei; Positive solutions of singular boundary value problems of fourth order differential equations, Acta Mathematica Sinica, 42(4)1999, 715-722. (in Chinese).
[8] Z. Wei and Z. Zhang; A necessary and sufficient condition for the existence of positve solutions of singular superlinear boundary value problems. Acta Mathematica Sinica, 1(2005), 25-34. (in Chinese)
[9] C. Zhao, Y. Yuan and Y. Liu; A necessary and sufficient condition for the existence of positive solutions to singular boundary value problems of higher order differential equations, Electron. J. Diff. Eqns., 2006(8)(2006), 1-19.
[10] C. Zhao, Y. Liu; A necessary and sufficient condition for the existence of $C^{4 n-1}[0,1]$ positive solutions of higher order singular sublinear boundary value problems, Indian J. pure appl. Math., 38(3) (2007), 163-184.

Yanyan Yuan
Institute of Systems Science, Chinese Academy of Sciences, Beijing 100190, China
E-mail address: yyyuan@amss.ac.cn

Chenglong Zhao
Department of Mathematics and Physics, Jinan Engineering Vocational Technical ColLege, Jinan 250014, China

E-mail address: chlzhao666@126.com

Yansheng LiU
Department of Mathematics, Shandong Normal University, Jinan 250014, China
E-mail address: ysliu6668@sohu.com

[^0]: 2000 Mathematics Subject Classification. 34B16.
 Key words and phrases. Singular boundary value problem; cone; positive Solution. © 2008 Texas State University - San Marcos.
 Submitted January 16, 2008. Published May 21, 2008.
 Supported by grants 10571111 from the NNSF of China, and Y2006A22 from China
 Scholarship Council and Natural Science Foundation of Shandong Province.

