Electronic Journal of Differential Equations, Vol. 2008(2008), No. 80, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SOME NONLINEAR INTEGRAL INEQUALITIES ARISING IN DIFFERENTIAL EQUATIONS

KHALED BOUKERRIOUA, ASSIA GUEZANE-LAKOUD

ABSTRACT. The aim of this paper is to obtain estimates for functions satisfying some nonlinear integral inequalities. Using ideas from Pachpatte [3], we generalize the estimates presented in [2, 4].

1. INTRODUCTION AND MAIN RESULTS

Integral inequalities are a necessary tools in the study of properties of the solutions of linear and nonlinear differential equations, such as boundness, stability, uniqueness, etc. This justifies the intensive investigation on integral inequalities; see for example [1, 5, 6]. The aim of this paper is to establish some new generalizations of integral inequalities that have a wide applications in the study of differential equations. More precisely, using some ideas from [3], we give further generalizations of the results presented in [2, 4].

We begin by giving some material necessary for our study. We denote by \mathbb{R} the set of real numbers, and by \mathbb{R}_+ the nonnegative real numbers

Lemma 1.1. For $x \in \mathbb{R}_+$, $y \in \mathbb{R}_+$, 1/p + 1/q = 1, we have $x^{1/p}y^{1/q} \le x/p + y/q$.

Now we state the main results of this work.

Theorem 1.2. Let u, a, b, g and h be real valued nonnegative continuous functions defined on \mathbb{R}_+ , p, r, q be real non negative constants. Assume that the functions

$$\frac{a(t) + p/r}{b(t)}, \quad \frac{a(t) + r/p}{b(t)}, \quad \frac{a(t) + \min(r/p, q/p)}{b(t)}$$

are nondecreasing and that

$$u^{p}(t) \le a(t) + b(t) \int_{0}^{t} [g(s)u^{q}(s) + h(s)u^{r}(s)]ds.$$
(1.1)

(1) If 0 < r < p < q, then

$$u(t) \le (a(t) + \frac{p}{r})^{1/p} \left(1 - \left(\frac{q}{p} - 1\right) \int_0^t b(s)(g(s) + \frac{r}{p}h(s)) \left(a(s) + \frac{p}{r}\right)^{\frac{q}{p} - 1} ds\right)^{\frac{1}{p-q}} (1.2)$$

Key words and phrases. Integral inequalities; nonlinear function.

²⁰⁰⁰ Mathematics Subject Classification. 26D15, 26D20.

^{©2008} Texas State University - San Marcos.

Submitted Ocother 31, 2007. Published May 28, 2008.

for $t \leq \beta_{p,q,r}$, where

$$\beta_{p,q,r} = \sup \left\{ t \in \mathbb{R}_+ : \left(\frac{q}{p} - 1\right) \int_0^t b(s)(g(s) + \frac{r}{p}h(s)) \left(a(s) + \frac{p}{r}\right)^{\frac{q}{p} - 1} ds < 1 \right\}.$$

(2) If 0 , then

$$u(t) \le (a(t) + \frac{r}{p})^{1/p} \left(1 - \left(\frac{q}{p} - 1\right) \int_0^t b(s)(g(s) + h(s)) \left(a(s) + \frac{r}{p}\right)^{\frac{q}{p} - 1} ds\right)^{\frac{1}{p-q}}$$

for $t \leq \beta_{p,q,r}$, where

$$\beta_{p,q,r} = \sup\left\{t \in R_+ : \left(\frac{q}{p} - 1\right)\int_0^t b(s)(g(s) + h(s))\left(a(s) + \frac{r}{p}\right)^{\frac{q}{p} - 1}ds < 1\right\}.$$

(3) If 0 and <math>p < r, then

$$u(t) \le (a(t) + \min(\frac{r}{p}, \frac{q}{p}))^{1/p} \left(1 - (\max(\frac{q}{p}, \frac{r}{p}) - 1) \int_0^t b(s)(g(s) + h(s))(a(s) + \min(\frac{r}{p}, \frac{q}{p}))^{\max(\frac{q}{p}, \frac{r}{p}) - 1} ds\right)^{\frac{1}{p(1 - \max\{q/p, r/p\})}}$$

for $t \leq \beta_{p,q,r}$, where

$$\begin{split} \beta_{p,q,r} &= \sup \left\{ t \in R_+ : \left(\max(\frac{q}{p}, \frac{r}{p}) - 1 \right) \int_0^t b(s)(g(s) + h(s)) \left(a(s) + \min(\frac{r}{p}, \frac{q}{p}) \right)^{\max(\frac{q}{p}, \frac{r}{p}) - 1} ds < 1 \right\}. \end{split}$$

Theorem 1.3. Suppose that the hypothesis of Theorem 1.2 hold and the function b(t) is decreasing. Let c be a real valued nonnegative continuous and nondecreasing function for $t \in \mathbb{R}_+$. Also assume that

$$u^{p}(t) \leq c^{p}(t) + b(t) \int_{0}^{t} [g(s)u^{q}(s) + h(s)u^{r}(s)]ds.$$
(1.3)

(1) If 0 < r < p < q, then

$$u(t) \le c(t)(1+\frac{p}{r})^{1/p} \left\{ 1 - \left(\frac{q}{p} - 1\right) \int_0^t (1+\frac{p}{r})^{\frac{q}{p}-1} b(s) K(s) ds \right\}^{\frac{1}{p-q}}$$
(1.4)

for $t \leq \beta_{p,q,r}$, where

$$\beta_{p,q,r} = \sup\left\{t \in R_{+} : \left(\frac{q}{p} - 1\right) \int_{0}^{t} \left(1 + \frac{p}{r}\right)^{\frac{q}{p} - 1} b(s) K(s) ds < 1\right\},\$$
$$K(s) = g(s)c(s)^{q-p} + \frac{r}{p} h(s)c(s)^{r-p}.$$

(2) If $t \in \mathbb{R}+$ and 0 , then

$$u(t) \le c(t)(1+\frac{r}{p})^{1/p} \left(1 - \left(\frac{q}{p} - 1\right) \int_0^t b(s)K(s)(1+\frac{r}{p})^{\frac{q}{p}-1} ds\right)^{\frac{1}{p-q}}$$

for $t \leq \beta_{p,q,r}$, where

$$\begin{split} \beta_{p,q,r} &= \sup \big\{ t \in R_+ : (\frac{q}{p}-1) \int_0^t b(s) K(s) (1+\frac{r}{p})^{\frac{q}{p}-1} ds < 1 \big\}, \\ &K(s) = (g(s) c(s)^{q-p} + h(s) c(s)^{r-p}). \end{split}$$

EJDE-2008/80

(3) If $t \in \mathbb{R}+$ and 0 , <math>p < r, then

$$\begin{split} u(t) &\leq (1 + \min(\frac{r}{p}, \frac{q}{p}))^{1/p} \Big(1 - (\max(\frac{q}{p}, \frac{r}{p}) - 1) \int_0^t b(s) K(s) \\ &\times (1 + \min(\frac{r}{p}, \frac{q}{p}))^{\max(\frac{q}{p}, \frac{r}{p}) - 1} ds \Big)^{\frac{1}{p(1 - \max(\frac{q}{p}, \frac{r}{p}))}} \end{split}$$

for $t \leq \beta_{p,q,r}$, where

$$\begin{split} \beta_{p,q,r} &= \sup\left\{t \in R_+ : \left(\max(\frac{q}{p}, \frac{r}{p}) - 1\right) \int_0^t b(s) K(s) (1) \right. \\ &+ \min(\frac{r}{p}, \frac{q}{p}) \right)^{\max(q/p, r/p) - 1} ds < 1 \end{split}$$

and $K(s) = (g(s)c(s)^{q-p} + h(s)c(s)^{r-p}).$

Note that in Theorems 1.2 and 1.3, we have studied the case p < q. For the case p > q, similar results are given in [2].

Proof of Theorem 1.2. (1) Define a function

$$v(t) = \int_0^t [g(s)u^q(s) + h(s)u^r(s)] ds.$$

then from inequality (1.1) and Lemma 1.1, we deduce that

$$u^{q}(t) \le (a(t) + b(t)v(t))^{q/p},$$
(1.5)

$$u^{r}(t) \le (a(t) + b(t)v(t))^{r/p},$$
(1.6)

$$u^{r}(t) \leq \frac{r}{p}(a(t) + b(t)v(t)) + \frac{p-r}{p},$$
(1.7)

$$u^{r}(t) \leq \frac{r}{p}(a(t) + b(t)v(t) + \frac{p-r}{r}),$$
(1.8)

$$u^{r}(t) \le \frac{r}{p}(a(t) + b(t)v(t) + \frac{p}{r}).$$
(1.9)

Since $\frac{q}{p} > 1$, which implies

$$v'(t) \le \left[g(t) + \frac{r}{p}h(t)\right] \left[a(t) + b(t)v(t) + \frac{p}{r}\right]^{q/p}.$$
(1.10)

Taking into account that the function $\frac{a(t) + \frac{p}{r}}{b(t)}$ is nondecreasing for $0 \le t \le \tau$, we have

$$v'(t) \le M(t)(\frac{a(\tau) + \frac{p}{r}}{b(\tau)} + v(t)),$$

where

$$M(t) = b(t)(g(t) + \frac{r}{p}h(t))(a(t) + b(t)v(t) + \frac{p}{r})^{\frac{q}{p}-1},$$

consequently

$$v(t) + \frac{a(\tau) + \frac{p}{r}}{b(\tau)} \le \frac{a(\tau) + \frac{p}{r}}{b(\tau)} \exp \int_0^t M(s) ds.$$

For $\tau = t$, we can see that

$$a(t) + b(t)v(t) + \frac{p}{r} \le (a(t) + \frac{p}{r}) \exp \int_0^t M(s) ds,$$
 (1.11)

then the function M(t) can be estimated as

$$M(t) \le b(t)(g(t) + \frac{r}{p}h(t))(a(t) + \frac{p}{r})^{\frac{q}{p}-1} \cdot \exp\left(\int_{0}^{t} (\frac{q}{p} - 1)M(s)ds\right).$$
(1.12)

Let

$$L(t) = (\frac{q}{p} - 1)M(t).$$
(1.13)

Now we estimate the expression $L(t) \exp(-\int_0^t L(s) ds)$ by using (1.12) to obtain

$$L(t)\exp(\int_0^t -L(s)ds) \le (\frac{q}{p} - 1)b(t)(g(t) + \frac{r}{p}h(t))(a(t) + \frac{p}{r})^{\frac{q}{p} - 1}.$$

Observing that

$$L(t) \exp(\int_0^t -L(s)ds) = \frac{d}{dt}(-\exp(\int_0^t -L(s)ds)),$$

$$\leq (\frac{q}{p} - 1)b(t)(g(t) + \frac{r}{p}h(t))(a(t) + \frac{p}{r})^{\frac{q}{p} - 1}.$$

Then integrate from 0 to t to obtain

$$(1 - \exp \int_0^t -L(s)ds) \le \int_0^t (\frac{q}{p} - 1)b(s)(g(s) + \frac{r}{p}h(s))(a(s) + \frac{p}{r})^{\frac{q}{p} - 1}ds.$$

Replacing L(t) by its value in (1.13), we obtain

$$(1 - \exp \int_0^t (1 - \frac{q}{p}) M(s) ds) \le \int_0^t (\frac{q}{p} - 1) b(s) (g(s) + \frac{r}{p} h(s)) (a(s) + \frac{p}{r})^{\frac{q}{p} - 1} ds,$$

then

$$\exp \int_0^t M(s)ds \le \left\{ 1 - \left[\int_0^t (\frac{q}{p} - 1)b(s)(g(s) + \frac{r}{p}h(s))(a(s) + \frac{p}{r})^{\frac{q}{p} - 1}ds \right] \right\}^{\frac{p}{p-q}}.$$

Using this inequality, (1.11), and (1.1) we obtain (1.2). This completes the proof of stament (1).

(2) for $t \in \mathbb{R}+$ and 0 , from (1.5) we have

$$u^{q}(t) \leq \left(a(t) + b(t)v(t) + \frac{r}{p}\right)^{q/p},$$

$$v'(t) \leq (g(t) + h(t))\left(a(t) + b(t)v(t) + \frac{r}{p}\right)^{q/p}.$$

Since $\frac{a(t) + \frac{r}{p}}{b(t)}$ is nondecreasing for $0 \le t \le \tau$,

$$v'(t) \le M(t)(\frac{a(\tau) + \frac{r}{p}}{b(\tau)} + v(t)),$$

where

$$M(t) = b(t)(g(t) + h(t))\left(a(t) + b(t)v(t) + \frac{r}{p}\right)^{\frac{q}{p}-1}.$$

By the same method as in the proof of the first part, we have

$$u(t) \le (a(t) + \frac{r}{p})^{1/p} \Big(1 - (\frac{q}{p} - 1) \int_0^t b(s)(g(s) + h(s)) \Big(a(s) + \frac{r}{p} \Big)^{\frac{q}{p} - 1} ds \Big)^{\frac{1}{p-q}},$$

where

$$\beta_{p,q,r} = \sup \big\{ t \in R_+ : (\frac{q}{p} - 1) \int_0^t b(s)(g(s) + h(s)) \big(a(s) + \frac{r}{p} \big)^{\frac{q}{p} - 1} ds < 1 \big\}.$$

EJDE-2008/80

(3) For $t \in \mathbb{R}+$ and p < r, p < q, we have

$$u^{q}(t) \leq (a(t) + b(t)v(t) + \min(\frac{r}{p}, \frac{q}{p}))^{\max(r/p, q/p)},$$

which gives

$$v'(t) \le (g(t) + h(t))(a(t) + b(t)v(t) + \min(\frac{r}{p}, \frac{q}{p}))^{\max(r/p, q/p)}$$
$$v'(t) \le M(t)(\frac{a(\tau) + \min(\frac{r}{p}, \frac{q}{p})}{b(\tau)} + v(t)),$$

where

$$M(t) = b(t)(g(t) + h(t))(a(t) + b(t)v(t) + \min(\frac{r}{p}, \frac{q}{p}))^{\max(\frac{r}{p}, \frac{q}{p}) - 1}.$$

Using the proof of the first part of Theorem 1.2, we get the desired result.

Proof of Theorem 1.3. Since c(t) is nonnegative, continuous and nondecreasing, it follows that (1.3) can be written as

$$\left(\frac{u(t)}{c(t)}\right)^{p} \le 1 + b(t) \int_{0}^{t} \left[g(s)\left(\frac{u(s)}{c(s)}\right)^{q} \cdot c(s)^{q-p} + h(s)\left(\frac{u(s)}{c(s)}\right)^{r} c(s)^{r-p}\right] ds.$$
(1.14)

Then a direct application of the inequalities established in Theorem 1.2 gives the required results. $\hfill \Box$

2. Application

As an application of Theorem 1.2, consider the nonlinear differential equation

$$u^{p-1}(t)u'(t) + g(t)u^{q}(t) = l(t, u(t)).$$
(2.1)

Assume that $p < q, u : \mathbb{R}_+ \to \mathbb{R}, g : \mathbb{R}_+ \to \mathbb{R}_+, l : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R},$

$$|l(t, u(t))| \le \alpha(t) + h(t)|u(t)|^r,$$
(2.2)

 $\alpha: \mathbb{R}_+ \to \mathbb{R}_+, h: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ are continuous functions.

Integrating (2.1) from 0 to t, we have

$$\frac{u^{p}(t)}{p} - \frac{u_{0}^{p}}{p} + \int_{0}^{t} g(s)u^{q}(s)ds = \int_{0}^{t} l(s)ds.$$

From this equality and (2.2), we obtain

$$|u(t)|^{p} \leq a(t) + p \int_{0}^{t} [g(s)|u(s)|^{q} + h(s)|u(s)|^{r}] ds,$$

where $a(t) = |u_0|^p + p \int_0^t \alpha(s) ds$. Applying Theorem 1.2, we find explicit bounds of the solution u(t) of the equation (2.1) in different cases where p < r and p > r.

References

- D. Bainov and P. Simeonov; Integrale Inequalities and application, Kluwer Academic Publishers, New York, 1992.
- [2] F. C. Jiang and F. W. Meng; Explicit bounds on some new nonlinear integral inequalities. J. Comput. Appl. Math. 205, (2007). 479-486.
- [3] B. G. Pachpatte; Inequalities for Differential and integral equation, Academic Press, New York, 1998.
- B. G. Pachpatte; On some new inequalities related to certain inequality arising in the theory of differential equations. JMAA251, 736-751, 2000.

- [5] B. G. Pachpatte; Some new finite difference inequalities, Comput. Math. Appl. 28, 227-241, 1994.
- B. G. Pachpatte; On Some discrete inequalities useful in the theory of certain partial finite difference equations, Ann. Differential Equations, 12, 1-12, 1996.

Khaled Boukerrioua

UNIVERSITY OF GUELMA, GUELMA, ALGERIA *E-mail address:* khaledV2004@yahoo.fr

Assia Guezane-Lakoud

BADJI-MOKHTAR UNIVERSITY, ANNABA, ALGERIA *E-mail address:* a_guezane@yahoo.fr