Electronic Journal of Differential Equations, Vol. 2008(2008), No. 76, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

GE DONG

Abstract

This article shows the existence of solutions to the nonlinear elliptic problem $A(u)=f$ in Orlicz-Sobolev spaces with a measure valued righthand side, where $A(u)=-\operatorname{div} a(x, u, \nabla u)$ is a Leray-Lions operator defined on a subset of $W_{0}^{1} L_{M}(\Omega)$, with general M.

1. Introduction

Let $M: \mathbb{R} \rightarrow \mathbb{R}$ be an N-function; i.e. M is continuous, convex, with $M(u)>0$ for $u>0, M(t) / t \rightarrow 0$ as $t \rightarrow 0$, and $M(t) / t \rightarrow \infty$ as $t \rightarrow \infty$. Equivalently, M admits the representation $M(u)=\int_{0}^{u} \phi(t) d t$, where ϕ is the derivative of M, with ϕ non-decreasing, right continuous, $\phi(0)=0, \phi(t)>0$ for $t>0$, and $\phi(t) \rightarrow \infty$ as $t \rightarrow \infty$.

The N-function \bar{M} conjugate to M is defined by $\bar{M}(v)=\int_{0}^{t} \psi(s) d s$, where ψ is given by $\psi(s)=\sup \{t: \phi(t) \leq s\}$.

The N-function M is said to satisfy the Δ_{2} condition, if for some $k>0$ and $u_{0}>0$,

$$
M(2 u) \leq k M(u), \quad \forall u \geq u_{0} .
$$

Let P, Q be two N-functions, $P \ll Q$ means that P grows essentially less rapidly than Q; i.e. for each $\varepsilon>0, P(t) / Q(\varepsilon t) \rightarrow 0$ as $t \rightarrow \infty$. This is the case if and only if $\lim _{t \rightarrow \infty} Q^{-1}(t) / P^{-1}(t)=0$.

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with the segment property. The class $W^{1} L_{M}(\Omega)$ (resp., $W^{1} E_{M}(\Omega)$) consists of all functions u such that u and its distributional derivatives up to order 1 lie in $L_{M}(\Omega)$ (resp., $E_{M}(\Omega)$).

Orlicz spaces $L_{M}(\Omega)$ are endowed with the Luxemburg norm

$$
\|u\|_{(M)}=\inf \left\{\lambda>0: \int_{\Omega} M\left(\frac{|u(x)|}{\lambda}\right) d x \leq 1\right\}
$$

The classes $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ of such functions may be given the norm

$$
\|u\|_{\Omega, M}=\sum_{|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{(M)} .
$$

2000 Mathematics Subject Classification. 35J15, 35J20, 35J60.
Key words and phrases. Orlicz-Sobolev spaces; elliptic equation; nonlinear; measure data. (C) 2008 Texas State University - San Marcos.

Submitted October 8, 2006. Published May 27, 2008.

These classes will be Banach spaces under this norm. I refer to spaces of the forms $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ as Orlicz-Sobolev spaces. Thus $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ can be identified with subspaces of the product of $N+1$ copies of $L_{M}(\Omega)$. Denoting this product by ΠL_{M}, we will use the weak topologies $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ and $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$. If M satisfies Δ_{2} condition, then $L_{M}(\Omega)=E_{M}(\Omega)$ and $W^{1} L_{M}(\Omega)=W^{1} E_{M}(\Omega)$.

The space $W_{0}^{1} E_{M}(\Omega)$ is defined as the (norm) closure of $C_{0}^{\infty}(\Omega)$ in $W^{1} E_{M}(\Omega)$ and the space $W_{0}^{1} L_{M}(\Omega)$ as the $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ closure of $C_{0}^{\infty}(\Omega)$ in $W^{1} L_{M}(\Omega)$.

Let $W^{-1} L_{\bar{M}}(\Omega)$ (resp. $W^{-1} E_{\bar{M}}(\Omega)$) denote the space of distributions on which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\bar{M}}(\Omega)$ (resp. $E_{\bar{M}}(\Omega)$). It is a Banach space under the usual quotient norm (see [12]).

If the open set Ω has the segment property, then the space $C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1} L_{M}(\Omega)$ for the modular convergence and thus for the topology $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$ (cf. 12, 13]).

Let $A(u)=-\operatorname{div} a(x, u, \nabla u)$ be a Leray-Lions operator defined on $W^{1, p}(\Omega)$, $1<p<\infty$. Boccardo-Gallouet [7] proved the existence of solutions for the Dirichlet problem for equations of the form

$$
\begin{gather*}
A(u)=f \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

where the right hand f is a bounded Radon measure on Ω (i.e. $f \in \mathcal{M}_{b}(\Omega)$). The function a is supposed to satisfy a polynomial growth condition with respect to u and ∇u.

Benkirane [4, 5] proved the existence of solutions to

$$
\begin{equation*}
A(u)+g(x, u, \nabla u)=f \tag{1.3}
\end{equation*}
$$

in Orlicz-Sobolev spaces where

$$
\begin{equation*}
A(u)=-\operatorname{div}(a(x, u, \nabla u)) \tag{1.4}
\end{equation*}
$$

is a Leray-Lions operator defined on $D(A) \subset W_{0}^{1} L_{M}(\Omega), g$ is supposed to satisfy a natural growth condition with $f \in W^{-1} E_{\bar{M}}(\Omega)$ and $f \in L^{1}(\Omega)$, respectively, but the result is restricted to N-functions M satisfying a Δ_{2} condition. Elmahi extend the results of [4, 5] to general N-functions (i.e. without assuming a Δ_{2}-condition on M) in [8, 9, respectively.

The purpose of this paper is to solve (1.1) when f is a bounded Radon measure, and the Leray-Lions operator A in 1.4 is defined on $D(A) \subset W_{0}^{1} L_{M}(\Omega)$, with general M. We show that the solutions to (1.1) belong to the Orlicz-Sobolev space $W_{0}^{1} L_{B}(\Omega)$ for any $B \in \mathcal{P}_{M}$, where \mathcal{P}_{M} is a special class of N-function (see below). Specific examples to which our results apply include the following:

$$
\begin{gathered}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\mu \quad \text { in } \Omega \\
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u \log ^{\beta}(1+|\nabla u|)\right)=\mu \quad \text { in } \Omega \\
-\operatorname{div} \frac{M(|\nabla u|) \nabla u}{|\nabla u|^{2}}=\mu \quad \operatorname{in} \Omega
\end{gathered}
$$

where $p>1$ and μ is a given Radon measure on Ω.
For some classical and recent results on elliptic and parabolic problems in Orlicz spaces, I refer the reader to [2, 3, 6, 10, 11, 12, 14, 16, 18 .

2. Preliminaries

We define a subset of N-functions as follows.

$$
\begin{aligned}
& \mathcal{P}_{M}=\left\{B: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is an } N \text {-function, } B^{\prime \prime} / B^{\prime} \leq M^{\prime \prime} / M^{\prime}\right. \\
&\text { and } \left.\int_{0}^{1} B \circ H^{-1}\left(1 / t^{1-1 / N}\right) d t<\infty\right\}
\end{aligned}
$$

where $H(r)=M(r) / r$. Assume that

$$
\begin{equation*}
\mathcal{P}_{M} \neq \emptyset \tag{2.1}
\end{equation*}
$$

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with the segment property, M, P be two N-functions such that $P \ll M, \bar{M}, \bar{P}$ be the complementary functions of M, P, respectively, $A: D(A) \subset W_{0}^{1} L_{M}(\Omega) \rightarrow W^{-1} L_{\bar{M}}(\Omega)$ be a mapping given by $A(u)=$ $-\operatorname{div} a(x, u, \nabla u)$ where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a Caratheodory function satisfying for a.e. $x \in \Omega$ and all $s \in \mathbb{R}, \xi, \eta \in \mathbb{R}^{N}$ with $\xi \neq \eta$:

$$
\begin{gather*}
|a(x, s, \xi)| \leq \beta M(|\xi|) /|\xi| \tag{2.2}\\
{[a(x, s, \xi)-a(x, s, \eta)][\xi-\eta]>0} \tag{2.3}\\
a(x, s, \xi) \xi \geq \alpha M(|\xi|) \tag{2.4}
\end{gather*}
$$

where $\alpha, \beta, \gamma>0$.
Furthermore, assume that there exists $D \in \mathcal{P}_{M}$ such that

$$
\begin{equation*}
D \circ H^{-1} \text { is an } N \text {-function. } \tag{2.5}
\end{equation*}
$$

Set $T_{k}(s)=\max (-k, \min (k, s)), \forall s \in \mathbb{R}$, for all $k \geq 0$. Define by $\mathcal{M}_{b}(\Omega)$ as the set of all bounded Radon measure defined on Ω and by $T_{0}^{1, M}(\Omega)$ as the set of measurable functions $\Omega \rightarrow \mathbb{R}$ such that $T_{k}(u) \in W_{0}^{1} L_{M}(\Omega) \cap D(A)$.

Assume that $f \in \mathcal{M}_{b}(\Omega)$, and consider the following nonlinear elliptic problem with Dirichlet boundary

$$
\begin{equation*}
A(u)=f \quad \text { in } \Omega \tag{2.6}
\end{equation*}
$$

The following lemmas can be found in 4].
Lemma 2.1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let M be an N-function, $u \in W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Then $F(u) \in W^{1} L_{M}(\Omega)$ (resp. $\left.W^{1} E_{M}(\Omega)\right)$. Moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial(F \circ u)}{\partial x_{i}}= \begin{cases}F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. in }\{x \in \Omega: u(x) \notin D\} \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \in D\}\end{cases}
$$

Lemma 2.2. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. I suppose that the set of discontinuity points of F^{\prime} is finite. Let M be an N-function, then the mapping $F: W^{1} L_{M}(\Omega) \rightarrow W^{1} L_{M}(\Omega)$ is sequentially continuous with respect to the weak* topology $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$.

3. Existence theorem

Theorem 3.1. Assume that (2.1)-2.5 hold and $f \in \mathcal{M}_{b}(\Omega)$. Then there exists at least one weak solution of the problem

$$
\begin{aligned}
u \in T_{0}^{1, M}(\Omega) \cap W_{0}^{1} L_{B}(\Omega), & \forall B \in \mathcal{P}_{M} \\
\int_{\Omega} a(x, u, \nabla u) \nabla \phi d x=\langle f, \phi\rangle, & \forall \phi \in \mathcal{D}(\Omega)
\end{aligned}
$$

Proof. Denote $V=W_{0}^{1} L_{M}(\Omega)$. (1) Consider the approximate equations

$$
\begin{gather*}
u_{n} \in V \\
-\operatorname{div} a\left(x, u_{n}, \nabla u_{n}\right)=f_{n} \tag{3.1}
\end{gather*}
$$

where f_{n} is a smooth function which converges to f in the distributional sense that such that $\left\|f_{n}\right\|_{L^{1}(\Omega)} \leq\|f\|_{\mathcal{M}_{b}(\Omega)}$. By [4, Theorem 3.1] or [8, there exists at least one solution $\left\{u_{n}\right\}$ to (3.1).

For $k>0$, by taking $T_{k}\left(u_{n}\right)$ as test function in (3.1), one has

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x \leq C k
$$

In view of 2.4$)$, we get

$$
\begin{equation*}
\int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \leq C k \tag{3.2}
\end{equation*}
$$

Hence $\nabla T_{k}\left(u_{n}\right)$ is bounded in $\left(L_{M}(\Omega)\right)^{N}$. By [9] there exists u such that $u_{n} \rightarrow u$ almost everywhere in Ω and

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } W_{0}^{1} L_{M}(\Omega) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right) \tag{3.3}
\end{equation*}
$$

For $t>0$, by taking $T_{h}\left(u_{n}-T_{t}\left(u_{n}\right)\right)$ as test function, we deduce that

$$
\int_{t<\left|u_{n}\right| \leq t+h} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq h\|f\|_{M_{b}(\Omega)}
$$

which gives

$$
\frac{1}{h} \int_{t<\left|u_{n}\right| \leq t+h} M\left(\left|\nabla u_{n}\right|\right) d x \leq\|f\|_{M_{b}(\Omega)}
$$

and by letting $h \rightarrow 0$,

$$
-\frac{d}{d t} \int_{\left|u_{n}\right|>t} M\left(\left|\nabla u_{n}\right|\right) d x \leq\|f\|_{M_{b}(\Omega)} .
$$

Let now $B \in \mathcal{P}_{M}$. Following the lines of [17], it is easy to deduce that

$$
\begin{equation*}
\int_{\Omega} B\left(\left|\nabla u_{n}\right|\right) d x \leq C, \quad \forall n \tag{3.4}
\end{equation*}
$$

We shall show that $a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)$ is bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$. Let $\varphi \in$ $\left(E_{M}(\Omega)\right)^{N}$ with $\|\varphi\|_{(M)}=1$. By 2.2 and Young inequality, one has

$$
\begin{aligned}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \varphi d x & \leq \beta \int_{\Omega} \bar{M}\left(\frac{M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right)}{\left|\nabla T_{k}\left(u_{n}\right)\right|}\right) d x+\beta \int_{\Omega} M(|\varphi|) d x \\
& \leq \beta \int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x+\beta
\end{aligned}
$$

This last inequality is deduced from $\bar{M}(M(u) / u) \leq M(u)$, for all $u>0$, and $\int_{\Omega} M(|\varphi|) d x \leq 1$. In view of 3.2 ,

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \varphi d x \leq C k+\beta
$$

which implies $\left\{a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right\}_{n}$ being a bounded sequence in $\left(L_{\bar{M}}(\Omega)\right)^{N}$.
(2) For the rest of this article, χ_{r}, χ_{s} and $\chi_{j, s}$ will denoted respectively the characteristic functions of the sets $\Omega_{r}=\left\{x \in \Omega ;\left|\nabla T_{k}(u(x))\right| \leq r\right\}, \Omega_{s}=\{x \in$ $\left.\Omega ;\left|\nabla T_{k}(u(x))\right| \leq s\right\}$ and $\Omega_{j, s}=\left\{x \in \Omega ;\left|\nabla T_{k}\left(v_{j}(x)\right)\right| \leq s\right\}$. For the sake of
simplicity, I will write only $\varepsilon(n, j, s)$ to mean all quantities (possibly different) such that

$$
\lim _{s \rightarrow \infty} \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \varepsilon(n, j, s)=0
$$

Take a sequence $\left(v_{j}\right) \subset \mathcal{D}(\Omega)$ which converges to u for the modular convergence in V (cf. [13). Taking $T_{\eta}\left(u_{n}-T_{k}\left(v_{j}\right)\right)$ as test function in (3.1), we obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{\eta}\left(u_{n}-T_{k}\left(v_{j}\right)\right) d x \leq C \eta \tag{3.5}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{\eta}\left(u_{n}-T_{k}\left(v_{j}\right)\right) d x \\
& =\int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) d x \\
& \quad+\int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right)\left(\nabla u_{n}-\nabla T_{k}\left(v_{j}\right)\right) d x \\
& =\int_{\left\{\left|T_{k} u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) d x \\
& \quad+\int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \\
& \quad-\int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right) d x
\end{aligned}
$$

By (2.4) the second term of the right-hand side satisfies

$$
\int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \geq 0
$$

Since $a\left(x, T_{k+\eta}\left(u_{n}\right), \nabla T_{k+\eta}\left(u_{n}\right)\right)$ is bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$, there exists some $h_{k+\eta} \in$ $\left(L_{\bar{M}}(\Omega)\right)^{N}$ such that

$$
a\left(x, T_{k+\eta}\left(u_{n}\right), \nabla T_{k+\eta}\left(u_{n}\right)\right) \rightharpoonup h_{k+\eta}
$$

weakly in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)$. Consequently the third term of the righthand side satisfies

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(v_{j}\right) d x \\
& =\int_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{k+\eta}\left(u_{n}\right), \nabla T_{k+\eta}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) d x \\
& =\int_{\left\{\left|u-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\{|u|>k\}} h_{k+\eta} \nabla T_{k}\left(v_{j}\right) d x+\varepsilon(n)
\end{aligned}
$$

since

$$
\nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\left\{\left|u_{n}\right|>k\right\}} \rightarrow \nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|u-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\{|u|>k\}}
$$

strongly in $\left(E_{M}(\Omega)\right)^{N}$ as $n \rightarrow \infty$. Hence

$$
\int_{\left\{\left|T_{k} u_{n}-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right] d x
$$

$$
\leq C \eta+\varepsilon(n)+\int_{\left\{\left|u-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\{|u|>k\}} h_{k+\eta} \nabla T_{k}\left(v_{j}\right) d x
$$

Let $0<\theta<1$. Define

$$
\Phi_{n, k}=\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]
$$

For $r>0$, I have

$$
\begin{aligned}
0 & \leq \int_{\Omega_{r}}\left\{\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\}^{\theta} d x \\
& =\int_{\Omega_{r}} \Phi_{n, k}^{\theta} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}} d x+\int_{\Omega_{r}} \Phi_{n, k}^{\theta} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} d x
\end{aligned}
$$

Using the Hölder Inequality (with exponents $1 / \theta$ and $1 /(1-\theta)$), the first term of the right-side hand is less than

$$
\left(\int_{\Omega_{r}} \Phi_{n, k} d x\right)^{\theta}\left(\int_{\Omega_{r}} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}} d x\right)^{1-\theta} .
$$

Noting that

$$
\begin{aligned}
& \int_{\Omega_{r}} \Phi_{n, k} d x \\
&= \int_{\Omega_{r}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x-\int_{\Omega_{r}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}\left(u_{n}\right) d x \\
& \quad-\int_{\Omega_{r}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u) d x+\int_{\Omega_{r}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}(u) d x \\
& \leq C k+\beta \int_{\Omega_{r}} \bar{M}\left(\frac{M\left(\left|\nabla T_{k}(u)\right|\right)}{\left|\nabla T_{k}(u)\right|}\right) d x+\beta \int_{\Omega_{r}} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \\
& \quad+\beta \int_{\Omega_{r}} \bar{M}\left(\frac{M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right)}{\left|\nabla T_{k}\left(u_{n}\right)\right|}\right) d x+\beta \int_{\Omega_{r}} M\left(\left|\nabla T_{k}(u)\right|\right) d x \\
& \quad+\beta \int_{\Omega_{r}} M\left(\left|\nabla T_{k}(u)\right|\right) d x \\
& \leq C k+\beta \int_{\Omega_{r}} M\left(\left|\nabla T_{k}(u)\right|\right) d x+\beta \int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \\
& \quad+\beta \int_{\Omega} M\left(\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x+\beta \int_{\Omega_{r}} M\left(\left|\nabla T_{k}(u)\right|\right) d x+\beta \int_{\Omega_{r}} M\left(\left|\nabla T_{k}(u)\right|\right) d x \\
& \leq(2 \beta+1) C k+3 M(r) \operatorname{meas} \Omega
\end{aligned}
$$

it follows that

$$
\int_{\Omega_{r}} \Phi_{n, k}^{\theta} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}} d x \leq \tilde{C}\left(\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}\right)^{1-\theta}
$$

where $\tilde{C}=[(2 \beta+1) C k+3 M(r) \text { meas } \Omega]^{\theta}$.
Using the Hölder Inequality (with exponents $1 / \theta$ and $1 /(1-\theta)$),

$$
\begin{aligned}
& \int_{\Omega_{r}} \Phi_{n, k}^{\theta} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} d x \\
& \leq\left(\int_{\Omega_{r}} \Phi_{n, k} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} d x\right)^{\theta}\left(\int_{\Omega_{r}} d x\right)^{1-\theta}
\end{aligned}
$$

$$
\leq\left(\int_{\Omega_{r}} \Phi_{n, k} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} d x\right)^{\theta}(\text { meas } \Omega)^{1-\theta}
$$

Hence

$$
\begin{aligned}
0 \leq & \int_{\Omega_{r}}\left\{\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\}^{\theta} d x \\
\leq & \tilde{C}\left(\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}\right)^{1-\theta} \\
& +\left(\int_{\Omega_{r}} \Phi_{n, k} \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} d x\right)^{\theta}(\operatorname{meas} \Omega)^{1-\theta} \\
= & \tilde{C}\left(\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}\right)^{1-\theta} \\
& +\left(\int_{\Omega_{r} \cap\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\right. \\
& \left.\times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x\right)^{\theta}(\operatorname{meas} \Omega)^{1-\theta}
\end{aligned}
$$

For each $s \geq r$ one has

$$
\begin{aligned}
& 0 \leq \int_{\Omega_{r} \cap\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& \leq \int_{\Omega_{s} \cap\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& =\int_{\Omega_{s} \cap\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x \\
& \leq \int_{\Omega \cap\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x \\
& =\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right] d x \\
& +\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(v_{j}\right) \chi_{j, s}-\nabla T_{k}(u) \chi_{s}\right] d x \\
& +\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right)\right. \\
& \left.-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi_{s}\right)\right] \nabla T_{k}\left(u_{n}\right) d x \\
& -\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right) \nabla T_{k}\left(v_{j}\right) \chi_{j, s} d x \\
& +\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi_{s}\right) \nabla T_{k}(u) \chi_{s} d x \\
& =I_{1}(n, j, s)+I_{2}(n, j, s)+I_{3}(n, j, s)+I_{4}(n, j, s)+I_{5}(n, j, s)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right] d x \\
& =\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right)\right] \\
& \quad \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right] d x \\
& \quad+\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j, s}\right] d x \\
& \quad-\int_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|\nabla T_{k}\left(v_{j}\right)\right|>s\right\}} d x
\end{aligned}
$$

The second term of the right-hand side tends to

$$
\int_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}(u), \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{s}\right] d x
$$

since $a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi_{s}\right) \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}$ tends to

$$
a\left(x, T_{k}(u), \nabla T_{k}(u) \chi_{s}\right) \chi_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}
$$

in $\left(E_{\bar{M}}(\Omega)\right)^{N}$ while $\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{s}$ tends weakly to $\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{s}$ in $\left(L_{M}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$.

Since $a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)$ is bounded in $\left(L_{\bar{M}}(\Omega)\right)^{N}$ there exists some $h_{k} \in$ $\left(L_{\bar{M}}(\Omega)\right)^{N}$ such that (for a subsequence still denoted by $\left.u_{n}\right)$

$$
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup h_{k} \quad \text { weakly in }\left(L_{\bar{M}}(\Omega)\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)
$$

In view of the fact that $\nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} \rightarrow \nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}$ strongly in $\left(E_{M}(\Omega)\right)^{N}$ as $n \rightarrow \infty$ the third term of the right-hand side tends to

$$
-\int_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} h_{k} \nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|\nabla T_{k}\left(v_{j}\right)\right|>s\right\}} d x
$$

Hence in view of the modular convergence of $\left(v_{j}\right)$ in V, one has

$$
\begin{aligned}
I_{1}(n, j, s) \leq & C \eta+\varepsilon(n)+\int_{\left\{\left|u-T_{k}\left(v_{j}\right)\right| \leq \eta\right\} \cap\{|u|>k\}} h_{k+\eta} \nabla T_{k}\left(v_{j}\right) d x \\
& +\int_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} h_{k} \nabla T_{k}\left(v_{j}\right) \chi_{\left\{\left|\nabla T_{k}\left(v_{j}\right)\right|>s\right\}} d x \\
& -\int_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} a\left(x, T_{k}(u), \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{s}\right] d x \\
= & C \eta+\varepsilon(n)+\varepsilon(j)+\int_{\Omega} h_{k} \nabla T_{k}(u) \chi_{\left\{\left|\nabla T_{k}(u)\right|>s\right\}} d x \\
& -\int_{\Omega} a\left(x, T_{k}(u), 0\right) \chi_{\left\{\left|\nabla T_{k}(u)\right|>s\right\}} d x
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
I_{1}(n, j, s)=C \eta+\varepsilon(n, j, s) \tag{3.6}
\end{equation*}
$$

For what concerns I_{2}, by letting $n \rightarrow \infty$, one has

$$
I_{2}(n, j, s)=\int_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}} h_{k}\left[\nabla T_{k}\left(v_{j}\right) \chi_{j, s}-\nabla T_{k}(u) \chi_{s}\right] d x+\varepsilon(n)
$$

since

$$
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup h_{k} \quad \text { weakly in }\left(L_{\bar{M}}\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)
$$

while $\chi_{\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[\nabla T_{k}\left(v_{j}\right) \chi_{j, s}-\nabla T_{k}(u) \chi_{s}\right]$ approaches

$$
\chi_{\left\{\left|T_{k}(u)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[\nabla T_{k}\left(v_{j}\right) \chi_{j, s}-\nabla T_{k}(u) \chi_{s}\right]
$$

strongly in $\left(E_{M}\right)^{N}$. By letting $j \rightarrow \infty$, and using Lebesgue theorem, then

$$
\begin{equation*}
I_{2}(n, j, s)=\varepsilon(n, j) \tag{3.7}
\end{equation*}
$$

Similar tools as above, give

$$
\begin{equation*}
I_{3}(n, j, s)=-\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u) \chi_{s}\right) \nabla T_{k}(u) \chi_{s} d x+\varepsilon(n, j) \tag{3.8}
\end{equation*}
$$

Combining (3.6), 3.7), and (3.8), we have

$$
\begin{aligned}
& \int_{\Omega_{r} \cap\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right| \leq \eta\right\}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& \leq \varepsilon(n, j, s) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0 & \leq \int_{\Omega_{r}}\left\{\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\}^{\theta} d x \\
& \leq \tilde{C}\left(\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right|>\eta\right\}\right)^{1-\theta}+(\operatorname{meas} \Omega)^{1-\theta}(\varepsilon(n, j, s))^{\theta}
\end{aligned}
$$

Which yields, by passing to the limit superior over n, j, s and η,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega_{r}}\left\{\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\right. \\
& \left.\times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\}^{\theta} d x=0
\end{aligned}
$$

Thus, passing to a subsequence if necessary, $\nabla u_{n} \rightarrow \nabla u$ a.e. in Ω_{r}, and since r is arbitrary,

$$
\nabla u_{n} \rightarrow \nabla u \quad \text { a.e. in } \Omega .
$$

By 2.2 and 2.5),

$$
\int_{\Omega} D \circ H^{-1}\left(\frac{\left|a\left(x, u_{n}, \nabla u_{n}\right)\right|}{\beta}\right) d x \leq \int_{\Omega} D\left(\left|\nabla u_{n}\right|\right) d x \leq C
$$

Hence

$$
a\left(x, u_{n}, \nabla u_{n}\right) \rightharpoonup a(x, u, \nabla u) \quad \text { weakly for } \sigma\left(\Pi L_{D \circ H^{-1}} \Pi E_{\overline{D \circ H^{-1}}}\right)
$$

Going back to approximate equations (3.1), and using $\phi \in \mathcal{D}(\Omega)$ as the test function, one has

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla \phi d x=\left\langle f_{n}, \phi\right\rangle
$$

in which I can pass to the limit. This completes the proof.

References

[1] R. Adams; Sobolev spaces, Academic Press, New York, 1975.
[2] L. Aharouch, E. Azroul and M. Rhoudaf; Nonlinear Unilateral Problems in Orlicz spaces, Appl. Math., 200 (2006), 1-25.
[3] A. Benkirane, A. Emahi; Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Analysis, 28 (11), 1997, 17691784.
[4] A. Benkirane, A. Elmahi; An existence for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Analysis, 36 (1999) 11-24.
[5] A. Benkirane, A. Emahi; A strongly nonlinear elliptic equation having natural growth terms and L1 data, Nonlinear Analysis, 39 (2000) 403-411.
[6] L. Boccardo, T. Gallouet; Non-linear elliptic and parabolic equations involving measure as data, J. Funct. Anal. 87 (1989) 149-169.
[7] L. Boccardo, T. Gallouet; Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, 17 (3/4), 1992, 641-655.
[8] A. Elmahi, D. Meskine; Existence of solutions for elliptic equations having natural growth terms in orlicz spaces, Abstr. Appl. Anal. 12 (2004) 1031-1045.
[9] A. Elmahi, D. Meskine; Non-linear elliptic problems having natural growth and L1 data in Orlicz spaces, Annali di Matematica (2004) 107-114.
[10] A. Elmahi, D. Meskine; Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Analysis 60 (2005) 1-35.
[11] A.Fiorenza, A. Prignet; Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data, ESAIM: Control, Optimisation and Calculus of Variations, 9 (2003), 317-341.
[12] J. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974) 163-205.
[13] J. Gossez; Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), 17 C 24.
[14] J. Gossez, V. Mustonen; Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Analysis TMA, 11 (3), 1987, 379-392.
[15] M. Krasnoselski, Y. Rutickii; Convex functions and Orlicz space, Noordhoff, Groningen, 1961.
[16] D. Meskine; Parabolic equations with measure data in Orlicz spaces, J. Evol. Equ. 5 (2005) 529-543.
[17] G. Talenti; Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura. Appl. IV, 120 (1979) 159-184.
[18] T. Vecchio; Nonlinear elliptic equations with measure data, Potential Anal. 4 (1995) 185-203.
Ge Dong

1. Department of Mathematics, Shanghai University, No. 99, Shangda Rd., Shanghai, China
2. Department of Basic, Jianqiao College, No. 1500, Kangqiao Rd., Shanghai, China

E-mail address: dongge97@sina.com

