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EXISTENCE RESULTS FOR STRONGLY INDEFINITE ELLIPTIC
SYSTEMS

JIANFU YANG, YING YE, XIAOHUI YU

Abstract. In this paper, we show the existence of solutions for the strongly
indefinite elliptic system

−∆u = λu + f(x, v) in Ω,

−∆v = λv + g(x, u) in Ω,

u = v = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary, λk0 <
λ < λk0+1, where λk is the kth eigenvalue of −∆ in Ω with zero Dirichlet

boundary condition. Both cases when f, g being superlinear and asymptoti-

cally linear at infinity are considered.

1. Introduction

In this paper, we investigate the existence of solutions for the strongly indefinite
elliptic system

−∆u = λu+ f(x, v) in Ω,

−∆v = λv + g(x, u) in Ω,
u = v = 0, on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN , N ≥ 3, λk0 < λ < λk0+1, where λk is
the kth eigenvalue of −∆ in Ω with zero Dirichlet boundary condition.

Problem (1.1) with λ = 0 was considered in [5, 6], where the existence results for
superlinear nonlinearities were established by finding critical points of the functional

J(u, v) =
∫

Ω

∇u∇v dx−
∫

Ω

F (x, v) dx−
∫

Ω

G(x, u) dx. (1.2)

A typical feature of the functional J is that the quadratic part

Q(u, v) =
∫

Ω

∇u∇v dx

is positive definite in an infinite dimensional subspace E+ = {(u, u) : u ∈ H1
0 (Ω)}

of H1
0 (Ω) ×H1

0 (Ω) and negative definite in its infinite dimensional complimentary
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subspace E− = {(u,−u) : u ∈ H1
0 (Ω)}, that is, J is strongly indefinite. A linking

theorem is then used in finding critical points of J .
In the case that λ lies in between higher eigenvalues, the parameter λ affects the

definiteness of the corresponding quadratic part

Qλ(u, v) =
∫

Ω

(∇u∇v − λuv) dx

of the associated functional

Jλ(u, v) =
∫

Ω

(∇u∇v − λuv) dx−
∫

Ω

F (x, v) dx−
∫

Ω

G(x, u) dx, (1.3)

of (1.1) defined on H1
0 (Ω)×H1

0 (Ω). A key ingredient in use of the linking theorem is
to find a proper decomposition of H1

0 (Ω)×H1
0 (Ω) into a direct sum of two subspaces

so that Qλ is definite in each subspace. Obviously, Qλ is neither positive definite
in E+ nor negative definite in E−. So we need to find out a suitable decomposition
of H1

0 (Ω)×H1
0 (Ω).

We first consider the asymptotically linear case. Such a problem has been exten-
sively studied for one equation, see for instance, [4, 10, 11] and references therein.
For asymptotically linear elliptic system, we refer readers to [8]. Particularly, in
this case, the Ambrosetti-Rabinowtz condition is not satisfied, whence it is hard
to show a Palais-Smale sequence is bounded. So one turns to using Cerami condi-
tion in critical point theory instead of the Palais-Smale condition, various existence
results for asymptotically linear problems are then obtained. By a functional I
defined on E satisfies Cerami condition we mean that for any sequence {un} ⊂ E
such that |I(un)| ≤ C and (1+‖un‖)I ′(un) → 0, there is a convergent subsequence
of {un}. For the asymptotically linear system (1.1), it is strongly indefinite and the
nonlinearities do not fulfill the Ambrosetti-Rabinowitz condition. To handle the
problem, we assume:

(A1) f, g ∈ C(Ω× R,R), f(x, v) = o(|v|), g(x, u) = o(|u|) uniformly for x ∈ Ω as
|u|, |v| → 0 and tf(x, t) ≥ 0, tg(x, t) ≥ 0.

(A2) There exist positive constants l,m, such that limt→±∞
f(x,t)
t = l and

limt→±∞
g(x,t)
t = m.

(A3) λ±
√
ml 6= λk for any k ∈ N.

(A4) There exists u0 ∈ span{ϕk0+1, ϕk0+2, . . . } with
∫
Ω
|∇u0|2 − λ(u0)2 dx = 1

2
such that ∫

Ω

(|∇u0|2 − λu2
0) dx−min(l,m)

∫
Ω

u2
0 dx < 0.

Theorem 1.1. Suppose (A1)-(A4), problem (1.1) has at least a nontrivial solution.

Condition (A4) holds, for example, if min(l,m) > λk0+1 − λ, we choose u0 =
αϕk+1 for some α > 0, then

∫
Ω
|∇u0|2−λu2

0 dx−min(l,m)
∫
Ω
u2

0 dx = (λk0+1−λ−
min(l,m))

∫
Ω
u2

0 dx < 0.
Theorem 1.1 is proved by the following linking theorem with Cerami condition

in [3], which is a generalization of usual one in [2], [9].

Lemma 1.2. Let E be a real Hilbert space with E = E1 ⊕ E2. Suppose I ∈
C1(E,R), satisfies Cerami condition, and

(I1) I(u) = 1
2 (Lu, u) + b(u), where Lu = L1P1u + L2P2u and Li : Ei → Ei is

bounded and selfadjoint, i=1,2.
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(I2) b′ is compact.
(I3) There exists a subspace Ẽ ⊂ E and sets S ⊂ E,Q ⊂ Ẽ and constants α > ω

such that
(i) S ⊂ E1 and I|S ≥ α,
(ii) Q is bounded and I|∂Q ≤ ω,
(iii) S and Q link.
Then I possesses a critical value c ≥ α.

Next, we consider superlinear case. We assume that
(B1) f, g ∈ C(Ω× R,R), f(x, v) = o(|v|), g(x, u) = o(|u|) uniformly for x ∈ Ω as

|u|, |v| → 0.
(B2) There exists a constant γ > 2 such that

0 < γF (x, v) ≤ vf(x, v), 0 < γG(x, u) ≤ ug(x, u),

where F (x, v) =
∫ v
0
f(x, s) ds and G(x, u) =

∫ u
0
g(x, u) ds.

(B3) There exist p, q > 1, 1
p+1 + 1

q+1 > N−2
N , constants a1, a2 > 0, such that

|f(x, v)| ≤ a1 + a2|v|q, |g(x, u)| ≤ a1 + a2|u|p.

Theorem 1.3. Assume (B1)-(B3), then (1.1) has at least one solution.

We remark that in [6], it also considered the subcritical superlinear problem

−∆u = λv + f(v) in Ω,

−∆v = µu+ g(u) in Ω,
u = v = 0, on ∂Ω.

(1.4)

The functional corresponding to (1.4) is no longer positive definite in E+, but it is
negative definite in E−. It is different from our case.

In section 2, we prove Theorem 1.1. While Theorem 1.3 is showed in section 3.

2. Asymptotically linear case

Let H := H1
0 (Ω), it can be decomposed as H = H1 ⊕ H2, where H1 =

span{ϕk0+1, ϕk0+2 . . . }, H2 = span{ϕ1, ϕ2 . . . ϕk0} and ϕk is the eigenfunction re-
lated to λk. Let Pi be the projection of H on the subspace Hi, i = 1, 2, then we
define for u ∈ H a new norm by

‖u‖2 =
∫

Ω

|∇(P1u)|2 − λ(P1u)2 dx−
∫

Ω

|∇(P2u)|2 − λ(P2u)2 dx,

it is equivalent to the usual norm of H1
0 (Ω). To find out the subspaces of H ×H

such that the quadratic part

Qλ(u, v) =
∫

Ω

(∇u∇v − λuv) dx

of the functional

Jλ(u, v) =
∫

Ω

(∇u∇v − λuv) dx−
∫

Ω

F (x, v) dx−
∫

Ω

G(x, u) dx

is positive or negative definite on it, we denote

E11 = {(u, u) : u ∈ H1}, E12 = {(u,−u) : u ∈ H1},
E21 = {(u, u) : u ∈ H2}, E22 = {(u,−u) : u ∈ H2}.
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Therefore, H ×H = E11 ⊕E12 ⊕E21 ⊕E22. We may write for any (u, v) ∈ H ×H
that

(u, v) = (u11, u11) + (u12,−u12) + (u21, u21) + (u22,−u22), (2.1)

where

u11 = P1(
u+ v

2
) ∈ H1, u21 = P2(

u+ v

2
) ∈ H2,

u12 = P1(
u− v

2
) ∈ H1, u22 = P2(

u− v

2
) ∈ H2.

It is easy to check that Qλ is positive definite in E11⊕E22 and negative definite in
E12 ⊕ E21, so we denote E+ = E11 ⊕ E22 and E− = E12 ⊕ E21 for convenience.

Then

Jλ(u, v) = ‖u11‖2 +‖u22‖2−‖u12‖2−‖u21‖2−
∫

Ω

F (x, v) dx−
∫

Ω

G(x, u) dx, (2.2)

it is C1 on H ×H.

Lemma 2.1. The functional Jλ satisfies the Cerami condition.

Proof. It is sufficient to show that any Cerami sequence is bounded, a standard
argument then implies that the sequence has a convergent subsequence. We argue
indirectly. Suppose it were not true, there would exist a Cerami sequence zn =
{(un, vn)} ⊂ H ×H of Jλ such that ‖zn‖ → ∞. Let

wn =
zn
‖zn‖

= (
un
‖zn‖

,
vn
‖zn‖

) = (w1
n, w

2
n),

we may assume that

(w1
n, w

2
n) ⇀ (w1, w2) in H ×H, (w1

n, w
2
n) → (w1, w2) in L2(Ω)× L2(Ω),

w1
n → w1, w2

n → w2 a.e. in Ω.

We write as the decomposition (2.1) that un =
∑2
i,j=1 u

n
ij and correspondingly,

w1
n =

∑2
i,j=1 w

n
ij . We claim that (w1, w2) 6= (0, 0). Otherwise, there would hold

|〈J ′λ(un, vn), (un11, un11)〉| ≤ ‖J ′λ(un, vn)‖·‖(un11, un11)‖ ≤ ‖J ′λ(un, vn)‖·‖(un, vn)‖ → 0;
(2.3)

that is,

‖un11‖2 −
∫

Ω

f(x, vn)un11 dx−
∫

Ω

g(x, un)un11 dx→ 0 (2.4)

implying

‖wn11‖2 −
∫

Ω

f(x, vn)
vn

vn
‖zn‖

un11
‖zn‖

dx−
∫

Ω

g(x, un)
un

un
‖zn‖

un11
‖zn‖

dx→ 0. (2.5)

Therefore,

‖wn11‖2 ≤ C

∫
Ω

[(w1
n)

2 + (w2
n)

2] dx+ o(1), (2.6)

which yields ‖wn11‖ → 0. Similarly, ‖wn12‖ → 0, ‖wn21‖ → 0 and ‖wn22‖ → 0 as
n → ∞. Consequently, wn → 0. This contradicts to ‖wn‖ = 1. Hence, there are
three possibilities: (i) w1 6= 0, w2 6= 0; (ii) w1 6= 0, w2 = 0; (iii) w1 = 0, w2 6= 0. We
show next that all these cases will lead to a contradiction. Hence, ‖zn‖ is bounded.
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In case (i), we claim that (w1, w2) satisfies

−∆w1 = λw1 + lw2, in Ω,

−∆w2 = λw2 +mw1, in Ω,

w1 = w2 = 0, on ∂Ω.

(2.7)

Indeed, let

pn(x) =

{
f(x,vn(x))
vn(x) if vn(x) 6= 0,

0 if vn(x) = 0,
(2.8)

and

qn(x) =

{
g(x,un(x))
un(x) if un(x) 6= 0,

0 if un(x) = 0.
(2.9)

Since 0 ≤ pn, qn ≤ M for some M > 0, we may suppose that pn ⇀ ϕ, qn ⇀ ψ in
L2(Ω) and pn → ϕ, qn → ψ a.e in Ω. The fact w1(x) 6= 0 implies un(x) →∞ and
consequently, qn(x) → m. Similarly, w2(x) 6= 0 yields vn(x) → ∞ and pn(x) → l.
Hence, ϕ(x) = l if w2(x) 6= 0 and ψ(x) = m if w1(x) 6= 0.

Since J ′λ(un, vn) → 0, for any (η1, η2) ∈ H ×H, we have∫
Ω

∇vn∇η1 − λvnη1 dx−
∫

Ω

g(x, un)η1 dx→ 0, (2.10)∫
Ω

∇un∇η2 − λunη2 dx−
∫

Ω

f(x, vn)η2 dx→ 0. (2.11)

It follows from ‖zn‖ → ∞ that∫
Ω

∇w1
n∇η2 − λw1

nη2 dx−
∫

Ω

pn(x)w2
nη2 dx→ 0, (2.12)∫

Ω

∇w2
n∇η1 − λw2

nη1 dx−
∫

Ω

qn(x)w1
nη1 dx→ 0. (2.13)

Noting pnw2
n, qnw

1
n are bounded in L2(Ω), we may assume pnw2

n ⇀ ξ(x), qnw1
n ⇀

ζ(x) in L2(Ω) and pnw2
n → ξ(x), qnw1

n → ζ(x) a.e. in Ω. We deduce from the fact
w2
n → w2, w1

n → w1, pn → ϕ and qn → ψ a.e. in Ω that ξ = ϕw2 = lw2 and
ζ = ψw1 = mw1. Let n→∞ in (2.12) and (2.13) we see that (w1, w2) solves (2.7).

Let w̃2 =
√

l
mw

2, then (w1, w̃2) solves

−∆w1 = λw1 +
√
mlw2 in Ω,

−∆w̃2 = λw̃2 +
√
mlw1 in Ω,

w1 = w̃2 = 0, on ∂Ω,

(2.14)

which implies

−∆(w1 + w̃2) = (λ+
√
ml)(w1 + w̃2) in Ω,

w1 + w̃2 = 0 on ∂Ω.
(2.15)

If w1 + w̃2 6= 0, this contradicts to (A3). If w1 + w̃2 = 0, then

−∆w1 = (λ−
√
ml)w1 in Ω,

w1 = 0 on ∂Ω.
(2.16)

This again contradicts to (A3).
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For case (ii), we derive from (2.12) that
∫
Ω
pn(x)w2

nη2 dx→ 0 and then w1 solves

−∆w1 = λw1 in Ω,

w1 = 0 on ∂Ω,
(2.17)

which is a contradiction to the assumption that λk0 < λ < λk0+1. Similarly, we
may rule out case (iii). The proof is complete. �

Next, we show that Jλ has the linking structure. Denote z0 = (u0, u0), where
u0 is given by assumption (A4), then ‖z0‖2 = 1. Let [0, s1z0] = {sz0 : 0 ≤ s ≤ s1},
MR = {z = z− + ρz0 : ‖z‖ ≤ R, ρ ≥ 0}, H̃ = span{z0} ⊕ E−, S = ∂Bρ ∩ E+.

Lemma 2.2. There exist constants α > 0 and ρ > 0, such that Jλ(u, v) ≥ α for
(u, v) ∈ S.

Proof. By (A1) and (A2), for any ε > 0 there is Cε > 0 such that

|F (x, t)| ≤ ε|t|2 + Cε|t|p, |G(x, t)| ≤ ε|t|2 + Cε|t|p

for some 2 < p < 2N
N−2 . It implies that for (u, v) ∈ S,

Jλ(u, v) ≥ (
1
2
− ε)‖z+‖2 − Cε‖z+‖p. (2.18)

The assertion follows. �

Lemma 2.3. There exists R > ρ such that Jλ(u, v) ≤ 0 for (u, v) ∈ ∂MR.

Proof. For z ∈ ∂MR, we write z = z− + rz0 with ‖z‖ = R, r > 0 or ‖z‖ < R and
r = 0. If r = 0, we have z = z− and

Jλ(u, v) = −1
2
‖z−‖2 −

∫
Ω

[F (x, v) +G(x, u)] dx ≤ 0 (2.19)

since F (x, t), G(x, t) ≥ 0.
Suppose now that r > 0. We argue by contradiction. Suppose the assertion is

not true, we would have a sequence {zn} ∈ ∂MR, zn = ρnz0 + z−n , ρn > 0, ‖zn‖ = n
such that Jλ(zn) > 0. We write zn = (un, vn) = (ρnu0 + φn, ρnu0 + ψn), then

Jλ(zn) =
1
2
ρ2
n −

1
2
‖z−n ‖2 −

∫
Ω

F (x, vn) +G(x, un) dx > 0, (2.20)

that is

Jλ(zn)
‖zn‖2

=
1
2
(
ρ2
n

‖zn‖2
− ‖z−n ‖2

‖zn‖2
)−

∫
Ω

F (x, vn) +G(x, un)
‖zn‖2

dx > 0. (2.21)

Since F,G ≥ 0, then we have ρn ≥ ‖z−n ‖. The fact ρ2n+‖z−n ‖
2

‖zn‖2 = 1 implies 1
2 ≤

ρ2n
‖zn‖2 ≤ 1. Assume ρ2n

‖zn‖2 → ρ2
0 > 0, hence ρn → +∞. We may also assume

φn

‖zn‖ ⇀ ξ1,
ψn

‖zn‖ ⇀ ξ2 in H and φn

‖zn‖ → ξ1,
ψn

‖zn‖ → ξ2 a.e. in Ω. If x ∈ Ω such that
ρ0u0(x) + ξ1(x) 6= 0, then un(x) = ρnu0(x) + φn(x) →∞. Similarly, if x ∈ Ω such
that ρ0u0(x) + ξ2(x) 6= 0, we have vn(x) = ρnu0(x) + ψn(x) →∞. It follows from
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(2.21) that

0 <
1
2

ρ2
n

‖zn‖2
− 1

2
‖z−n ‖2

‖zn‖2
−

∫
Ω

[
F (x, vn)
v2
n

(
vn
‖zn‖

)2 +
G(x, un)
u2
n

(
un
‖zn‖

)2] dx

≤ 1
2

ρ2
n

‖zn‖2
− 1

2
‖z−n ‖2

‖zn‖2
−

∫
{ρ0u0+ξ2 6=0}

F (x, vn)
v2
n

(
vn
‖zn‖

)2 dx

+
∫
{ρ0u0+ξ1 6=0}

G(x, un)
u2
n

(
un
‖zn‖

)2 dx

(2.22)

Let z = ρ0z0 + ξ− with ξ− = (ξ1, ξ2) and take limit in (2.22), we get
1
2
(ρ2

0‖z0‖2 − ‖ξ−‖2)− l

2

∫
{ρ0u0+ξ2 6=0}

(ρ0u0 + ξ2)2 dx

− m

2

∫
{ρ0u0+ξ1 6=0}

(ρ0u0 + ξ1)2 dx ≥ 0.
(2.23)

There are two cases: either ξ− = (ξ1, ξ2) ∈ E12, that is, ξ1 = −ξ2 ∈ H1 or ξ− =
(ξ1, ξ2) ∈ E21, that is, ξ1 = ξ2 ∈ H2. In both cases we have

∫
Ω
(u0ξ1 +u0ξ2) dx = 0.

By (2.23), we obtain

0 ≤ 1
2
(ρ2

0‖z0‖2 − ‖ξ−‖2)−min(l,m)
∫

Ω

(ρ2
0u

2
0 + ξ21) dx

≤ ρ2
0(

∫
Ω

|∇u0|2 − λu2
0 dx−min(l,m)

∫
Ω

u2
0 dx)−

1
2
‖ξ−‖2 −min(l,m)

∫
Ω

ξ21 dx

< 0,
(2.24)

a contradiction. �

Proof of Theorem 1.1. Let L(u, v) = (v, u), we may check that L is a bounded
selfadjoint operator on H × H and that E11, E12, E21.E22 are invariant subspace
of L, so both E+ and E− are invariant subspace of L. (I1) of Lemma 1.2 then
holds. (I2) follows from the Sobolev compact imbeddings; (i) and (ii) in (I3) are
consequences of Lemma 2.2 and Lemma 2.3. The proof of (iii) in (I3) can be found
in [2] and [9]. The proof of Theorem 1.1 is complete. �

3. Superlinear case

Let φ1, φ2, φ3, . . . be the eigenfunctions of −∆ in Ω with Dirichlet boundary
condition, which consist of the orthogonal basis of L2(Ω). We assume that the
eigenfunctions are normalized in L2(Ω); i.e,

∫
Ω
φiφj dx = δij . Thus,

L2(Ω) =
{
u =

∞∑
k=1

ξkφk :
∞∑
k=1

ξ2k <∞
}
,

and

(u, v)L2 =
∞∑
k=1

ξkηk,

with u =
∑∞
k=1 ξkφk, v =

∑∞
k=1 ηkφk. For u ∈ L2(Ω), we define operator (−∆)r/2

by

(−∆)r/2u =
∞∑
k=1

λ
r/2
k ξkφk
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with domain

D((−∆)r/2) = Θr(Ω) =
{ ∞∑
k=1

ξkφk :
∞∑
k=1

λrkξ
2
k <∞

}
for r ≥ 0. It is proved in [7] that Θr(Ω) = Hr

0 (Ω) = Hr(Ω) if 0 < r < 1
2 ,

Θ1/2(Ω) = H
1/2
00 (Ω), Θr(Ω) = Hr

0 (Ω) if 1
2 < r ≤ 1, and Θr(Ω) = Hr(Ω) ∩H1

0 (Ω) if
1 < r ≤ 2. For r ≥ 0, Θr(Ω) is a Hilbert space with inner product

(u, v)Θr(Ω) = (u, v)L2 + ((−∆)r/2u, (−∆)r/2v)L2 .

Let
Er(Ω) = Θr(Ω)×Θ2−r(Ω), 0 < r < 2,

we choose r > 0 such that 2 < p + 1 ≤ 2N
N−2r and 2 < q + 1 ≤ 2N

N+2r−4 . By the
Sobolev embedding, the inclusion Er(Ω) ↪→ Lp+1(Ω)× Lq+1(Ω) is compact.

The quadratic form Qλ(u, v) =
∫
Ω
(∇u∇v − λuv) dx can be extended to Er(Ω)

since ∫
Ω

∇u∇v dx =
∞∑
k=1

λkξkηk =
∞∑
k=1

λ
r
2
k ξkλ

1− r
2

k ηk,

it implies

|
∫

Ω

∇u∇v dx| ≤ {
∞∑
k=1

λrkξ
2
k}1/2{

∞∑
k=1

λ2−r
k η2

k}1/2 = ‖u‖Θr‖v‖Θ2−r .

A direct calculation shows that for z ∈ Er(Ω),

Qλ(z) =
1
2
(Lz, z)Er ,

where

L =
(

0 (−∆)1−r − λ(−∆)−r

(−∆)r−1 − λ(−∆)r−2 0

)
, (3.1)

which is a bounded and self-adjoint operator in Er(Ω). In order to determine the
spectrum of L, we note that Er(Ω) is the direct sum of the spaces Ek, k = 1, 2, . . . ,
where Ek is the two-dimensional subspace of Er(Ω), spanned by (φk, 0) and (0, φk).
An orthonormal basis of Ek is given by{ 1√

2
(λ−

r
2

k φk, 0),
1√
2
(0, λ

r
2−1

k φk)
}
.

Every Ek is invariant under L, and the restriction of L on Ek is given by the matrix

Lk =
(

0 λ1−r
k − λλ−rk

λr−1
k − λλr−2

k 0

)
.

The eigenvalue of Lk is µ±k = ±(1 − λλ−1
k ). Therefore, µ+

k < 0 and µ−k > 0 if
k = 1, . . . , k0; while µ+

k > 0 and µ−k < 0 if k = k0 + 1, . . . . Furthermore,

µ±k → ±1 as k →∞.

Let H+(H−) be the subspace spanned by eigenvectors corresponding to positive
(negative) eigenvalues of Lk, then

Er(Ω) = H+ ⊕H−.
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Both H+ and H− are infinite dimensional. Now we introduce an equivalent norm
‖ · ‖∗ on Er(Ω) by

1
2
‖z‖2∗ = (Lz+, z+)− (Lz−, z−),

where z± ∈ H±. Then the functional corresponding to (1.1) is

I(z) =
1
2
(Lz, z)Er(Ω) − Γ(z)

for z = (u, v) ∈ Er(Ω), where

Γ(z) =
∫

Ω

F (x, v) dx+
∫

Ω

G(x, u) dx.

Lemma 3.1. The functional I satisfies the (PS) condition.

Proof. Let {zn} be a (PS) sequence of I in Er(Ω), we need only to show that {zn}
is bounded. Since

M + ε‖zn‖ ≥ I(zn)−
1
2
〈I ′(zn), zn〉

≥ (
1
2
− 1
γ

)(
∫

Ω

|un||g(x, un)| dx+
∫

Ω

|vn||f(x, vn)| dx)− C,
(3.2)

we have ∫
Ω

|un||g(x, un)| dx+
∫

Ω

|vn||f(x, vn)| dx ≤ C + ε‖zn‖. (3.3)

We write z±n = (u±n , v
±
n ), then

‖z±n ‖2 − ε‖z±n ‖ ≤ |〈Lzn, z±n 〉 − I ′(zn)z±|
= |〈Γ′(zn), z±n 〉|

= |
∫

Ω

g(x, un)u±n dx+
∫

Ω

f(x, vn)v±n dx|

≤ {
∫

Ω

|g(x, un)|
p+1

p }
p

p+1 ‖u±n ‖Lp+1 + {
∫

Ω

|f(x, vn)|
q+1

q }
q

q+1 ‖v±n ‖Lq+1

≤ C{1 + {
∫

Ω

|g(x, un)||un|}
p

p+1 + {
∫

Ω

|f(x, vn)||vn|}
q

q+1 }‖z±n ‖Er

(3.4)

Dividing (3.3) by ‖z±n ‖Er , we obtain

‖z±n ‖Er ≤ C{1 + {
∫

Ω

|g(x, un)||un|}
p

p+1 + {
∫

Ω

|f(x, vn)||vn|}
q

q+1 }. (3.5)

It follows from (3.3) and (3.5) that

‖z±n ‖Er ≤ C{1 + {C + ε‖zn‖Er}
p

p+1 + {C + ε‖z±n ‖Er}
q

q+1 }, (3.6)

which implies that ‖zn‖Er is bounded. The proof is complete. �

Proof of Theorem 1.3. The proof will be completed by verifying the conditions in
Lemma 1.2. We denote E1 = H+ and E2 = H−, b(z) = Γ(z) and L is defined by
(3.1). Apparently, (I1) and (I2) of Lemma 1.2 hold. Now, we verify (I3).

For ρ > 0, let s1 > ρ and s2 be positive constants to be specified later. Let e± be
the eigenvectors corresponding to the positive eigenvalue and negative eigenvalue of
L1 respectively and set [0, s1e+] = {se+ : 0 ≤ s ≤ s1}, Q = [0, s1e+]⊕ (B̄s2 ∩H−),
H̃ = span{e+} ⊕H−, S = ∂Bρ ∩H+.
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By assumption (B3), for any ε > 0 there exists Cε > 0 such that

G(x, u) ≤ εu2 + C(ε)|u|p+1, f(x, v) ≤ εv2 + C(ε)|v|q+1,∀u, v ∈ R,

which implies

I(z+) ≥ (
1
2
− ε)‖z+‖2 − C(ε)‖z+‖p+1 − C(ε)‖z+‖q+1

for z+ ∈ E+. Thus, we may fix ρ > 0 and α > 0 such that I(z) ≥ α on S. This
proves (i) of (I3) in Lemma 1.2.

Next we show that for suitable choices of s1 and s2, I(z) ≤ 0 on ∂Q. Note that
the boundary of Q in H̃ consists of three parts, i.e, ∂Q = {Q∩{s = 0}}∪{Q∩{s =
s1}} ∪ {[0, s1e+]⊕ (∂Bs2 ∩H−)}. It is obvious that I(z) ≤ 0 on Q ∩ {s = 0} since
I(z) ≤ 0 for (u, v) ≤ H− and Γ(z) is nonnegative. For the remaining parts of ∂Q,
we write z = z− + se+ ∈ H̃, then

I(z) =
1
2
s2 − 1

2
‖z−‖2 − Γ(z− + se+). (3.7)

We may show as in [6] that

Γ(z− + se+) ≥ Csβ − C1, (3.8)

where β = min{p+ 1, q + 1}. Therefore,

I(z− + se+) ≤ 1
2
s2 − Csβ + C1 −

1
2
‖z−‖2. (3.9)

Choose s1 sufficient large such that

ψ(s) =
1
2
s2 − Csβ + C1 ≤ 0 ∀s ≥ s1,

and then choose s2 large such that s22 > 2 maxs≥0 ψ(s), then we get I(z) ≤ 0 on
∂Q. This proves (ii) of (I3) in Lemma 1.2. Since S and ∂Q are link. The proof is
complete. �

References

[1] P. Bartolo, V. Benci and D. Fortunato, Abstract Critical Point Theorems and Applications

to Some Nonlinear Problem with ”Strong” resonance at infinity, Nonlin. Anal. 7(1983), 981-

1012.
[2] V. Benci and P.H. Rabinowitz, Critical Point Theorem for Indefinite Functionals, Invent.

Math. 52(1979), 241-273.
[3] G.B. Li, A. Suzukin,An asymptotically periodic Schröınger equation with indefinite linear
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