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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO FUNCTIONAL
INTEGRAL EQUATION WITH DEVIATING ARGUMENTS

M. DIANA JULIE, KRISHNAN BALACHANDRAN

Abstract. This article presents results on the existence and asymptotic be-

havior of solutions of a functional integral equation with deviating arguments.

The proof of our main result uses the classical Schauder fixed point theorem
and the technique of measures of noncompactness.

1. Introduction

The theory of functional integral equations with deviating argument is very
important and significant branch of nonlinear analysis. It is worthwhile mentioning
that these theories find numerous applications in physics, mechanics, control theory,
biology, ecology, economics, theory of nuclear reactors, engineering, natural sciences
and so on [7, 8, 10]. One of the basic problems considered in the theory of functional
integral equations with deviating arguments is to establish convenient conditions
guaranteeing the existence of solutions of those equations. It is well known that
existence of solutions of equations of such a type depends strongly on the size of
the delay arguments involved in those equations.

In this article we will examine the functional integral equation

x(t) = f
(
t, x(σ1(t)),

∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
, t ≥ 0. (1.1)

The functional integral equation of the above form contains a lot of special types
of functional integral equations. The differential equations with transformed argu-
ment or differential equations of neutral type can also be transformed to functional
integral equations. Such type of equations were investigated in lots of papers [5, 12].

The aim of this paper is to investigate the existence and asymptotic behavior
of solutions of (1.1). The main tools used in our considerations are the concept
of a measure of noncompactness and the classical Schauder fixed point principle.
The investigations of the paper are placed in the space of continuous and tempered
functions on the real line. The result obtained here generalizes several ones obtained
earlier by many authors [1, 8, 9, 10, 11].
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2. Notation and auxiliary results

Let E be a real Banach space with the norm ‖ ·‖ and the zero element θ. Denote
by B(x, r) the closed ball centered at x and with radius r. The ball B(θ, r) will be
denoted by Br.

If X is a subset of E then X denotes the closure, and Conv X denotes the
convex closure of X. We use the standard notation X +Y , λX to denote the usual
algebraic operations on subsets X, Y of the space E. Further, let ME denote the
family of all nonempty and bounded subsets of E and NE its subfamily consisting
of all relatively compact sets.

We will accept the following definition of measure of noncompactness [6].

Definition 2.1. A mapping µ : ME → R+ = [0,+∞) is said to be a measure of
noncompactness in the space E if it satisfies the following conditions:

(i) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ;
(ii) X ⊂ Y implies µ(X) ≤ µ(Y );
(iii) µ(Conv X) = µ(X);
(iv) µ(X) = µ(X);
(v) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];
(vi) If (Xn) is a sequence of sets from ME such that Xn+1 ⊂ Xn, Xn = Xn

(n = 1, 2, 3, . . . ) and if limn→∞ µ(Xn) = 0, then the intersection X∞ =
∩∞n=1Xn is nonempty.

The family ker µ defined in axiom (i) is called the kernel of the measure of
noncompactness µ.

Remark 2.2. Note that the intersection set X∞ described in axiom (vi) is a
member of the kernel of the measure of noncompactness µ. In fact, the inequality
µ(X∞) ≤ µ(Xn) for n = 1, 2, . . . implies that µ(X∞) = 0. Hence X∞ ∈ ker µ. This
property of the set X∞ will be very important in our investigations.

Now, let us assume that p = p(t) is a given function defined and continuous on
the interval R+ with real positive values. Denote by C

(
R+, p(t)

)
= Cp the Banach

space consisting of all real functions x = x(t) defined and continuous on R+ and
such that

sup{|x(t)|p(t) : t ≥ 0} < ∞.

The space Cp is furnished with the standard norm

‖x‖ = sup{|x(t)|p(t) : t ≥ 0}.

Further we recall the definition of the measure of noncompactness in the space Cp

which will be used in our considerations [2, 6]. Let X be a nonempty and bounded
subset of the space Cp. Fix positive number T > 0. For an arbitrary function
x ∈ X and ε > 0 denote by ωT (x, ε) the modulus of continuity of the function x,
tempered by the function p, on the interval [0, T ]; i.e.

ωT (x, ε) = sup{|x(t)p(t)− x(s)p(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
ωT

0 (X) = lim
ε→0

ωT (X, ε), ω0(X) = lim
T→∞

ωT
0 (X).
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Also, we put

b(X) = lim
T→∞

{
sup
x∈X

{
sup{|x(t)|p(t) : t ≥ T}

}}
.

Finally, we define the function µ on the family MCp
by putting µ(X) = ω0(X) +

b(X).
It may be shown that the function µ is the measure of noncompactness in

the space Cp [2]. The kernel ker µ is the family of all nonempty and bounded
sets X such that functions belonging to X are locally equicontinuous on R+ and
limt→∞ x(t)p(t) = 0 uniformly with respect to the set X, i.e. for each ε > 0 there
exists T > 0 with the property that |x(t)|p(t) ≤ ε for t ≥ T and for x ∈ X. This
property will be crucial in our further study.

Finally, let us assume that x is a real function defined and continuous on R+.
Fix T > 0 and denote by νT (x, ε) the usual modulus of continuity of the function
x on the interval [0, T ]:

νT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

3. Main result

We will consider the nonlinear functional-integral equation (1.1) under the fol-
lowing assumptions:

(H1) f : R+ × R × R → R is a continuous function and there exists a constant
K ≥ 0 such that

|f(t, x1, y)− f(t, x2, y)| ≤ K|x1 − x2|

for all t ∈ R+, x1, x2, y ∈ R;
(H2) There exists a continuous function L0 : R+ → R+ and a continuous nonin-

creasing function L1 : R+ → R such that

|f(t, 0, y)| ≤ L0(t) + |y| expL1(t)

for all t ∈ R+ and y ∈ R;
(H3) k : R+ × R+ → R is a continuous function and there exists a continuous

function a : R+ → R+ and a continuous nondecreasing function b : R+ →
R+ such that

|k(t, s)| ≤ a(t)b(s) for all t, s ∈ R+;

(H4) g : R+ × R → R is a continuous function and there exists a continuous
nondecreasing function p : R+ → R+ such that

|g(s, x)| ≤ p(s)|x| for all s ∈ R+ and x ∈ R;

(H5) σ1, σ2 : R+ → R+ are continuous functions such that σ1(t) ≤ t and σ2(t) ≤
t;

(H6) limt→∞ ta(t)b(t)p(t) = 0 and limt→∞ L0(t) exp
(
−

∫ t

0
L0(s)ds

)
= 0;

Let A = sup{a(t) : t ∈ R+} and

L(t) =
∫ t

0

[L0(s) + b(s)p(s) expL1(s)]ds.

Obviously the function L(t) is nondecreasing and continuous on R+. Denote by
CL, the space C

(
R+, exp(−ML(t))

)
, where M > 1 is an arbitrarily fixed constant.
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Theorem 3.1. Assume (H1)-(H6) and that (K + A/M) < 1. Then (1.1) has at
least one solution x ∈ CL such that x(t) = o(exp(ML(t)) as t →∞.

Proof. Consider the operator F defined on the space CL by the formula

(Fx)(t) = f
(
t, x(σ1(t)),

∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
, t ≥ 0.

Observe that the operator F is well defined on the space CL and the function Fx
is continuous on R+. Next, in view of our assumptions, for arbitrarily fixed x ∈ CL

and t ∈ R+, we get

|(Fx)(t)| exp(−ML(t))

≤
∣∣f(

t, x(σ1(t)),
∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
− f

(
t, 0,

∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)∣∣ exp(−ML(t))

+
∣∣f(

t, 0,

∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)∣∣ exp(−ML(t))

≤ K|x(σ1(t))| exp(−ML(t)) + L0(t) exp(−ML(t))

+ expL1(t)
∫ t

0

∣∣k(t, s)
∣∣ ∣∣g(

s, x(σ2(s))
)∣∣ds exp(−ML(t))

≤ K‖x‖ exp(M(L(σ1(t)− L(t)))) + L0(t) exp(−ML(t))

+ expL1(t)
∫ t

0

a(t)b(s)p(s)|x(σ2(s))|ds exp(−ML(t))

≤ K‖x‖+ L0(t) exp(−ML(t))

+ a(t)‖x‖
∫ t

0

b(s)p(s) expL1(s) exp(ML(s))ds exp(−ML(t))

≤ K‖x‖+ L0(t) exp
(
−

∫ t

0

L0(s)ds
)

+ a(t)‖x‖
∫ t

0

[L0(s) + b(s)p(s) expL1(s)] exp(ML(s))ds exp(−ML(t))

≤ K‖x‖+
A

M
‖x‖+ B,

where

B = sup
{
L0(t) exp

(
−

∫ t

0

L0(s)ds
)

: t ∈ R+

}
.

Obviously B < ∞ by virtue of assumption (H6).
The above obtained estimate shows that Fx is bounded on R+. This implies

that the operator F is a self mapping of the space CL. Moreover for r = B/(1 −
K −A/M), the operator F transforms the ball Br into itself.

Let us take an arbitrary nonempty subset X of the ball Br. Fix T > 0 and take
an arbitrary function x ∈ X. Then evaluating similarly as before, for a fixed t,
t ≥ T , we get

|(Fx)(t)| exp(−ML(t))

≤ K|x(σ1(t))| exp(−ML(t)) + L0(t) exp(−ML(t))
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+ expL1(t)
∫ t

0

a(t)b(s)p(s)|x(σ2(s))|ds · exp(−ML(t))

≤ K|x(σ1(t))| exp(−ML(σ1(t))) + L0(t) exp(−ML(t))

+ a(t) expL1(t)‖x‖
∫ t

0

b(s)p(s) exp(ML(s))ds exp(−ML(t))

≤ K|x(σ1(t))| exp(−ML(σ1(t))) + L0(t) exp(−ML(t))

+ rta(t)b(t)p(t) expL1(t)

≤ K|x(σ1(t))| exp(−ML(σ1(t))) + L0(t) exp
(
−

∫ t

0

L0(s)ds
)

+ rta(t)b(t)p(t) expL1(0).

Hence in view of the assumption (H6), we infer that

b(FX) ≤ Kb(X). (3.1)

where b(X) was defined previously.
Next, let us fix T > 0 and ε > 0. Take arbitrary t, s ∈ [0, T ] with |t − s| ≤ ε.

Then we derive the following chain of inequalities.

|(Fx)(t)− (Fx)(s)| ≤
∣∣f(

t, x(σ1(t)),
∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ

)
− f

(
t, x(σ1(s)),

∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ

)∣∣
+

∣∣f(
t, x(σ1(s)),

∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ

)
− f

(
s, x(σ1(s)),

∫ s

0

k(s, τ)g
(
τ, x(σ2(τ))

)
dτ

)∣∣
≤ K|x(σ1(t))− x(σ1(s))|

+
∣∣f(

t, x(σ1(s)),
∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ

)
− f

(
s, x(σ1(s)),

∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ

)∣∣
+

∣∣f(
s, x(σ1(s)),

∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ

)
− f

(
s, x(σ1(s)),

∫ s

0

k(s, τ)g
(
τ, x(σ2(τ))

)
dτ

)∣∣
≤ K|x(σ1(t))− x(σ1(s))|+ νT

1 (f, ε) + νT
2 (f, ε),

(3.2)

where

νT
1 (f, ε) = sup

{
|f(t, x, y)− f(s, x, y)| : t, s ∈ [0, T ], |t− s| ≤ ε,

|x| ≤ r exp(ML(T )), |y| ≤ N1

}
,

νT
2 (f, ε) = sup

{
|f(t, x, y1)− f(t, x, y2)| : t ∈ [0, T ], |x| ≤ r exp(ML(T )),

|y1|, |y2| ≤ N1, |y1 − y2| ≤ N2

}
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while the constants N1 and N2 appearing above are defined in the following way

N1 = r sup
{
a(t)

∫ t

0

b(s)p(s) exp(ML(s))ds : s, t ∈ [0, T ]},

N2 ≤
∣∣ ∫ t

0

k(t, τ)g
(
τ, x(σ2(τ))

)
dτ −

∫ t

0

k(s, τ)g
(
τ, x(σ2(τ))

)
dτ

∣∣
+

∣∣ ∫ t

0

k(s, τ)g
(
τ, x(σ2(τ))

)
dτ −

∫ s

0

k(s, τ)g
(
τ, x(σ2(τ))

)
dτ

∣∣
≤

∫ t

0

∣∣k(t, τ)− k(s, τ)
∣∣∣∣g(

τ, x(σ2(τ))
)∣∣dτ

+ ε sup
{∣∣k(t, τ)

∣∣∣∣g(
τ, x(σ2(τ)

)∣∣ : t, τ ∈ [0, T ]
}

≤ νT (k, ε)T sup
{∣∣g(

τ, x(σ2(τ)
)∣∣ : τ ∈ [0, T ]

}
+ ε sup

{∣∣k(t, τ)
∣∣ ∣∣g(

τ, x(σ2(τ)
)∣∣ : t, τ ∈ [0, T ]

}
.

Now, let us denote
q(ε) = νT

1 (f, ε) + νT
2 (f, ε).

From the uniform continuity of the function f(t, x, y) on compact subsets of R+ ×
R× R, we deduce that q(ε) → 0 as ε → 0. Further, from (3.2), we have

|(Fx)(t) exp(−ML(t))− (Fx)(s) exp(−ML(s))|
≤ |(Fx)(t) exp(−ML(t))− (Fx)(s) exp(−ML(t))|

+ |(Fx)(s) exp(−ML(t))− (Fx)(s) exp(−ML(s))|
≤ |(Fx)(t)− (Fx)(s)| exp(−ML(t))

+ |(Fx)(s)| | exp(−ML(t))− exp(−ML(s))|
≤ K|x(σ1(t))− x(σ1(s))| exp(−ML(t)) + q(ε) exp(−ML(t))

+ |(Fx)(s)| | exp(−ML(t))− exp(−ML(s))|
≤ K|x(σ1(t)) exp(−ML(t))− x(σ1(s)) exp(−ML(s))|

+ K|x(σ1(s)) exp(−ML(s))− x(σ1(s)) exp(−ML(t))|
+ q(ε) exp(−ML(t)) + |(Fx)(s)| | exp(−ML(t))− exp(−ML(s))|

≤ K|x(σ1(t)) exp(−ML(σ1(t)))− x(σ1(s)) exp(−ML(σ1(s)))|
+ K|x(σ1(s))| | exp(−ML(σ1(s)))− exp(−ML(σ1(t)))|
+ q(ε) exp(−ML(t)) + |(Fx)(s)|| exp(−ML(t))− exp(−ML(s))|

≤ KωT
(
x, νT (σ1, ε)

)
+ Kr exp(ML(σ1(T )))

νT
(

exp(−ML(σ1(t))), ε
)

+ q(ε) exp(−ML(t))

+ rνT
(

exp(−ML(t)), ε
)[

Kr exp(ML(T )) + sup {L0(t) : t ∈ [0, T ]}

+ r sup {t exp(L1(t))a(t)b(t)p(t) exp(ML(t)) : t ∈ [0, T ]}
]
.

Keeping in mind, the uniform continuity of the functions t → exp(−ML(t)) and
t → exp(−ML(σ1(t))) on the interval [0, T ], from the above estimate we infer that

ωT
0 (FX) ≤ KωT

0 (X).
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Consequently,
ω0(FX) ≤ Kω0(X). (3.3)

Now linking (3.1) and (3.3), we get

µ(FX) ≤ Kµ(X) (3.4)

where µ denotes the measure of noncompactness defined earlier.
Further let us consider the sequence (Bn

r ), where B1
r = Conv F (Br), B2

r =
Conv F (B1

r ), . . . . Obviously all sets of this sequence are nonempty, bounded, convex
and closed. Apart from this we have that Bn+1

r ⊂ Bn
r ⊂ Br for n = 1, 2, 3, . . . .

Thus, keeping in mind that K < 1 and taking into account of (3.4), we infer that
limn→∞ µ(Bn

r ) = 0. Hence, in view of the axiom (vi) of Definition 2.1, we deduce
that the set Y = ∩∞n=1B

n
r is nonempty, bounded, convex and closed. Moreover,

in the light of Remark 2.2 we have that Y ∈ ker µ. Let us also observe that the
operator F maps the set Y into itself.

Next we show that F is continuous on the set Y . Let us fix ε > 0 and take
arbitrary functions x, y ∈ Y such that ‖x − y‖ ≤ ε. Taking into account the fact
that Y ∈ ker µ and the description of sets from ker µ we can find T > 0 such that
for each z ∈ Y and t ≥ T we have that |z(t)| exp(−ML(t)) ≤ ε/2.

Observe that based on our assumptions, for an arbitrarily fixed t ∈ R+, we have

|(Fx)(t)− (Fy)(t)| exp(−ML(t))

≤
∣∣f(

t, x(σ1(t)),
∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
− f

(
t, y(σ1(t)),

∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)∣∣ exp(−ML(t))

+
∣∣f(

t, y(σ1(t)),
∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
− f

(
t, y(σ1(t)),

∫ t

0

k(t, s)g
(
s, y(σ2(s))

)
ds

)∣∣ exp(−ML(t))

≤ Kε +
∣∣f(

t, y(σ1(t)),
∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
− f

(
t, y(σ1(t)),

∫ t

0

k(t, s)g
(
s, y(σ2(s))

)
ds

)∣∣ exp(−ML(t)).

(3.5)

Now, let us assume that t ∈ [0, T ], where T is chosen as above. Then we obtain∣∣f(
t, y(σ1(t)),

∫ t

0

k(t, s)g
(
s, x(σ2(s))

)
ds

)
− f

(
t, y(σ1(t)),

∫ t

0

k(t, s)g
(
s, y(σ2(s))

)
ds

)∣∣ exp(−ML(t))

≤ νT (f, ε) exp(−ML(t))

≤ νT (f, ε)

(3.6)

where νT (f, ε) is defined as

νT (f, ε) = sup
{
|f(t, v, x)− f(t, v, y)| : t ∈ [0, T ], |v| ≤ r exp(ML(T )),

|x|, |y| ≤ N1, |x− y| ≤ N3

}
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while the constant N3 appearing above is defined by the formula

N3 = sup
{ ∫ t

0

k(t, s)
∣∣g(

s, x(σ2(s))
)
− g

(
s, y(σ2(s))

)∣∣ds : t, s ∈ [0, T ]
}

= TνT (g, ε) sup
{
|k(t, s)| : t, s ∈ [0, T ]

}
.

Observe that in view of the uniform continuity of the function f(t, v, x) on the set
[0, T ]×[−r exp(ML(T )), r exp(ML(T ))]×[−N1, N1], we conclude that νT (f, ε) → 0
as ε → 0.

Next, we assume that t ≥ T . Then keeping in mind that x, y ∈ Y and F : Y → Y ,
we derive easily the estimate

|(Fx)(t)− (Fy)(t)| exp(−ML(t))

≤ |(Fx)(t)| exp(−ML(t)) + |(Fy)(t)| exp(−ML(t)) ≤ ε.
(3.7)

Now linking (3.5)-(3.7), we conclude that the operator F is continuous on the
set Y .

Finally, taking into account the properties of the set Y and the operator F :
Y → Y established above and applying the classical Schauder fixed point theorem
we infer that the operator F has at least one fixed point x = x(t) in Y . Obviously,
the function x(t) is a solution of (1.1).

Moreover, keeping in mind that Y ∈ ker µ, we obtain that x(t) = o(exp(ML(t))
as t →∞. �

4. Example

Consider the functional integral equation, with deviating arguments,

x(t) = t2 + arctan
[x(t/3)

4 + t2
+

1
(1 + t3)

∫ t

0

exp(−t)s2x(s− exp(−s))

× cos
(
x2(s− exp(−s))

)
ds

]
, t ≥ 0.

(4.1)

Note that the above equation represents a special case of (1.1) where

f(t, x, y) = t2 + arctan
[ x

4 + t2
+

y

(1 + t3)
]
,

σ1(t) = t/3 and σ2(t) = t − exp(−t). Moreover, the functions k(t, s) and g(s, x)
take the form k(t, s) = s exp(−t) and g(s, x) = s x cos x2.

It is easily seen that for (4.1), the assumption (H2) of Theorem 3.1 is satisfied
with L0(t) = t2 and L1(t) = − ln(1 + t3). In fact, observe that

|f(t, 0, y)| ≤ t2 +
∣∣ arctan

( y

1 + t3
)∣∣ ≤ t2 +

|y|
1 + t3

.

Also, note that the function f(t, x, y) is continuous on the set R+ × R× R and for
arbitrary t ∈ R+, x1, x2, y ∈ R, we obtain

|f(t, x1, y)− f(t, x2, y)| ≤ 1
4 + t2

|x1 − x2| ≤
1
4
|x1 − x2|.

This means the function f(t, x, y) satisfies the Lipschitz condition with respect to
x with the constant K = 1

4 .
Moreover the assumptions (H3) and (H4) of Theorem 3.1 are satisfied with a(t) =

exp(−t), b(t) = p(t) = t and hence A=1. Now, we get (K + A/M) < 1 for M > 1.
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Similarly we can verify other details concerning the assumptions of Theorem 3.1.
Taking into account the above established facts and applying Theorem 3.1, we infer
that (4.1) has at least one solution x = x(t) such that x ∈ CL, where

L(t) =
t3

3
+

1
3

ln(1 + t3).

Apart from this, we have that

x(t) = o
(

exp
(
M

( t3

3
+

1
3

ln(1 + t3)
)))

as t →∞, where M > 1 is a constant.
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