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TRAVELLING WAVE SOLUTIONS FOR THE
PAINLEVÉ-INTEGRABLE COUPLED KDV EQUATIONS

JIBIN LI, XIAO-BIAO LIN

Abstract. We study the travelling wave solutions for a system of coupled

KdV equations derived by Lou et al [11]. In that paper, they found 5 types of
Painlevé integrable systems for the coupled KdV system. We show that each

of them can be reduced to a partially or completely uncoupled system, through

which the dynamical behavior of travelling wave solutions can be determined.
In some parameter regions, exact formulas for periodic and solitary waves

can be obtained while in other cases, bounded travelling wave solution are

discussed.

1. Introduction

The KdV equation is an important model for dispersive waves [1, 14]. There has
been some interest in coupled KdV systems [4, 5, 6, 10, 12, 13]. In this paper we
consider the coupled KdV system

A1T + α1A2A1X + (α2A
2
2 + α3A1A2 + α4A1XX + α5A

2
1)X = 0,

A2T + δ1A2A1X + (δ2A
2
1 + δ3A1A2 + δ4A2XX + δ5A

2
2)X = 0,

(1.1)

where the ten constants αi, δi, i = 1, 2, 3, 4, 5 are arbitrary. This system is de-
rived by Lou et al [11] from a two-layer fluid model which is used to describe the
atmospheric and oceanic phenomena such as the atmospheric blocking, the inter-
actions between the atmosphere and ocean. Under the condition α4 = δ4 = 1, they
obtained five types of Painlevé-integrable coupled KdV systems:
P-integrable model 1

A1T + [A1XX − (c0 + 3)(c0 + 6)A2
1 − c2

0A
2
2]X

+ 2c0[(c0 + 6)A1XA2 + (c0 + 3)A1A2X ] = 0,

A2T + [A2XX − c0(c0 − 3)A2
2 − (c0 + 3)2A2

1]X
+ 2(c0 + 3)[c0A2A1X + (c0 − 3)A1A2X ] = 0.

(1.2)
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P-integrable model 2

A1T + (A1XX +
1
2
(c2 − c1 − c1c2)A2

1 + c1A1A2 −
1
2
A2

2)X = 0,

A2T + (A2XX +
1
2
(c1 − c2 − 1)A2

2 + c2A1A2 −
1
2
c1c2A

2
1)X = 0.

(1.3)

P-integrable model 3

A1T + (A1XX + A2
1 + A1A2)X = 0, A2T + (A2XX + A2

2 + A1A2)X = 0. (1.4)

P-integrable model 4

A1T + [A1XX + (A1 + A2)2]X = 0, A2T + [A2XX + (A1 + A2)2]X = 0. (1.5)

P-integrable model 5

A1T +[A1XX +A2
1]X +2A2A1X = 0, A2T +[A2XX +A2

2]X +2A1A2X = 0. (1.6)

In this paper we are interested in the existence and exact expression of the
travelling wave solutions of (1.2) and some dynamical behavior of these solutions
such as whether the solutions are solitary, periodic or bounded solutions.

Note that the way to write (1.1) is not unique. Instead of A2A1X , one can leave
A1A2X terms outside of the divergence forms. With α4 = δ4 = 1, we will use an
equivalent form to (1.1):

A1T + A1XXX + a1A1A1X + a2A1A2X + a3A2A1X + a4A2A2X = 0,

A2T + A2XXX + b1A1A1X + b2A1A2X + b3A2A1X + b4A2A2X = 0.
(1.7)

If we set

U = (A1, A2)τ , Q1 =
(

a1 a2

a3 a4

)
, Q2 =

(
b1 b2

b3 b4

)
,

where τ denotes the transpose of a vector, then the nonlinear terms of the equations
can be written as bilinear forms,

UτQ1UX , UτQ2UX .

In the case that the matrices Q1 and Q2 are symmetric, we can express the bilinear
forms as divergence of quadratic forms:

1
2
(UτQ1U)X ,

1
2
(UτQ2U)X .

There are many results concerning simultaneously co-diagonalize symmetric ma-
trices, see [8], that will be used in this paper to further simplify the quadratic
forms.

If the coupled system of KdVs UT + UXXX + F (U,UX), U = (A1, A2)τ has a
travelling wave solution with the wave speed c, then in the travelling coordinate
ξ = X − cT , U = U(ξ) and satisfies a system of ODEs:

−cU ′(ξ) + U ′′′(ξ) + F (U,U ′) = 0. (1.8)

If U is a travelling periodic or solitary wave of the PDE system, then U(ξ) is a
periodic or homoclinic solution of the corresponding ODE system. Throughout
this paper, the higher order system (1.8) is associated to a first order system by
introducing auxiliary variables (U,U ′, U ′′) in the standard way. We say U0 is an
equilibrium for (1.8) if (U0, 0, 0) is an equilibrium for the associated first order
system. We say U(ξ) is a homoclinic solution to (1.8) if (U(ξ), U ′(ξ), U ′′(ξ)) is a
homoclinic solution to the associated first order system, etc. This convention also
applies to any coupled second order system of equations.
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In Section 2, we treat the general coupled KdV system (1.7) and P-integrable
model 1. Following Lou et al [11], we identify an invariant subspace on which the
system reduces to a single KDV equation. For the P-integrable mode 1, we show
that the system can be partially decoupled. The reduced system is equivalent to
the reduced system of the P-integrable models 3 and 5. Detailed description of the
travelling waves are deferred to section 4 where the P-integrable models 3 and 5
are discussed.

In section 3, we treat the P-integrable mode 2 which is in the divergence form.
The corresponding bilinear forms are symmetric. Using standard matrix algorithms,
we introduce a method that can remove the non-diagonal terms of the quadratic
forms. For the P-integrable model 2, the reduced system consists of two uncoupled
equations. The method may be used on non-P-integrable system as long as the
original system (1.1) is in divergence form.

The P-integrable models 3, 4 and 5 can be simplified by some change of vari-
ables and are treated in section 4. We show that the P-integrable model 4 can be
completely decoupled while the models 3 and 5 can be partially decoupled. In some
cases, we find bounded travelling wave solutions rather than travelling periodic or
solitary waves.

In (u, u′)-phase plane, the second order equation

u′′ = cu + βu2, c 6= 0, β 6= 0, (1.9)

has a Hamiltonian H(u, u′) of which each orbit corresponds to a unique level curve

H(u, u′) =
(u′)2

2
− c

u2

2
− β

3
u3 = h, h ∈ R.

Bounded solutions of (1.9) can be classified by the following lemma.

Lemma 1.1. Assume that c 6= 0, β 6= 0. In the phase plane (u, u′), (1.9) has two
equilibrium points O(0, 0) and E(−c/β, 0).

(I) If c > 0 then O is a saddle and E is a center. If c < 0 then O is a center
and E a saddle.

(II) There is a unique homoclinic orbit Γ asymptotic to the saddle and encircling
the center. There is also a family of periodic orbits encircling the center
and filling up the interior of the homoclinic loop Γ.

(III) Up to a shift in ξ, the homoclinic orbit Γ is parametrized by a homoclinic
solution u = q(ξ, c, β) to (1.9).

q(ξ, c, β) :=

−
3c
2β sech 2

(√c
2 ξ

)
, c > 0,

|c|
β

(
1− 3

2 sech 2
(√|c|

2 ξ
))

, c < 0.
(1.10)

(IV) Each periodic orbit corresponds to a unique h ∈ (− c3

6β2 , 0, c > 0 or h ∈
(0,− c3

6β2 ), c < 0. Up to a shift in ξ, the family of periodic orbits is
parametrized by periodic solutions p(ξ, c, β, h) of (1.9). Depending on β < 0
or β > 0, using elliptic functions, the periodic solution can be expressed as

p(ξ, c, β, h) :=

{
r1 − (r1 − r2)sn2 (Ωξ, k1) , β < 0,

r3 + (r2 − r3)sn2 (Ωξ, k2) , β > 0.
(1.11)
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The parameters (r1, r2, r3, k1, k2), with r1 > r2 > r3, are defined by

(u′)2 = 2h + cu2 +
2
3
βu3 =

2
3
|β|(r1 − u)(u− r2)(u− r3),

k2
1 = r1−r2

r1−r3
if β < 0. While for β > 0, they are defined by

(u′)2 = 2h + cu2 +
2
3
βu3 =

2
3
β(r1 − u)(r2 − u)(u− r3),

k2
2 = r2−r3

r1−r3
. Ω =

√
|β|(r1−r3)

6 .

2. General coupled KDV and the P-integrable mode 1

To find travelling wave wave solutions, let ξ = X − cT be the travelling coordi-
nate. From (1.7) we obtain the travelling wave system

−cA′
1 + A′′′

1 + a1A1A
′
1 + a2A1A

′
2 + a3A2A

′
1 + a4A2A

′
2 = 0,

−cA′
2 + A′′′

2 + b1A1A
′
1 + b2A1A

′
2 + b3A2A

′
1 + b4A2A

′
2 = 0.

(2.1)

Following Lou et al [11], we look for solutions that satisfy A1 = ωA2, ω 6= 0. Sub-
stituting A1 = ωA2 into (2.1), integrating (2.1) and taking the integral constants
as zero, we obtain

A′′
2 = cA2 −

1
2

(
a1ω + (a2 + a3) +

a4

ω

)
A2

2,

A′′
2 = cA2 −

1
2

(
b1ω

2 + (b2 + b3)ω + b4

)
A2

2.

(2.2)

The two equations of system (2.2) are the same if and only if ω is a non-zero real
root of the cubic algebraic equation

b1ω
3 + (b2 + b3 − a1)ω2 + (b4 − a2 − a3)ω − a4 = 0. (2.3)

We now assume that ω satisfies (2.3) and denote

B =
1
2
(b1ω

2 + (b2 + b3)ω + b4). (2.4)

System (2.2) is reduced to
A′′

2 = cA2 −BA2
2. (2.5)

This is the same as (1.9) with β = −B. In the phase plane (A2, A
′
2), (2.5) has two

equilibrium points O(0, 0) and E(c/B, 0). It is easy to see that when c > 0 (< 0),
O is a saddle point (a center); E is a center (a saddle point).

Using Lemma 1.1, we obtain the following results.

Theorem 2.1. Let ω be a real root of (2.3) and B be as in (2.4).
(1) If c > 0, then the origin O is a saddle and E a center. If c < 0, then O is

a center and E a saddle.
(2) (1.7) has a family of periodic wave solutions encircling the center parame-

terized by h ∈ (− c3

6B2 , 0) if c > 0 or h ∈ (0,− c3

6B2 ) if c < 0:

A2(ξ) = p(ξ, c,−B, h), A1(ξ) = ωA2(ξ). (2.6)

System (1.7) also has a solitary wave solutions of peak type asymptotic to
the saddle point

A2(ξ) = q(ξ, c,−B), A1(ξ) = ωA2(ξ). (2.7)
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To find travelling wave solutions for the P-integrable model 1, let ξ = X − cT ,
u = A1(ξ), v = A2(ξ). From (1.2),

−cu′ + u′′′ − [(c0 + 3)(c0 + 6)u2 + c2
0v

2]ξ + 2c0[(c0 + 6)uξv + (c0 + 3)uvξ] = 0,

−cv′ + v′′′ − [(c0 + 3)2u2 + c0(c0 − 3)v2]ξ + 2(c0 + 3)[c0vuξ + (c0 − 3)uvξ] = 0,

(2.8)
Corresponding to (2.8), the parameters of (2.1) hasve the special values:

a1 = −2(c0 + 3)(c0 + 6), a2 = 2c0(c0 + 3), a3 = 2c0(c0 + 6), a4 = −2c2
0,

b1 = −2(c0 + 3)2, b2 = 2(c0 + 3)(c0 − 3), b3 = 2c0(c0 + 3), b4 = −2c0(c0 − 3).

The cubic equation (2.3) becomes

(c0 + 3)2ω3 − 3(c0 + 3)(c0 + 1)ω2 + 3c0(c0 + 2)ω − c2
0

= ((c0 + 3)ω − c0)2(ω − 1) = 0.
(2.9)

The roots of (2.9) are ω = c0/(c0 + 3) and ω = 1. This suggests the change of
variables X = (c0 +3)u− c0v, Y = u− v, or u = 1

3X − c0
3 Y , v = 1

3X − c0+3
3 Y . The

result is a partially uncoupled system of equations,

X ′′′ = cX ′ + 12XX ′, (2.10)

Y ′′′ = cY ′ + 6XY ′. (2.11)

We can recover (u, v) by(
u
v

)
= M

(
X
Y

)
, M =

1
3

(
1 −c0

1 −(c0 + 3)

)
. (2.12)

Integrating once and taking the integration constant to be zero, we have

X ′′ = cX + 6X2,

Z ′′ = cZ + 6XZ,

where Z = Y ′ and Y =
∫

Zdξ.

Theorem 2.2. For the P-integrable model 1, we have

(1) on the plane (c0 + 3)u − c0v = 0, or X = 0, the P-integrable model 1
reduces to Y ′′′ = cY ′. The only bounded solutions are harmonic periodic
waves oscillating around the mean value A1 = K/c, A2 = (c0 + 3)K/(cc0).
They occur only if c < 0.

(2) On the plane u− v = 0 or Y = 0, model 1 reduces to X ′′ = cX + 6X2, the
same as (1.9) with β = 6. The only bounded solutions are solitary waves
X = q(ξ, c, 6) and periodic waves X = p(ξ, c, 6, h). The travelling waves in
(A1, A2) can be expressed as (A1, A2)τ = M(X, 0)τ .

Apart from the particular solutions described in Theorem 2.2, much richer dy-
namical behavior of the system can be found if we consider bounded travelling wave
solutions of X from (2.10) first then plug them into (2.11) for Y . Discussion of such
solutions will be deferred to Section 4 while similar cases from P-integrable models
3 and 5 are considered.
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3. Travelling wave solutions of the P-integrable model 2

The travelling wave solutions of (1.3) in travelling coordinate satisfy

A1ξξ = cA1 +
1
2
(c1 − c2 + c1c2)A2

1 − c1A1A2 +
1
2
A2

2,

A2ξξ = cA2 +
1
2
c1c2A

2
1 − c2A1A2 +

1
2
(c2 − c1 + 1)A2

2.

(3.1)

The quadratic forms in (3.1) can be expressed as

(A1, A2)Q1(c1, c2)(A1, A2)τ , (A1, A2)Q2(c1, c2)(A1, A2)τ ,

where

Q1(c1, c2) =
(

(c1 − c2 + c1c2)/2 −c1/2
−c1/2 1/2

)
,

Q2(c1, c2) =
(

c1c2/2 −c2/2
−c2/2 (c2 − c1 + 1)/2

)
.

Under the conditions c1 6= 1, c2 6= 1 and c2 6= c1, the matrices A and B satisfies
a condition of simultaneous diagonilization by nonsingular real matrices [8]. Our
calculation shows that only c2 6= 1 is required in the co-diagonalization. Setting

M =
1

1− c2

(
1 −1
1 −c2

)
, M−1 =

(
−c2 1
−1 1

)
, c2 6= 1

we have

MτQ1M =
1

2(1− c2)

(
1− c1 0

0 c1 − c2

)
,

MτQ2M =
1

2(1− c2)

(
1− c1 0

0 c2(c1 − c2)

)
.

By the change of variables

(A1, A2)τ = M · (u, v)τ , (3.2)

the non-diagonal terms in the quadratic forms of (3.1) can removed. This leads to

A′′
1 = cA1 +

1− c1

2(1− c2)
u2 +

c1 − c2

2(1− c2)
v2,

A′′
2 = cA2 +

1− c1

2(1− c2)
u2 +

c2(c1 − c2)
2(1− c2)

v2.

(3.3)

Applying the inverse transform of (3.2), u = A2 − c2A1, v = A2 −A1 to (3.3), the
reduced system should have no uv term. What unexpected is that the result is a
completely uncoupled system of two equations.

uξξ = cu +
1− c1

2
u2, (3.4)

vξξ = cv +
c2 − c1

2
v2. (3.5)

Equation (3.4) has two equilibria U0 = 0, U1 = 2c/(c1 − 1) while (3.5) has two
equilibria V0 = 0, V1 = 2c/(c1 − c2).

Lemma 3.1. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then
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(I) If c > 0, then for (3.4), U0 is a saddle with eigenvalues ±
√
|c|, and U1 is a

center with eigenvalues ±
√
|c|i. For (3.5), V0 is a saddle with eigenvalues

±
√
|c|, and V1 is a center with eigenvalues ±

√
|c|i.

(II) If c < 0, then similar properties for (3.4)) (or (3.5)) still hold if we switch
U0 with U1 (or V0 with V1).

Define

e1 = − 2c

1− c1 − c2 + c1c2
, e2 =

2c

c2 − c1 − c2
2 + c1c2

, e3 = − 2c

c1 − c2 − c2
1 + c1c2

.

It is now clear that (3.1) has four equilibrium points corresponding to the combi-
nations of equilibrium points of (3.4) and (3.5):

(U0, V0) ⇔ E0 : {(A1, A2) = (0, 0)},
(U1, V0) ⇔ E1 : {(A1, A2) = (e1, e1)},

(U0, V1) ⇔ E2 : {(A1, A2) = (e2, c2e2)},
(U1, V1) ⇔ E3 : {(A1, A2) = (e3, c1e3)}.

From Lemma 3.1, we have the following results about equilibria E0 to E3 of (3.1).

Lemma 3.2. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then for (3.1),

(I) if c > 0, E0 is a saddle with eigenvalues ±
√
|c| while E3 is a center

with eigenvalues ±
√
|c|i. Both the algebraic and geometric multiplicities

of these eigenvalues are equal to 2. (semi-simple eigenvalues). E1 and E2

are center-saddle points with eigenvalues ±
√
|c| and ±

√
|c|i.

(II) If c < 0, then the properties on E1 and E2 remain unchanged but properties
on E0 and E3 must be switched.

Define

Wu(E0) := {(A1, A2) : A2 −A1 = 0}, Wv(E0) := {(A1, A2) : A2 − c2A1 = 0}.
Wu(E1) := {(A1, A2) : A2 −A1 = 0}, Wv(E1) := {(A1, A2) : A2 − c2A1 = U1}.
Wu(E2) := {(A1, A2) : A2 −A1 = V1}, Wv(E2) := {(A1, A2) : A2 − c2A1 = 0}.
Wu(E3) := {(A1, A2) : A2 −A1 = V1}, Wv(E3) := {(A1, A2) : A2 − c2A1 = U1}.

From (3.4) and (3.5), Wu(Ej) and Wv(j) are invariant under the flow of (3.1)
and Ej ∈ Wu(Ej)∩Wv(Ej). Using Lemma 1.9, we find all the travelling waves for
the P-integrable model 2.

Theorem 3.3. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then
(I) if c > 0, then on Wu(E1) there is a family of travelling periodic solutions

encircling E1: u = p(ξ, c, (1−c1)/2, h). On Wv(E1), exists a unique solitary
wave solution v = q(ξ, c, (c2 − c1)/2). On Wu(E2), there exists a unique
solitary wave u = q(ξ, c, (1 − c1)/2 asymptotic to E2. On Wv(E2) there
is a family of travelling periodic solutions encircling E2: v = p(ξ, c, (c2 −
c1)/2, h).

(II) If c < 0 then the conclusions similar to part (I) hold if E1 and E2 get
switched.

Theorem 3.4. Assume that c1 6= 1, c2 6= 1 and c1 6= c2. Then



8 J. LI, X.-B. LIN EJDE-2008/86

(I) if c > 0, then there exist solitary waves on Wu(E0): u = q(ξ, c, (1− c1)/2)
and on Wv(E0): v = q(ξ, c, (c2 − c1)/2) asymptotic to E0. There exist
families of travelling periodic waves on both Wu(E3) and Wv(E3) encircling
E3. They are u = p(ξ, c, (1− c1)/2, h) and v = p(ξ, c, (c2 − c1)/2, h).

(II) If c < 0 then similar conclusion hold if we switch E0 with E3.

Corollary 3.5. The travelling wave solutions for P-integrable model 2 are

(A1(ξ), A2(ξ))τ = M(u(ξ − ξ1), v(ξ − ξ2))τ

where (u, v) are travelling wave solutions as in Theorem 3.3 and Theorem 3.4 and
ξ1, ξ2 are arbitrarily constants.

Remark 3.6. (1) If c1 = 1, c2 6= 1, then the only equilibria are E0 and E2. If
c1 6= 1, c2 = c1, then the only equilibria are E0 and E1. If c1 = c2 = 1, the only the
equilibrium is E0. In these special cases, (3.1) is much simpler and its travelling
waves are easy to analyze. We will skip the details.

(2) The cubic equation (2.3) for P-integrable model 2 is

c1c2ω
3 − (c2 + c1 + c1c2)ω2 + (c1 + c2 + 1)ω − 1 = (c2ω − 1)(c1ω − 1)(ω − 1)) = 0,

with three distinct roots ω = 1, c1, c2. Only ω = 1 and c2 are used in our change of
variables. We have tried the variable A2− c1A1 and found that (3.1) does not get
simplified.

We prefer matrices diagonalization since it provides definitive result. If after
eliminating the non-diagonal terms the system does not decouple, then we can
show that there does not exist a linear change of variable that can further decouple
the system, unless the two original quadratic forms are linearly dependent. In this
case, one of the decoupled equation is linear.

4. Travelling wave solutions for the P-integrable mode 3, 4 and 5

For the P-integrable models 3, 4 and 5, (see (1.4), (1.5) and (1.6)), we make
the change of variables A1(ξ) + A2(ξ) = u(ξ), A1(ξ) − A2(ξ) = v(ξ), i.e., A1(ξ) =
1
2 (u + v), A2(ξ) = 1

2 (u − v). Then, the travelling wave solutions of (1.4) are
determined by the system

uξξ − cu + u2 = 0, vξξ + (u− c)v = 0. (4.1)

The travelling wave solutions of (1.5) are given by the system

uξξ − cu + 2u2 = 0, vξξ − cv = 0. (4.2)

The travelling wave solutions of (1.6) are determined by the system

uξξ − cu + u2 = 0, A1ξξξ + (2u− c)A1ξ = 0.

Let A1ξ = w. Then

uξξ − cu + u2 = 0, wξξ + (2u− c)w = 0. (4.3)

Note that the change of variables is invertible: A1(ξ) =
∫ ξ

w(s)ds, A2(ξ) = u(ξ)−
A1(ξ).
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4.1. The P-integrable model 4. We first discuss system (4.2) which consists
of two uncoupled equations. We are interested in the bounded solutions of (4.2).
Therefore, we assume that c < 0. Using Lemma 1.1 with β = −2, we have the
following conclusion.

Theorem 4.1. System (1.5) has the following bounded exact travelling wave solu-
tions:

(i) Asymptotically periodic solutions:

A1(ξ) =
1
2

[
q(ξ, c,−2) + γ cos

√
|c|ξ

]
,

A2(ξ) =
1
2

[
q(ξ, c,−2)− γ cos

√
|c|ξ

]
.

(4.4)

(ii) Quasi-periodic solutions, with h ∈ (0,−c3/24):

A1(ξ) =
1
2

[
p(ξ, c,−2, h) + γ cos

√
|c|ξ

]
,

A2(ξ) =
1
2

[
p(ξ, c,−2, h)− γ cos

√
|c|ξ

]
.

(4.5)

4.2. The P-integrable model 3 and 5. We now consider systems (4.1) and (4.3).
The first equations for the two systems are the same:

u′′ = cu− u2 (4.6)

Assume that c < 0. Equation (4.6) has two equilibrium points: center O(0, 0) and
saddle point E(c, 0). By Lemma 1.1, with β = −1, we find that

(1) Equation (4.6) has a family of periodic orbits encircling O, parametrized by
the periodic solutions

u = p(ξ, c,−1, h), h ∈ (0,−c3/6). (4.7)

(2) Equation (4.6) also has a unique homoclinic orbit asymptotic to E defined
by the homoclinic solution:

u(ξ) = q(ξ, c,−1). (4.8)

Substituting (4.7) and (4.8) into (4.1), we find two possible equations for v:

vξξ +
(
|c|+ r1 − (r1 − r2)sn2(Ωξ, k)

)
v = 0, (4.9)

vξξ +
(3|c|

2
sech 2

(√
|c|
2

ξ
))

v = 0 (4.10)

Substituting (4.7) and (4.8) into (4.3), we find two possible equations for w:

wξξ +
(
2r1 + |c| − 2(r1 − r2)sn2(Ωξ, k)

)
w = 0, (4.11)

wξξ +
(
c + 3|c| sech 2

(√
|c|
2

ξ
))

w = 0. (4.12)

Equations (4.9) and (4.11) are special forms of the Hill equation x′′+(a+φ(t))x =
x′′ + p(t)x = 0 (see Cesari [3]). Denote p1(ξ) = |c| + r1 − (r1 − r2)sn2(Ωξ, k) and
p2(ξ) = 2r1 + |c| − 2(r1 − r2)sn2(Ωξ, k). It is easy to show that for h ∈

(
0,− 1

6c3
)
,

we have p1(ξ) > 0,

p1m ≡ Ω
2K(k)

∫ 2K(k)
Ω

0

p1(ξ)dξ = |c|+ r3 +
(r1 − r3)

2
E(k)
K(k)



10 J. LI, X.-B. LIN EJDE-2008/86

and when 2r2 + |c| > 0, p2(ξ) > 0,

p2m ≡ Ω
2K(k)

∫ 2K(k)
Ω

0

p2(ξ)dξ = |c|+ 2r3 + (r1 − r3)
E(k)
K(k)

.

We can show that the condition of Borg’s theorem [2]

T

∫ T

0

|pj(ξ)|dξ =
(2K(k)

Ω
)2|pjm| ≤ 4, j = 1, 2 (4.13)

cannot be satisfied. So we cannot use it to conclude that any solution of (4.9) and
(4.11) is bounded or stable.

However conditions (4.13) are only sufficient conditions for the existence of
bounded solutions of (4.9) and (4.11). By using Theorem 8.1 in Hale [7], there
exist two real sequences of the number |c|: {c0 < c1 ≤ c2 ≤ . . . } and {c∗1 ≤ c∗2 ≤
c∗3 ≤ . . . }, when k →∞, ck, c∗k →∞,

c0 < c∗1 ≤ c∗2 < c1 ≤ c2 < c∗3 ≤ c∗4 < c3 ≤ c4 < . . .

such that (4.9) and (4.11) have periodic solutions with period 2K(k)
Ω (or 4K(k)

Ω ), if
and only if for some k = 0, 1, 2, . . . , we have |c| = ck (or for some k = 0, 1, 2, . . . ,
we have |c| = c∗k). The solutions of (4.9) and (4.11) are stable in the intervals

(c0, c
∗
1), (c∗2, c1), (c2, c

∗
3), (c∗4, c3), . . . . (4.14)

And the solutions of (4.9) and (4.11) are unstable in the intervals

(−∞, c0], (c∗1, c
∗
2), (c1, c2), (c∗3, c

∗
4), (c3, c4), . . . .

Therefore, (4.9) and (4.11) have bounded solutions when the parameter |c| belongs
to a stable interval in (4.14). We summarize our results in the following theorem.

Theorem 4.2. Assume that c < 0 in (4.1) and (4.3). Then there are infinitely
many pairs (c, h) where h ∈ (0,− 1

6c3), |c| = ck, c∗k or |c| is in one of the intervals
of (4.14). For such (c, h), (4.1) and (4.3) have solutions (u, v) and (u, w) where
u = p(ξ, c,−1, h) is periodic and v(ξ) and w(ξ) are bounded.

(1) For the P-integrable model 3, the bounded travelling waves are

A1 =
1
2
(u + v), A2 =

1
2
(u− v).

(2) For the P-integrable model 5, if
∫ ξ

w(s)ds is a bounded function on R, then
The bounded travelling wave solutions are

A1(ξ) =
∫ ξ

w(s)ds, A2(ξ) = u(ξ)−A1(ξ).

In particular, for any constant γ, (A1, A2) = (γ, u−γ) is a periodic travelling wave
solution.

Remark 4.3. The condition for
∫

w(ξ)dξ to be a bounded function is rather com-
plicated and better left to a separate paper.

If c > 0, there are periodic solutions u = p(ξ, c,−1, h) oscillating around the
center E. It is possible to plug these solutions into the equations for v and w and
look for bounded solutions.
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Finally, we consider equation (4.10) and (4.12). Let

p3(ξ) =
3|c|
2

sech 2
(√

|c|
2

ξ
)
, p4(ξ) = c + 3|c| sech 2

(√
|c|
2

ξ
)
.

Because
∫∞
−∞ p3(t)dt is convergent and c < 0, by using the results mentioned in

Cesari [3], we find that the solutions of (4.10) and (4.12) are non-oscillating and
unbounded.

Remark 4.4. A general coupled KdV system has been studied in [12] where the
third order coefficients may not be equal. Apparently (2.10)–(2.11) from model 1
correspond to the case (ii) in [12], system (4.1) from model 3 corresponds to the
case (vii) in [12], and system (4.3) corresponds to (vi) in [12]. Models 2 and 4 were
not studied in [12].
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