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SOME BASIC THEOREMS ON DIFFERENCE-DIFFERENTIAL
EQUATIONS

BABURAO G. PACHPATTE

Abstract. In this paper some basic theorems on the existence, uniqueness

and continuous dependence of solutions of a certain difference-differential equa-
tion are established. The well known Banach fixed point theorem and the

Gronwall-Bellman integral inequality are used to establish these results.

1. Introduction

Let Rn denote the real n-dimensional Euclidean space with the corresponding
norm | · |. Let R+ = [0,∞) be a subset of the real numbers. Consider the difference-
differential equation

x′(t) = f(t, x(t), x(t− 1)), (1.1)
for t ∈ R+ under the initial conditions

x(t− 1) = φ(t) (0 ≤ t < 1), x(0) = x0, (1.2)

with c0 = φ(1− 0), where f ∈ C(R+ × Rn × Rn,Rn) and φ(t) is a continuous
function for which limt→1−0 φ(t) exists. If we consider the solutions of (1.1) for
t ∈ R+, we obtain a function x(t − 1) which is unable to define as a solution for
0 ≤ t < 1. Hence, we have to impose some additional condition, for example
the first condition in (1.2). In this case it is sufficient to consider the ordinary
differential equation

x′(t) = f(t, x(t), φ(t)),
for 0 ≤ t < 1, with the second condition in (1.2). We note that, here it is essential
to obtain the solutions of (1.1) for 0 ≤ t <∞. It is easy to observe that the integral
equations which are equivalent to (1.1)-(1.2) are

x(t) = x0 +
∫ t

0

f(s, x(s), φ(s))ds,

for 0 ≤ t < 1 and

x(t) = x0 +
∫ 1

0

f(s, x(s), φ(s))ds+
∫ t

1

f(s, x(s), x(s− 1))ds,

for 0 ≤ t <∞.
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In 1960, Sugiyama [9] (see also [10]) studied the existence and uniqueness of
solutions to (1.1) under the initial conditions (1.2) by using Tychonov’s fixed point
theorem, the method of successive approximations, and the comparison method.
The main objective of the present paper is to study the existence, uniqueness and
continuous dependence of solutions to the initial-value problem (1.1)-(1.2). The
main tools are the applications of the Banach fixed point theorem [4, p. 37] and
the Gronwall-Bellman integral inequality (see [8, p.11]).

2. Existence and uniqueness

Let S be the space of functions z(t) ∈ Rn which are continuous for t ∈ R+ and
fulfill the condition

|z(t)| = O(exp(λt)), (2.1)
for some positive constant λ > 0. In this space we define the norm (see [2, 7])

|z|S = sup
t∈R+

[|z(t)| exp(−λt)]. (2.2)

It is easy to see that S with the above norm is a Banach space. Note that condition
(2.1) implies the existence of a nonnegative constant N such that |z(t)| ≤ N exp(λt)
for t ∈ R+. Using this fact in (2.2) we observe that

|z|S ≤ N. (2.3)

. We need the following integral inequality, often referred to as Gronwall Bellman
inequality [8, p.11].

Lemma 2.1. Let u and f be continuous functions defined on R+ and c be a non-
negative constant. If

u(t) ≤ c+
∫ t

0

f(s)u(s)ds,

for t ∈ R+, then

u(t) ≤ c exp
( ∫ t

0

f(s)ds
)
,

for t ∈ R+.

Now we shall prove the following main result of this section.

Theorem 2.2. Assume that:
(i) The function f in (1.1) satisfies the condition

|f(t, x, y)− f(t, x̄, ȳ)| ≤ h(t)[|x− x̄|+ |y − ȳ|], (2.4)

for (t, x, y), (t, x̄, ȳ) ∈ R+ × Rn × Rn, where h ∈ C(R+,R+),
(ii) for λ as in (2.1):

(a) there exists a nonnegative constant α such that α < 1 and∫ t

0

[h(s) + h(s+ 1)] exp(λs)ds ≤ α exp(λt), (2.5)

for t ∈ R+,
(b) there exists a nonnegative constant β such that

|x0|+
∫ 1

0

h(s)|φ(s)|ds+
∫ t

0

|f(s, 0, 0)|ds ≤ β exp(λt), (2.6)

for t ∈ R+. Then the (1.1)-(1.2) has a unique solution on R+ in S.
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Remark 2.3. We note that the linear systems with such a delay with bounded
coefficients on R+ satisfy (2.4), (2.5), (2.6).

Proof of Theorem 2.2. Let x(t) ∈ S and define the operator T by (see [9])

Tx(t) = x0 +
∫ t

0

f(s, x(s), φ(s))ds, (2.7)

for 0 ≤ t < 1, and

Tx(t) = x0 +
∫ 1

0

f(s, x(s), φ(s))ds+
∫ t

1

f(s, x(s), x(s− 1))ds, (2.8)

for 1 ≤ t < ∞. First we shall show that Tx maps S into itself. Evidently, Tx is
continuous on R+ and Tx ∈ Rn. To verify that (2.1) is fulfilled, we consider the
following two cases.
Case 1: 0 ≤ t < 1. From (2.7), using the hypotheses and (2.3), we have

|Tx(t)| ≤ |x0|+
∫ t

0

|f(s, x(s), φ(s))− f(s, 0, 0)|ds+
∫ t

0

|f(s, 0, 0)|ds

≤ |x0|+
∫ t

0

h(s)[|x(s)|+ |φ(s)|]ds+
∫ t

0

|f(s, 0, 0)|ds

≤ |x0|+
∫ 1

0

h(s)|φ(s)|ds+
∫ t

0

|f(s, 0, 0)|ds+ |x|S
∫ t

0

h(s) exp(λs)ds

≤ [β +Nα] exp(λt).
(2.9)

Case 2: 1 ≤ t <∞ From (2.8), using the hypotheses and (2.3), we have

|Tx(t)| ≤ |x0|+
∫ 1

0

|f(s, x(s), φ(s))− f(s, 0, 0)|ds+
∫ 1

0

|f(s, 0, 0)|ds

+
∫ t

1

|f(s, x(s), x(s− 1))− f(s, 0, 0)|ds+
∫ t

1

|f(s, 0, 0)|ds

≤ |x0|+
∫ 1

0

h(s)[|x(s)|+ |φ(s)|]ds+
∫ t

0

|f(s, 0, 0)|ds

+
∫ t

1

h(s)[|x(s)|+ |x(s− 1)|]ds

= |x0|+
∫ 1

0

h(s)|φ(s)|ds+
∫ t

0

|f(s, 0, 0)|ds

+
∫ 1

0

h(s)|x(s)|ds+
∫ t

1

h(s)|x(s)|ds+
∫ t

1

h(s)|x(s− 1)|ds

≤ β exp(λt) +
∫ t

0

h(s)|x(s)|ds+ I1,

(2.10)

where

I1 =
∫ t

1

h(s)|x(s− 1)|ds. (2.11)

By making the change of variable, we obtain

I1 =
∫ t−1

0

h(σ + 1)|x(σ)|dσ ≤
∫ t

0

h(σ + 1)|x(σ)|dσ. (2.12)
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Using (2.12) in (2.10), we get

|Tx(t)| ≤ β exp(λt) + |x|S
∫ t

0

[h(s) + h(s+ 1)] exp(λs)ds

≤ [β +Nα] exp(λt).
(2.13)

From this inequality and (2.9), it follows that Tx ∈ S. This proves that T maps S
into itself.

Next, we verify that the operator T is a contraction map. Let x(t), y(t) ∈ S. We
consider the following two cases.
Case 1: 0 ≤ t < 1. From (2.7) and using the hypotheses, we have

|Tx(t)− Ty(t)| ≤
∫ t

0

|f(s, x(s), φ(s))− f(s, y(s), φ(s))|ds

≤
∫ t

0

h(s)|x(s)− y(s)|ds

≤ |x− y|S
∫ t

0

h(s) exp(λs)ds

≤ |x− y|Sα exp(λt).

(2.14)

Case 2: 1 ≤ t <∞. From (2.8) and using the hypotheses, we have

|Tx(t)− Ty(t)| ≤
∫ 1

0

|f(s, x(s), φ(s))− f(s, y(s), φ(s))|ds

+
∫ t

1

|f(s, x(s), x(s− 1))− f(s, y(s), y(s− 1))|ds

≤
∫ 1

0

h(s)|x(s)− y(s)|ds

+
∫ t

1

h(s)[|x(s)− y(s)|+ |x(s− 1)− y(s− 1)|]ds

=
∫ t

0

h(s)|x(s)− y(s)|ds+ I2,

(2.15)

where

I2 =
∫ t

1

h(s)|x(s− 1)− y(s− 1)|ds. (2.16)

By making the change of variable, we obtain

I2 ≤
∫ t

0

h(s+ 1)|x(s)− y(s)|ds. (2.17)

Using this inequality and (2.15) we get

|Tx(t)− Ty(t)| ≤ |x− y|S
∫ t

0

[h(s) + h(s+ 1)] exp(λs)ds

≤ |x− y|Sα exp(λt),
(2.18)

for all x, y ∈ S. From (2.14) and (2.18), we observe that

|Tx− Ty|S ≤ α|x− y|S .
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Since α < 1, it follows from Banach fixed point theorem [4, p. 37] that T has a
unique fixed in S. The fixed point of T is however a solution of (1.1)-(1.2). The
proof is complete. �

Remark 2.4. We note that the norm defined in (2.2) was first used by Bielecki [2]
for proving the existence and uniqueness of global solutions for ordinary differential
equations. For the developments related to Bielecki’s method, see [3].

The following theorem shows the uniqueness of solutions to (1.1)-(1.2) without
the existence part.

Theorem 2.5. Assume that the function f in equation (1.1) satisfies (2.4). Then
the (1.1)-(1.2) has at most one solution on R+.

Proof. Let x1(t) and x2(t) be two solutions of (1.1)-(1.2) and u(t) = |x1(t)− x2(t)|,
t ∈ R+. We consider the following two cases.
Case 1: 0 ≤ t < 1. From the hypotheses, we have

u(t) ≤
∫ t

0

|f(s, x1(s), φ(s))− f(s, x2(s), φ(s))|ds

≤
∫ t

0

h(s)|x1(s)− x2(s)|ds

=
∫ t

0

h(s)u(s)ds.

(2.19)

Now a suitable application of Lemma 2.1 (with c = 0) yields

|x1(t)− x2(t)| ≤ 0. (2.20)

Case 2: 1 ≤ t <∞. From the hypotheses, we have

u(t) ≤
∫ 1

0

|f(s, x1(s), φ(s))− f(s, x2(s), φ(s))|ds

+
∫ t

1

|f(s, x1(s), x1(s− 1))− f(s, x2(s), x2(s− 1))|ds

≤
∫ 1

0

h(s)|x1(s)− x2(s)|ds

+
∫ t

1

h(s)[|x1(s)− x2(s)|+ |x1(s− 1)− x2(s− 1)|]ds

=
∫ t

0

h(s)|x1(s)− x2(s)|ds+ I3,

(2.21)

where

I3 =
∫ t

1

h(s)|x1(s− 1)− x2(s− 1)|ds.

By making a change of variable, we observe that

I3 ≤
∫ t

0

h(s+ 1)|x1(s)− x2(s)|ds.

Using this inequality in (2.21), we obtain

u(t) ≤
∫ t

0

[h(s) + h(s+ 1)]u(s)ds.
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Now a suitable application of Lemma 2.1 (with c = 0) yields

|x1(t)− x2(t)| ≤ 0.

From (2.20) and this inequality, we have x1(t) = x2(t) for t ∈ R+. Thus there is at
most one solution to (1.1)-(1.2) on R+. �

3. Continuous dependence

In this section we study the continuous dependence of solutions to (1.1) on the
given initial data, and on the function f . Also we show the continuous dependence
of solutions of equations of the form (1.1) on certain parameters.

First, we shall give the following theorem concerning the continuous dependence
of solutions to (1.1) on the given initial data.

Theorem 3.1. Assume that the function f in (1.1) satisfies the condition (2.4).
Let x1(t) and x2(t) be the solutions of (1.1) with the initial conditions

x1(t− 1) = φ1(t) (0 ≤ t < 1), x1(0) = c1, (3.1)

x2(t− 1) = φ2(t) (0 ≤ t < 1), x2(0) = c2, (3.2)

respectively, where c1, c2 are constants. Then

|x1(t)− x2(t)| ≤ c exp
(∫ t

0

h(s)ds
)
, (3.3)

for 0 ≤ t < 1 and

|x1(t)− x2(t)| ≤ c exp
(∫ t

0

[h(s) + h(s+ 1)]ds
)
, (3.4)

for 1 ≤ t <∞, where

c = |c1 − c2|+
∫ 1

0

h(s)|φ1(s)− φ2(s)|ds. (3.5)

Proof. Let u(t) = |x1(t)− x1(t) for t ∈ R+. We consider the following two cases.
Case 1: 0 ≤ t < 1. From the hypotheses, it follows that

u(t) ≤ |c1 − c2|+
∫ t

0

h(s)|f(s, x1(s), φ1(s))− f(s, x2(s), φ2(s))|ds

≤ |c1 − c2|+
∫ t

0

h(s)[||x1(s)− x2(s)|+ |φ1(s)− φ2(s)|]ds

≤ |c1 − c2|+
∫ 1

0

h(s)|φ1(s)− φ2(s)|ds+
∫ t

0

h(s)|x1(s)− x2(s)|ds

= c+
∫ t

0

h(s)u(s)ds.

(3.6)

Now an application of Lemma 2.1 to (3.6), yields (3.2).
Case 2: 1 ≤ t <∞. By following a similar arguments as in the proof of Theorem
2.5 in case 2, from the hypotheses, it follows that

u(t) ≤ |c1 − c2|+
∫ 1

0

|f(s, x1(s), φ1(s))− f(s, x2(s), φ2(s))|ds

+
∫ t

1

|f(s, x1(s), x1(s− 1))− f(s, x2(s), x2(s− 1))|ds
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≤ |c1 − c2|+
∫ 1

0

h(s)[|x1(s)− x2(s)|+ |φ1(s)− φ2(s)|]ds

+
∫ t

1

h(s)[|x1(s)− x2(s)|+ |x1(s− 1)− x2(s− 1)|]ds

= |c1 − c2|+
∫ 1

0

h(s)|φ1(s)− φ2(s)|ds+
∫ t

0

h(s)|x1(s)− x2(s)|ds

+
∫ t

1

h(s)|x1(s− 1)− x2(s− 1)|ds

≤ c+
∫ t

0

[h(s) + h(s+ 1)]u(s)ds. (3.7)

Now an application of Lemma 2.1 yields (3.4). From (3.3) and (3.4), it follows that
the solutions of equation (1.1) depends on the given initial data. �

Now, we consider (1.1)-(1.2) and the corresponding initial-value problem

y′(t) = F (t, y(t), y(t− 1)), (3.8)

for t ∈ R+ under the initial conditions

y(t− 1) = ψ(t), y(0) = y0, (3.9)

where F ∈ C(R+ × Rn × Rn,Rn) and ψ(t) is a continuous function for which the
limit limt→1−0 ψ(t) exists.

The following theorem shows the continuous dependence of solutions to (1.1)-
(1.2) on the function f/

Theorem 3.2. Assume that the function f in (1.1) satisfies (2.4) and

|x0 − y0|+
∫ 1

0

h(s)|φ(s)− ψ(s)|ds

+
∫ 1

0

|f(s, y(s), φ(s))− F (s, y(s), ψ(s))|ds ≤ ε1,

(3.10)

∫ t

1

|f(s, y(s), y(s− 1))− F (s, y(s), y(s− 1))|ds ≤ ε2, (3.11)

where x0, φ, f and y0,ψ, F are as in (1.1)-(1.2) and (3.8)-(3.9), ε1, ε2 are nonneg-
ative constants and y(t) is a solution of (3.8)-(3.9). Then the solution x(t) of
(1.1)-(1.2) depends continuously on the functions involved therein as given below by
(3.13) and (3.15).

Proof. Let u(t) = |x(t)− y(t)| for t ∈ R+. We consider the following two cases.
Case 1: 0 ≤ t < 1. From the hypotheses, we have

u(t) ≤ |x0 − y0|+
∫ t

0

|f(s, y(s), φ(s))− F (s, y(s), ψ(s))|ds

≤ |x0 − y0|+
∫ t

0

|f(s, y(s), φ(s))− f(s, y(s), ψ(s))|ds

+
∫ t

0

|f(s, y(s), ψ(s))− F (s, y(s), ψ(s))|ds

≤ |x0 − y0|+
∫ t

0

h(s)[|x(s)− y(s)|+ |φ(s)− ψ(s)|]ds



8 B. G. PACHPATTE EJDE-2008/75

+
∫ 1

0

|f(s, y(s), ψ(s))− F (s, y(s), ψ(s))|ds

≤ |x0 − y0|+
∫ t

0

h(s)|x(s)− y(s)|ds+
∫ 1

0

h(s)|φ(s)− ψ(s)|ds

+
∫ 1

0

|f(s, y(s), ψ(s))− F (s, y(s), ψ(s))|ds

≤ ε1 +
∫ t

0

h(s)u(s)ds. (3.12)

Now an application of Lemma 2.1 yields that for 0 ≤ t < 1,

|x(t)− y(t)| ≤ ε1 exp
(∫ t

0

h(s)ds
)
. (3.13)

Case 2: 1 ≤ t < ∞. Following an arguments as in the proof of Theorem 2.5 in
case 2, from the hypotheses, we have

u(t) ≤ |x0 − y0|+
∫ 1

0

|f(s, x(s), φ(s))− F (s, y(s), ψ(s))|ds

+
∫ t

1

|f(s, x(s), x(s− 1))− F (s, y(s), y(s− 1))|ds

≤ |x0 − y0|+
∫ 1

0

|f(s, x(s), φ(s))− f(s, y(s), ψ(s))|ds

+
∫ 1

0

|f(s, y(s), ψ(s))− F (s, y(s), ψ(s))|ds

+
∫ t

1

|f(s, x(s), x(s− 1))− f(s, y(s), y(s− 1))|ds

+
∫ t

1

|f(s, y(s), y(s− 1))− F (s, y(s), y(s− 1))|ds

≤ |x0 − y0|+
∫ 1

0

h(s)[|x(s)− y(s)|+ |φ(s)− ψ(s)|]ds

+
∫ 1

0

|f(s, y(s), ψ(s))− F (s, y(s), ψ(s))|ds

+
∫ t

1

h(s)[|x(s)− y(s)|+ |x(s− 1)− y(s− 1)|]ds

+
∫ t

1

|f(s, y(s), y(s− 1))− F (s, y(s), y(s− 1))|ds

≤ |x0 − y0|+
∫ 1

0

h(s)|φ(s)− ψ(s)|ds

+
∫ 1

0

|f(s, y(s), ψ(s))− F (s, y(s), ψ(s))|ds

+
∫ t

0

h(s)|x(s)− y(s)ds|+
∫ t

0

h(s+ 1)|x(s)− y(s)|ds

+
∫ t

1

|f(s, y(s), y(s− 1))− F (s, y(s), y(s− 1))|ds
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≤ (ε1 + ε2) +
∫ t

0

[h(s) + h(s+ 1)]u(s)ds. (3.14)

Now an application of Lemma 2.1 yields that for 1 ≤ t <∞,

|x(t)− y(t)| ≤ (ε1 + ε2) exp
(∫ t

0

[h(s) + h(s+ 1)]ds
)
. (3.15)

From this inequality and (3.13), it follows that (1.1)-(1.2) depends continuously on
the functions involved therein. �

Next, we consider the difference-differential equations

x′(t) = g(t, x(t), x(t− 1), µ), (3.16)

x′(t) = g(t, x(t), x(t− 1), µ0), (3.17)

for t ∈ R+, where g ∈ C(R+ × Rn × Rn ×R,Rn), and with the initial conditions
given by (1.2),

The following theorem states the continuous dependency of solutions to (3.16)-
(1.2) and (3.17)-(1.2) on parameters.

Theorem 3.3. Assume that the function g satisfy the conditions

|g(t, x, y, µ)− g(t, x̄, ȳ, µ)| ≤ p(t)[|x− x̄|+ |y − ȳ|], (3.18)

|g(t, x, y, µ)− g(t, x, y, µ0)| ≤ q(t)|µ− µ0|, (3.19)

where p, q ∈ C(R+,R+), Let x1(t) and x2(t) be the solutions of (3.16)-(1.2) and
(3.17)-(1.2) respectively. Then

|x1(t)− x2(t)| ≤
(
|µ− µ0|

∫ 1

0

q(s)
)

exp
(∫ t

0

p(s)ds
)
, (3.20)

for 0 ≤ t < 1 and

|x1(t)− x2(t)| ≤
(
|µ− µ0|

∫ t

0

q(s)
)

exp
(∫ t

0

[p(s) + p(s+ 1)]ds
)
, (3.21)

for 1 ≤ t <∞.

Proof. Let u(t) = |x1(t)− x2(t) for t ∈ R+. We consider the following two cases.
Case 1: 0 ≤ t < 1. From the hypotheses, we have

u(t) ≤
∫ t

0

|g(s, x1(s), φ(s), µ)− g(s, x2(s), φ(s), µ0)|ds

≤
∫ t

0

|g(s, x1(s), φ(s), µ)− g(s, x2(s), φ(s), µ)|ds

+
∫ t

0

|g(s, x2(s), φ(s), µ)− g(s, x2(s), φ(s), µ0)|ds

≤
∫ t

0

p(s)|x1(s)− x2(s)|ds+
∫ t

0

q(s)|µ− µ0|ds

≤ |µ− µ0|
∫ 1

0

q(s)ds+
∫ t

0

p(s)u(s)ds.

Now a suitable application of Lemma 2.1 yields (3.20).
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Case 2: 1 ≤ t < ∞. By following the arguments in the proof of Theorem 2.5 in
case 2, from the hypotheses, we have

u(t) ≤
∫ 1

0

|g(s, x1(s), φ(s), µ)− g(s, x2(s), φ(s), µ0)|ds

+
∫ t

1

|g(s, x1(s), x1(s− 1), µ)− g(s, x2(s), x2(s− 1), µ0)|ds

≤
∫ 1

0

|g(s, x1(s), φ(s), µ)− g(s, x2(s), φ(s), µ)|ds

+
∫ 1

0

|g(s, x2(s), φ(s), µ)− g(s, x2(s), φ(s), µ0)|ds

+
∫ t

1

|g(s, x1(s), x1(s− 1), µ)− g(s, x2(s), x2(s− 1), µ)|ds

+
∫ t

1

|g(s, x2(s), x2(s− 1), µ)− g(s, x2(s), x2(s− 1), µ0)|ds

≤
∫ 1

0

p(s)|x1(s)− x2(s)|ds+
∫ 1

0

q(s)|µ− µ0|ds

+
∫ t

1

p(s)[|x1(s)− x2(s)|+ |x1(s− 1)− x2(s− 1)|]ds+
∫ t

1

q(s)|µ− µ0|ds

=
∫ t

0

q(s)|µ− µ0|ds+
∫ t

0

p(s)|x1(s)− x2(s)|ds

+
∫ t

1

p(s)|x1(s− 1)− x2(s− 1)|ds

≤ |µ− µ0|
∫ t

0

q(s)ds+
∫ t

0

[p(s) + p(s+ 1)]u(s)ds.

Now a suitable application of Lemma 2.1 yields (3.21). From (3.20) and (3.21), it
follows that the solutions to (3.16)-(1.2) and (3.17)-(1.2) depend continuously on
the parameter µ. �

Note that there are many papers and monographs concerning the existence,
uniqueness and other properties of solutions of (1.1); see [8, 9], [1, p. 342], [5,
p.308], [6, p. 18] and the references cited therein. We believe that the results
given here, using elementary analysis, present some useful basic results for future
reference.
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