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STRONG SOLUTIONS FOR SOME NONLINEAR PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

INFINITE DELAY

MOHAMED ALIA, KHALIL EZZINBI

Abstract. In this work, we use the Kato approximation to prove the existence

of strong solutions for partial functional differential equations with infinite

delay. We assume that the undelayed part is m-accretive in Banach space and
the delayed part is Lipschitz continuous. The phase space is axiomatically

defined. Firstly, we show the existence of the mild solution in the sense of

Evans. Secondly, when the Banach space has the Radon-Nikodym property,
we prove the existence of strong solutions. Some applications are given for

parabolic and hyperbolic equations with delay. The results of this work are

extensions of the Kato-approximation results of Kartsatos and Parrot [8, 9].

1. Introduction

In this work, we study the existence and the regularity of solutions for the
following partial functional differential equation with infinite delay

u′(t) +Au(t) 3 F (ut) for t ≥ 0
u0 = φ ∈ B,

(1.1)

where A is a nonlinear multivalued operator with domain D(A) in a Banach space
X, B is the space of functions defined on ]−∞, 0] with values in X, satisfying the
Hale and Kato’s assumptions [6]. For t ≥ 0, the history function ut ∈ B is defined
by

ut(θ) = u(t+ θ) for θ ∈]−∞, 0],
F : B → X is a continuous function. Note that the difference between the finite
and infinite delay lies in the fact that in general the function

t→ ut (1.2)

is not continuous from [0, T ] into B. In finite delay, usually the phase space is
C([−r, 0];X) the space of continuous functions from [−r, 0] to X, consequently
the history function (1.2) is continuous. The main problem of differential equations
involving infinite delay is the choice of the phase space for which the history function
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(1.2) is continuous. For more details, about this topics we refer to Hale and Kato
[6] and Hino, Murakami and Naito [7]. In [10], Kato proposed a new approach to
prove the existence of solution for the evolution equation

x′(t) +Ax(t) = 0

x(0) = x0

(1.3)

where A is m-accretive in a Banach space X such that the dual X∗ is uniformly
convex. The author proposed the following approximation which called the Kato
approximation

x′n(t) +Anxn(t) = 0

xn(0) = x0

(1.4)

where An is the Yosida approximation of A to show the existence of solutions for
equation (1.3).

Kartsatos and Parrott [8] employed the Kato approximation to prove the exis-
tence of strong solutions for the partial functional differential equation

u′(t) +B(t)u(t) = F (ut) for t ≥ 0

u0 = ϕ ∈ C([−r, 0];X),
(1.5)

where B(t) is m-accretive on X, the authors proved, the existence of strong solution
if the dual space X∗ is uniformly convex. In [9], Kartsatos and Parrott considered
equation (1.5) in general Banach space and proved the existence of a Lipschitz mild
solution which becomes a strong solution when the phase space X is reflexive. In
[11], Ruess studied the existence of solutions for the following multivalued partial
functional differential equation

u′(t) +B(t)u(t) 3 G(t, xt) for t ≥ 0

u0 = ϕ ∈ C([−r, 0];X) or ϕ ∈ BUC((−∞, 0];X),

where BUC((−∞, 0];X) is the space of bounded uniformly continuous functions
from (−∞, 0] to X, for every t ≥ 0, the operator B(t) is m-accretive in a Banach
space X, the authors proved the existence of strong solutions when X is reflexive
and its norm is differentiable at any x 6= 0. In [12], Ruess studied also the existence
of solution for the following equation

u′(t) + αu(t) +Bu(t) 3 G(xt) for t ≥ 0
u0 = ϕ ∈M,

(1.6)

where the phase space M = C([−r, 0];X) or ∈ B, α ∈ R and B is m-accretive
operator, G : M→ X is Lipschitz continuous, the authors proved the existence of
strong solution of equation (1.6) if one of the following conditions holds:

(a) X is reflexive and its norm is differentiable at any x 6= 0 and ϕ ∈ D̂(A),
where D̂(A) denotes the generalized domain of the operator

D(A) = {ϕ ∈M : ϕ′ ∈M, ϕ(0) ∈ D(B), ϕ′(0) ∈ G(ϕ)− αϕ(0)−Bϕ(0)}
Aϕ = −ϕ′.

(b) X has the Radon-Nikodym property, D(B) is closed, B is single valued
with B : D(B) → X norm weakly continuous and ϕ ∈ D̂(A).
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(c) X is any Banach space, D(B) is closed, B is single valued with B : D(B) →
X is continuous and either:
(c1) ϕ ∈ D̂(A)
(c2) ϕ ∈ D(A) and B maps bounded sets into bounded sets.

(d) X is reflexive, B : D(B) → X is single valued and demiclosed, namely, the
graph of B is norm-weakly closed in X ×X and ϕ ∈ D̂(A).

More details can be found in the book K. S. Ha [13] where an overview on nonlinear
theory of partial functional differential equations is given.

Travis and Webb [14] gave the basic theory on the existence and stability of
equation (1.1) when −A is linear, densely defined and satisfies the Hille-Yosida
condition, more results and applications can be found in the book Wu [15]. Adimy,
Bouzahir and Ezzinbi [1] gave the basic theory of the existence, regularity and sta-
bility of solution of equation (1.1) when −A is a linear operator, not necessarily
densely defined and satisfies the well known Hille-Yosida condition, by renorming
the space X, the Hille-Yosida condition is equivalent to say that A is m-accretive, in
this work, the authors investigated several results on the existence of solutions and
stability by using the integrated semi-group theory. Here we propose to extend the
works of Kartsatos and Parrott [8], [9] and Ruess [12]. To simplify our analysis, we
consider the case where A is time-independent, but the same approach still works
in general context. Here we use the Kato approximation to show the existence of
strong solutions in Banach spaces that have the Radon-Nikodym property. The
study of the existence of strong solutions requires some hypotheses about regular-
ity of the space X and the initial data ϕ. More precisely, we propose the Kato
approximation

u′n(t) +Anun(t) = F (u
nt

) for t ≥ 0,
u

n0 = ϕ ∈ B,
(1.7)

where An is the Yosida approximation of A. Our aim is to prove that the solution un

converges uniformly on [0, T ] to the mild solution of equation (1.1). The advantage
of this approximation is the fact that the right hand side of equation (1.7) is a
Lipschitz continuous, consequently the solutions of equation (1.7) are C1-functions
on [0, T ].

This work is organized as follows: In section 2, we recall some results on the
existence of strong solution for evolution problem involving m-accretive operators.
In section 3, we prove the existence of mild and strong solutions for equation (1.1).
Finally, for illustration, we propose to show the existence of solutions for some
partial differential equation with delay.

2. Preliminary results

In this section we recall some preliminary results on m-accretive operators and
some results on the phase space that will be used in the whole of this work. Let X
be a Banach space and A : X → 2X be an operator on X with domain defined by

D(A) = {x ∈ X : Ax is non empty in X}.
We say that (x, y) ∈ A if x ∈ D(A) and y ∈ Ax.

Definition 2.1. A is said to be accretive if for λ > 0, (x1, y1) ∈ A and (x2, y2) ∈ A
we have

|x1 − x2| ≤ |x1 − x2 + λ(y1 − y2)|.
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Proposition 2.2 ([5]). If A is an accretive operator, then for all λ > 0, I + λA is
a bijection from D(A) into R(I + λA). Moreover, (I + λA)−1 is nonexpansive on
R(I + λA).

Definition 2.3. Let A : D(A) ⊂ X → 2X . Then A is said to be m-accretive if A
is accretive and for some λ > 0, we have

R(I + λA) = X.

Remark 2.4. If A is m-accretive, then for all λ > 0, we have R(I + λA) = X.

Definition 2.5. The duality mapping J : X → 2X∗
is defined by

J(x) = {x∗ ∈ X∗ :< x∗, x >= |x∗|2 = |x|2}.

By the Hahn-Banach Theorem, J(x) is a non empty set for all x ∈ X. For a
general Banach space, the duality mapping J is multi-valued. If the dual X∗ is
strictly convex, J is single-valued. Moreover, if X∗ is uniformly convex, then J is
uniformly continuous on bounded sets.

Definition 2.6. For every (x, y) ∈ X, we define the bracket [., .] by

[x, y] = lim
h→0

|x+ hy| − |x|
h

.

The following results are well known.

Proposition 2.7 ([5]). Let x, y, z ∈ X and α, β ∈ R. Then the following statements
hold:

(i) [αx, βy] = |β|[x, y] for αβ > 0.
(ii) [x, αx+ y] = α|x|+ [x, y].
(iii) [x, y] ≥ 0 if and only if |x+ hy| ≥ |x| for h ≥ 0.
(iv) |[x, y]| ≤ |y|.
(v) [x, y + z] ≤ [x, y] + [x, z].
(vi) [x, y] ≥ −[x,−y].
(vii) [x, y] = maxx∗∈ 1

|x|J(x)〈x∗, y〉 for x 6= 0.
(viii) Let u be a function from a real interval J to X such that u′(t0) exists for

an interior point t0 of J . Then D+|u(t0)| exists and

D+|u(t0)| = [u(t0), u′(t0)],

where D+|u(t0)| denotes the right derivative of |u(t)| at t0.

Proposition 2.8 ([8]). Let A : X → 2X be an operator in X. Then the following
statements are equivalent

(i) A is accretive,
(ii) (I + λA)−1 is nonexpansive on R(I + λA),
(iii) [x1 − x2, y1 − y2] ≥ 0 for any (x1, y1), (x2, y2) ∈ A,
(iv) for all (x1, y1), (x2, y2) ∈ A, there exists x∗ ∈ J(x1 − x2) such that

< x∗, y1 − y2 >≥ 0.

Consider the Cauchy problem

u′(t) +Au(t) 3 f(t) for t ∈ [0, T ]

u(0) = u0.
(2.1)
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Definition 2.9. A function u : [0, T ] → X is said to be a strong solution of (2.1)
if

(i) u is absolutely continuous on [0, T ].
(ii) u is differentiable on [0, T ] almost everywhere.
(iii) u′(t) +Au(t) 3 f(t) for a.e. t ∈ [0, T ].
(iv) u(0) = u0.

Definition 2.10. [5] For a given ε > 0, a partition t0 < t1 < · · · < tn of [0, tn],
and a finite sequence f0, f1, . . . , fn in X, the equation

uk − uk−1

tk − tk−1
+Auk 3 fk for k = 1, 2, . . . , n.

is called a ε-discretization of u′(t) +Au(t) 3 f(t), on [0, T ] if,

0 ≤ t0 ≤ ε, 0 ≤ T − tn < ε, tk − tk−1 < ε,
n∑

k=1

∫ tk

tk−1

‖f(τ)− fk‖dτ < ε.

Moreover, the step function

uε(t) =

{
u0 for t = 0
uk for t ∈]tk−1, tk]

is called ε-solution of this discretization.

Definition 2.11 ([5]). A continuous function u : [0, T ] → X satisfying u(0) = u0

is called a mild solution (in the sense of Evans) of equation (2.1), if, for all ε > 0
there exists uε an ε−solution of an ε-discretization on [0, T ] such that

|u(t)− uε(t)| < ε for t ∈ [0, T ].

Proposition 2.12 ([5]). If A is accretive, then the following results hold
(i) the mild solution of equation (2.1) if it exists, is unique.
(ii) If u is a strong solution of equation (2.1), then u is a mild solution.

Theorem 2.13 ([5]). Let A be a m-accretive operator and f ∈ L1(0, T ;X). Suppose

that u0 ∈ D(A), then equation (2.1) has a unique mild solution.

Theorem 2.14 ([3, p.102]). Let A be an m-accretive operator on X and take
f ∈ L1(0, T ;X), then the function u is a strong solution of equation (2.1) if and
only if u is a mild solution which is absolutely continuous and almost everywhere
differentiable on [0, T ].

Definition 2.15. A Banach spaceX is said to have the Radon-Nikodym property if
and only if every absolutely continuous function g : [a, b] → X is almost everywhere
differentiable.

Definition 2.16 ([5, p.194]). The generalized domain D̂(A) of A is defined by

D̂(A) = {x ∈ X : |x|A = lim
λ→0

|Aλx| <∞}.

Proposition 2.17. Let A : X → 2X be m-accretive operator in X. Then D(A) ⊂
D̂(A) ⊂ D(A).

As a consequence of [5, Theorem 5], we deduce the following result.
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Theorem 2.18 ([5]). Assume that A is m-accretive, f ∈ C([0, T ];X) and u0 ∈
D(A). If X has the Radon-Nikodym, then every absolutely continuous mild solution
of (2.1) becomes a strong solution of (2.1).

Definition 2.19 ([3, p.32]). Let An : D(An) ⊂ X → 2X be a sequence of multi-
valued operators on X. We define the lim inf

n→+∞
An by the operator A∞ : D(A∞) ⊂

X → 2X such that
y∞ ∈ A∞x∞ if and only if there exist xn ∈ D(An) and yn ∈ Anxn

such that xn → x∞ and yn → y∞ as n→ +∞.

For λ > 0, we define the resolvent of A by

Jλ = (I + λA)−1.

The Yosida approximation of A is defined for λ > 0 by

Aλ =
1
λ

(I − Jλ).

Proposition 2.20 ([10]). If A is an accretive operator, then for λ > 0, the following
statements hold

(i) Aλ is accretive and if A is m-accretive, so is Aλ.
(ii) Aλ is a Lipschitz mapping on R(I + λA) with coefficient 2

λ .

Theorem 2.21 ([3, p.164]). Let A be a m-accretive operator on X, then

A = lim inf
λ→0+

Aλ.

where Aλ is the Yosida approximation of A.

Theorem 2.22 ([3, p.159]). Let T > 0, ω ∈ R, (An + ωI)n≥1 be a sequence of
m-accretive operators, xn ∈ D(An) and fn ∈ L1(0, T ;X) for n ≥ 1. Let un be the
mild solution of

u′n(t) +Anun(t) 3 fn(t) for t ∈ [0, T ]

un(0) = xn.
(2.2)

If fn → f∞ in L1(0, T ;X), xn → x∞ and A∞ = lim infn→+∞An, then

lim
n→+∞

un(t) = u∞(t) uniformly on [0, T ],

where u∞ is the mild solution of the equation

u′∞(t) +A∞u∞(t) 3 f∞(t) for t ∈ [0, T ]

u∞(0) = x∞.

Proposition 2.23 ([3, p.90]). Let A be such that A+ ωI is m-accretive for some
ω ∈ R. Let f , g be two functions in L1(0, T ;X). If u1 and u2 are respectively mild
solutions of u′(t) + Au(t) 3 f(t) and v′(t) + Av(t) 3 g(t) for t ∈ [0, T ]. Then for
0 ≤ s ≤ t ≤ T , the following estimate holds

|u1(t)− u2(t)| ≤ eω(t−s)|u1(s)− u2(s)|+
∫ t

s

eω(t−τ)|f(τ)− g(τ)|dτ.

In the following, we assume that the phase space B satisfies the the following
assumptions which were introduced by Hale and Kato [6]:
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(A1) There exist constant H > 0 and functions K,M : R+ → R+ with K
continuous and M ∈ L∞loc(R+) such that for all σ ∈ R and for any a > 0
if x : (−∞, σ + a] → X is such that xσ ∈ B and x :[σ, σ + a] → X is
continuous, then for all t ∈ [σ, σ + a] we have
(i) xt ∈ B
(ii) |x(t)| ≤ H|xt|B (in other words |ϕ(0)| ≤ H|ϕ|B, for any ϕ ∈ B),
(iii) |xt|B ≤ K(t− σ) supσ≤s≤t |x(t)|+M(t− σ)|xσ|B.

(A2) The function t→ xt is continuous from [σ, σ + a] to B.
(B) B is complete.

Let C00 be the space of continuous functions from (−∞, 0] into X with compact
supports. In the sequel we suppose that B satisfies

(C) If a uniformly bounded sequence (ϕn)n≥0 in C00 converges compactly to a
function ϕ in (−∞, 0], then ϕ ∈ B and |ϕn − ϕ|B → 0 as n→ +∞.

Let B0 = {ϕ ∈ B : ϕ(0) = 0}. Consider the family of the linear operators defined
on B0 by

(S0(t)ϕ)(θ) =

{
0 if − t ≤ θ ≤ 0.
ϕ(t+ θ) if θ < −t.

Then (S0(t))t≥0 defines a strongly continuous semigroup on B0.

Definition 2.24 ([7]). We say that B is a fading memory space if
(i) B satisfies assumption (C),
(ii) |S0(t)ϕ|B → 0 as t→ +∞ for all ϕ ∈ B.

Let BC(]−∞, 0];X) be the space of bounded continuous functions with values
in X endowed with the supremum norm. Then we have the following interesting
result.

Proposition 2.25 ([7]). If B is a fading memory space, then BC(−∞, 0];X) is
continuously embedded in B; namely, there exists a constant c > 0 such that

|ϕ|B ≤ c|ϕ|BC for all ϕ ∈ BC((−∞, 0];X).

3. Mild and strong solution of (1.1)

Definition 3.1 (In the sense of Evans). A function u : (−∞,+∞) → X is said to
be a mild solution of equation (1.1) if:

(i) u0 = φ
(ii) u is mild solution in the sense of Evans of the equation

u′(t) +Au(t) 3 f(t) for t ≥ 0

where f(t) = F (ut) for t ≥ 0.

Definition 3.2. A function u : (−∞, T ] → X is said to be a strong solution of
equation (1.1) if:

(i) u0 = φ
(ii) u is absolutely continuous
(iii) u is almost everywhere differentiable on [0, T ] and

u′(t) +Au(t) 3 F (ut) for a.e. t ∈ [0, T ].

Firstly, we prove the existence of the mild solution. For this goal, we assume:
(H1) (A+ ωI) is m-accretive for some ω ∈ R.
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(H2) There exists a constant L > 0 such that

|F (φ)− F (ψ)| ≤ L|φ− ψ|B for φ, ψ ∈ B.

Theorem 3.3. Assume that (H1), (H2) hold. Let φ ∈ B be such that φ(0) ∈ D(A).
Then equation (1.1) has a unique mild solution defined on [0,+∞).

Proof. Without loss of generality we assume that ω = 0. Let T > 0. Consider the
set

Y = {v : [0, T ] → X is continuous and v(0) = φ(0)}.
For v ∈ Y , we consider the equation

u′(t) +Au(t) 3 F (ṽt) for t ∈ [0, T ]

u(0) = φ(0)
(3.1)

where

ṽ =

{
φ on (−∞, 0]
v on [0, T ]

From assumption (A2) the mapping t 7→ ṽt is continuous. Consequently, the map-
ping t 7→ F (ṽt) is continuous.

In virtue of Theorem 2.13, equation (3.1) has a unique mild solution u(v) on
[0, T ]. Let us now define the operator

K : Y → Y

v → u(v)

and show that K has an unique fixed point on Y . Notice that K is well defined and
K(Y ) ⊂ Y .

Let v1 and v2 be in Y . Set u1 = K(v1) and u2 = K(v2). Then

u′1(t) +Au1(t) 3 F (ṽ1t
)

u′2(t) +Au2(t) 3 F (ṽ2t
).

By Proposition 2.23, we deduce that

|u1(t)− u2(t)| ≤ L

∫ t

0

|ṽ1s − ṽ2s |Bds.

From assumption (A1)(iii) and using the fact that ṽ10 = ṽ20 = φ, we deduce that

|ṽ1s
− ṽ2s

|B ≤ K(s) sup
0≤τ≤s

|v1(τ)− v2(τ)|

≤ K(s) sup
0≤τ≤T

|v1(τ)− v2(τ)|.

Set
KT = sup

t∈[0,T ]

K(t).

Hence
|u1(t)− u2(t)| ≤ KTT sup

τ∈[0,T ]

|v1(τ)− v2(τ)|.

Thus
sup

t∈[0,T ]

|u1(t)− u2(t)| ≤ LKTT sup
t∈[0,T ]

|v1(t)− v2(t)|.

Finally for T appropriately small, K is strictly contractive. By the Banach fixed
point theorem we have the existence and uniqueness of u which is a mild solution



EJDE-2008/91 STRONG SOLUTIONS 9

of equation (1.1) on [0, T ]. We proceed by steep and we can extend continuously
the solution on [0, T ] for every T > 0. �

As a consequence of Theorem 2.18, we deduce the following result.

Theorem 3.4. Assume that X has the Radon-Nikodym property and u is a mild
solution of equation equation (1.1). If u is lipschitz continuous on [0, T ], then u
becomes a strong solution.

For the regularity of the mild solution we suppose the following hypotheses:
(H3) X has Radon-Nikodym property.
(H4) B is a fading memory space.
(H5) φ ∈ C1((−∞, 0];X) ∩ B, φ′ ∈ B such that φ′ is bounded and φ(0) ∈ D̂(A).
Consider the Kato approximation

u′n(t) +Anun(t) = F (unt
) for t ≥ 0

un0 = φ
(3.2)

where for n ≥ 1,

Jn = (I + (
1
n

)A)−1

is the resolvent of A and An = n(I − Jn) is the Yosida approximation of A.
Now, We state our main result of this work on the existence of strong solutions.

Theorem 3.5. Assume that (H1)–(H5) hold. Then there exists a unique strong
solution u of equation (1.1) on [0,+∞) such that

u(t) = lim
n→+∞

un(t)

uniformly on each compact subset of [0,+∞), where un is the solution of equation
(3.2). Moreover, u(t) ∈ D̂(A) for t ≥ 0.

Let T > 0. The proof will be done in the following steps:
(i) The approximate equation (3.2) with second term−Anun(t)+F (unt

) is Lipschitz
with respect to the second variable. Hence by a fixed point argument we show that
equation (3.2) has a unique solution un on [0, T ] which is of class C1 on [0, T ].
(ii) We prove that un and u′n are uniformly bounded on [0, T ].
(iii) We prove that the strong limit of un exists uniformly in [0, T ] as n → +∞
which is denoted by u .
(iv) We prove that u is a strong solution of equation (1.1).

Lemma 3.6. Suppose that (H1), (H2) are satisfied and φ ∈ B is such that φ(0) ∈
D̂(A). Then for every T > 0, there exists % > 0 such that |un(t)| ≤ % for all n, and
for t ∈ [0, T ].

Proof. Let a = φ(0). Then

D+|un(t)− a| = [un(t)− a, u′n(t)]

= [un(t)− a,−Anun(t) + F (unt
)]

= [un(t)− a,−Anun(t) +Ana−Ana+ F (unt)− F (φ) + F (φ)]

≤ [un(t)− a,−Anun(t) +Ana] + |Ana|+ |F (φ)|+ L|unt − φ|.
Since A is m-accretive, it follows that [un(t) − a,−Anun(t) + Ana] ≤ 0. Conse-
quently,

D+|un(t)− a| ≤ |Ana|+ |F (φ)|+ L|unt
− φ|.
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Since φ(0) ∈ D̂(A), supn≥1 |Ana| <∞; and consequently

D+|un(t)− a| ≤ k1 + L|unt
− φ|B, (3.3)

where k1 = supn≥1 |Ana| + |F (φ)|. By solving the differential inequality (3.3), we
deduce

|un(t)− a| ≤ k1T + L

∫ t

0

|uns
− φ|Bds for t ∈ [0, T ],

consequently,

sup
s∈[0,t]

|un(s)− a| ≤ k1T + L

∫ t

0

|uns
− φ|Bds.

It follows that

K(t) sup
s∈[0,t]

|un(s)− a| ≤ K(t)k1T + LK(t)
∫ t

0

|uns − φ|Bds;

moreover,

K(t) sup
s∈[0,t]

|un(s)− a|+M(t)|φ− a|B

≤ K(t)k1T + LK(t)
∫ t

0

|uns
− φ|Bds+M(t)|φ− a|B

≤ KT k1T + LKT

∫ t

0

|uns
− φ|Bds+MT |φ− a|B,

where MT = supt∈[0,T ]M(t). Let k2 = KT k1T +m|φ− a|B. We obtain

K(t) sup
s∈[0,t]

|un(s)− a|+M(t)|φ− a|B ≤ k2 + LKT

∫ t

0

|uns
− φ|Bds.

Applying assumption (A1)(iii), we have

|unt
− a|BK(t) sup

s∈[0,t]

|un(s)− a|+M(t)|φ− a|B ≤ k2 + LKT

∫ t

0

|uns
− φ|Bds.

Consequently

|unt
− φ|B ≤ |unt

− a|B + |φ− a|B

≤ |φ− a|B + k2 + LKT

∫ t

0

|uns − φ|Bds.

we set k3 = |φ− a|B + k2, we then have

|unt
− φ|B ≤ k3 + LKT

∫ t

0

|uns
− φ|Bds.

Gronwall’s Lemma implies

|unt
− φ|B ≤ k3e

LKT T .

Since for all ψ ∈ B, we have |ψ(0)| ≤ H|ψ|B, it follows that

|un(t)− φ(0)| ≤ H|unt − φ|B,
|un(t)− φ(0)| ≤ Hk3e

LKT T = N.

Finally, we arrive at
|un(t)| ≤ |φ(0)|+N,

which implies that (un)n≥1 is uniformly bounded in C([0, T ];X). �
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To prove that (u′n)n≥1 is uniformly bounded, we need the following two lemmas.

Lemma 3.7 ([8]). Let w ∈ C1([0, T ];X). Then for any s ∈ [0, T ) one has

lim
h→0+

sup
θ∈[−s,0]

|w(s+ θ + h)− w(s+ θ)|
h

= sup
θ∈[−s,0]

|w′(s+ θ)|.

Lemma 3.8 ([8]). Let w ∈ C1([−h0, 0];X) ∩ C1([0, h0];X). Then

lim sup
h→0+

sup
θ∈[−(s+h),−s]

|w(s+ θ + h)− w(s+ θ)|
h

≤ |w′+(0)|+ |w
′

−(0)|

for s ≥ 0 where w′+(0) and w′−(0) denote respectively the right and left derivative
at 0.

Lemma 3.9. There exists a constant β > 0 such that |u′n(t)| ≤ β for all n ≥ 1 and
t ∈ [0, T ].

Proof. Let zn(t) = un(t+ h)− un(t). Then

D+|zn(t)| = [zn(t), z′n(t)] = [zn(t),−Anun(t+ h) +Anun(t) + F (unt+h
)− F (unt

)].

Since An, is accretive,

[zn(t),−Anun(t+ h) +Anun(t)] ≤ 0.

Consequently
D+|zn(t)| ≤ L|unt+h

− unt
|B,

which implies that

|zn(t)| ≤ |zn(0)|+ L

∫ t

0

|uns+h
− uns

|Bds,

|un(t+ h)− un(t)|
h

≤ |un(h)− un(0)|
h

+ L

∫ t

0

|uns+h
− uns

|B
h

ds.

It remains to estimate ∫ t

0

|uns+h
− uns |B
h

ds.

Using Proposition 2.25, we deduce that

|uns+h
− uns |B ≤ c|uns+h

− uns |
BC

= c sup
θ≤0

|un(s+ θ + h)− un(s+ θ)|.

We have to estimate

sup
θ≤0

|un(s+ θ + h)− un(s+ θ)|
h

.

In fact one has,

sup
θ≤0

sup|un(s+ θ + h)− un(s+ θ)| ≤ sup
θ≤−(s+h)

|un(s+ θ + h)− un(s+ θ)|

+ sup
θ∈[−(s+h),−s]

|un(s+ θ + h)− un(s+ θ)|

+ sup
θ∈[−s,0]

|un(s+ θ + h)− un(s+ θ)|
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For s+ θ + h ≤ 0 and s+ θ ≤ 0, one has

sup
θ≤−(s+h)

|un(s+ θ + h)− un(s+ θ)|
h

= sup
θ≤−(s+h)

|φ(s+ θ + h)− φ(s+ θ)|
h

≤ sup
θ≤0

|φ′(θ)| = N1.

If θ ∈ [−(s + h),−s], then s + θ + h ≥ 0 and s + θ ≤ 0. Since un ∈ C1([0, T ];X)
and φ ∈ C1(−∞, 0];X), hence Lemma 3.8 yields

lim sup
h→0+

sup
θ∈[−(s+h),−s]

|un(s+ θ + h)− un(s+ θ)|
h

≤ |u′n(0)|+ |φ′(0)|

with u′n(0) denotes the right derivative of un at 0, and φ′(0) denotes the left deriv-
ative of φ at 0. If θ ∈ [−s, 0] then s+ θ ≥ 0, and Lemma 3.7 yields

lim sup
h→0+

sup
θ∈[−s,0]

|un(s+ θ + h)− un(s+ θ)|
h

.

= sup
θ∈[−s,0]

sup
h→0+

|un(s+ θ + h)− un(s+ θ)|
h

.

= sup
θ∈[−s,0]

|u′n(s+ θ)|.

∫ t

0

|uns+h
− uns |BC

h
ds =

∫ t

0

sup
θ≤0

|un(s+ θ + h)− un(s+ θ)|
h

ds

≤
∫ t

0

sup
θ≤−(s+h)

|un(s+ θ + h)− un(s+ θ)|
h

ds

+
∫ t

0

sup
θ∈[−(s+h),−s]

|un(s+ θ + h)− un(s+ θ)|
h

ds

+
∫ t

0

sup
θ∈[−s,0]

|un(s+ θ + h)− un(s+ θ)|
h

ds.

lim sup
h→0+

|un(t+ h)− un(t)|
h

= lim
h→0+

|un(t+ h)− un(t)|
h

≤ |u′n(0)|+ cN1TL+ Lc

∫ t

0

(|u′n(0)|+ |φ′(0)|)ds

+ Lc

∫ t

0

sup
θ∈[−s,0]

|u′n(s+ θ)|ds.

Consequently,

|u′n(t)| = lim
h→0+

|un(t+ h)− un(t)|
h

≤ (1 + cLT )|u′n(0)|+ cL(N1 + |φ′(0)|)T

+ Lc

∫ t

0

sup
θ∈[−s,0]

|u′n(s+ θ)|ds.

Furthermore,
|u′n(0)| ≤ |Anφ(0)|+ |F (φ)| ≤ k0 + |F (φ)|,
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where k0 = supn≥1 |Ana|. Hence

|u′n(t)| = lim
h→0+

|un(t+ h)− un(t)|
h

≤ (1 + cLT )(k0 + |F (φ)|) + Lc(N1 + |φ′(0)|)T

+ Lc

∫ t

0

sup
θ∈[−s,0]

|u′n(s+ θ)|ds.

Let
k3 = (1 + cLT )(k0 + |F (φ)|) + Lc(N1 + |φ′(0)|)T.

Hence for θ ≤ 0 such that −t ≤ θ, we get

sup
θ∈[−t,0]

|u′n(t+ θ)| ≤ k3 + Lc

∫ t

0

sup
θ∈[−s,0]

|u′n(s+ θ)|ds.

Gronwall’s Lemma implies

sup
θ∈[−t,0]

|u′n(t+ θ)| ≤ k3e
LcT = β.

Finally for θ = 0 we conclude |u′n(t)| ≤ β which proves (u′n(t))n is uniformly
bounded. �

Lemma 3.10. Suppose that (H1)–(H5) hold. Then the sequence (un)n≥1 converges
uniformly to the mild solution u of (1.1) on [0, T ].

Proof. Let u be the mild solution of (1.1) and vn be the mild solution of the equation

v′n(t) +Anvn(t) = F (ut) for t ∈ [0, T ]

vn(0) = φ(0).
(3.4)

From Theorem 2.22, we deduce that vn → u as n→∞ uniformly on [0, T ]. Setting

zn(t) = un(t)− vn(t) for t ∈ [0, T ],

we have

D+|zn(t)| = [zn(t), z′n(t)] = [zn(t),−Anun(t) +Anvn(t) + F (unt)− F (ut)].

Thus
D+|zn(t)| ≤ L|unt

− ut|B.

Hence

|un(t)− vn(t)| ≤ L

∫ t

0

|uns
− us|Bds.

≤ Lc

∫ t

0

|uns
− us|BCds.

≤ Lc

∫ t

0

sup
θ≤0

|un(s+ θ)− u(s+ θ)|ds.

≤ LcT sup
τ∈[0,T ]

|un(τ)− u(τ)|.
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It follows that

sup
t∈[0,T ]

|un(t)− vn(t)| ≤ LcT sup
τ∈[0,T ]

|un(τ)− u(τ)|

≤ LcT sup
t∈[0,T ]

(|un(t)− vn(t)|+ |vn(t)− u(t)|).

Let T0 be such that For LcT0 < 1, we deduce that

sup
t∈[0,T0]

|un(t)− vn(t)| ≤ LcT0

1− LcT0
sup

t∈[0,T0]

|vn(t)− u(t)|,

and vn → u uniformly on [0, T0], which implies

|un(t)− vn(t)| → 0 as n→∞ uniformly on [0, T0].

Consequently, for T0 small enough, we have

un → u uniformly on [0, T0].

Since the derivation of u′n are uniformly bounded , which implies that u is lipschitz
continuous on [0, T0]. Since X has the Radon-Nikodym property, it follows that u
is almost everywhere differentiable, by Theorem 2.18, we deduce that u is a strong
solution of equation (1.1) on [0, T0], for T0 small enough. The strong solution can
be extended on [0,+∞), in fact, consider the equation

w′(t) +Aw(t) 3 F (wt) for t ∈ [T0, T1]
wT0 = uT0 ,

(3.5)

Arguing as above, we prove for T1−T0 small enough that (3.5) has a strong solution
on [T0, T1] which extends the strong solution of (1.1) on the entire interval [T0, T1],
we use the same argument to extend continuously the strong solution in the whole
interval [0,+∞). To show that u(t) ∈ D̂(A) for t ≥ 0. we use the following Lemma.

Lemma 3.11 ([5]). Assume A is m-accretive and u0 ∈ D̂(A). If f is measurable
and of essentially bounded variation on [0, T ]. Let u be the mild solution solution
of equation (2.1). Then u(t) ∈ D̂(A) for t ≥ 0.

In our case, f(t) = F (ut) for t ≥ 0. Since the initial value ϕ is a Lipschitz
continuous function on (−∞, 0] and the mild solution of equation (1.1) is Lipschitz
on [0, T ], using the fact that B is a fading memory space, we deduce that the function
t → ut is Lipschitz and consequently, we deduce that the function t → F (ut) is
Lipschitz and of course is of essentially bounded variation on [0, T ], by Lemma, we
conclude that u(t) ∈ D̂(A) for t ≥ 0. �

4. Applications

Example 1: Parabolic case. Let β be a maximal monotone subset of R×R such
that 0 ∈ D(β) and βp ⊂ Lp(0, 1)× Lp(0, 1), 1 < p < +∞, be the operator defined
by

D(βp) = {u ∈ Lp(0, 1) : there exists v ∈ Lp(0, 1) such that

v(x) ∈ β(u(x)) a.e. in [0, 1]}
βp(u) = {v ∈ Lp(0, 1) : v(x) ∈ β(u(x)) a.e. in [0, 1]}.

Lemma 4.1 ([2]). βp is m-accretive on Lp(0, 1).
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Proposition 4.2 ([2]). The operator A : Lp(0, 1) → Lp(0, 1) defined by

D(A) = W 1,p
0 ∩W 2,p

0 ∩D(βp)

A(u) = −∆u+ βp(u)

is m-accretive in Lp(0, 1).

To apply the previous abstract results, we consider the following multivalued
parabolic partial functional differential equation

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

+ β(u(t, x)) 3
∫ 0

−∞
G(θ, u(t+ θ, x))dθ for t ∈ [0, 1], x ∈]0, 1[

u(t, 0) = u(t, 1) = 0 for t ∈ [0, 1],

u(θ, x) = ϕ(θ, x) for θ ∈ R−, x ∈]0, 1[ .
(4.1)

The phase space is

B = Cγ =
{
ϕ ∈ C(]−∞, 0];Lp(0, 1) : sup

θ≤0
eγθ|ϕ(θ)|p < +∞

}
,

where γ > 0, endowed with the norm

|ϕ|Cγ = sup
θ≤0

eγθ|ϕ(θ)|p,

where

|ϕ(θ)|p =
( ∫ 1

0

|ϕ(θ)(x)|pdx
)1/p

.

Let X = Lp(0, 1), with 1 < p < +∞. G :]−∞, 0]× R → R is such that
(i) the mapping θ 7→ G(θ, 0) belongs to L1(−∞, 0).
(ii) |G(θ, x1)−G(θ, x2)| ≤ ϑ(θ)|x1 − x2| for all θ ∈]−∞, 0] and x1, x2 ∈ R.

We assume that ϑe−(γ+ε) ∈ Lq(]−∞, 0]) for some ε > 0 and 1
p + 1

q = 1.

Lemma 4.3 ([7]). Cγ satisfies assumptions (A1), (A2) and (B); moreover Cγ is a
fading memory space.

We introduce the function F : Cγ → Lp(0, 1) defined by

(Fϕ)(x) =
∫ 0

−∞
G(θ, ϕ(θ)(x))dθ for a.e. x ∈ [0, 1].

Lemma 4.4. Under the above conditions, the function F : Cγ → Lp(0, 1) is Lips-
chitz continuous.

Proof. Let ϕ ∈ Cγ and x ∈ [0, 1]. Then

|(F (ϕ))(x)− (F (0))(x)| =
∣∣ ∫ 0

−∞
G(θ, ϕ(θ)(x))dθ −

∫ 0

−∞
G(θ, 0)dθ

∣∣
≤

∫ 0

−∞
|G(θ, ϕ(θ)(x))−G(θ, 0)|dθ

≤
∫ 0

−∞
ϑ(θ)|ϕ(θ)(x)|dθ

≤
∫ 0

−∞
ϑ(θ)e−(γ+ε)θe(γ+ε)θ|ϕ(θ)(x)|dθ.
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Hence

|(Fϕ)(x)− (F (0))(x)|p ≤
( ∫ 0

−∞
ϑ(θ)e−(γ+ε)θe(γ+ε)θ|ϕ(θ)(x)|dθ

)p

.

Using Hypothesis (ii) and Hölder’s inequality, we obtain

|(Fϕ)(x)− (F (0))(x)|p ≤
( ∫ 0

−∞
(ϑ(θ))qe−q(γ+ε)θdθ

)p/q
∫ 0

−∞
ep(γ+ε)θ|ϕ(θ)(x)|pdθ)

and ∫ 1

0

|(Fϕ)(x)− (F (0))(x)|pdx

≤
∫ 0

−∞

(
(ϑ(θ))qe−q(γ+ε)θdθ

)p/q
∫ 1

0

∫ 0

−∞
ep(γ+ε)θ|ϕ(θ)(x)|pdθdx.

Let

λ = (
∫ 0

−∞
(ϑ(θ))qe−q(γ+ε)θdθ)p/q < +∞.

By hypothesis (ii),∫ 1

0

|(Fϕ)(x)− (F (0))(x)|pdx ≤ λ

∫ 0

−∞
epεθ

∫ 1

0

epγθ|ϕ(θ)(x)|pdx dθ

≤ λ
(
sup
θ≤0

epγθ

∫ 1

0

|ϕ(θ)(x)|pdx
) ∫ 0

−∞
epεθdθ

≤ 1
pε
λ|ϕ|pCγ

.

Hence
|F (ϕ)− F (0)|p ≤

( 1
pε
λ
)1/p|ϕ|Cγ

.

Since|F (0)|p <∞, F (ϕ) ∈ Lp(0, 1). Now, let ϕ,ψ ∈ Cγ and x ∈ [0, 1]. Then

|(Fϕ)(x)− (Fψ)(x)| =
∫ 0

−∞
G(θ, ϕ(θ)(x))dθ −

∫ 0

−∞
G(θ, ψ(θ)(x))dθ

∣∣
≤

∫ 0

−∞
|G(θ, ϕ(θ)(x))−G(θ, ψ(θ)(x))|dθ

≤
∫ 0

−∞
ϑ(θ)|ϕ(θ)(x)− ψ(θ)(x)|dθ

≤
∫ 0

−∞
ϑ(θ)e−(γ+ε)θe(γ+ε)θ|ϕ(θ)(x)− ψ(θ)(x)|dθ.

Hence

|(Fϕ)(x)− (Fψ)(x)|p ≤
( ∫ 0

−∞
ϑ(θ)e−(γ+ε)θe(γ+ε)θ|ϕ(θ)(x)− ψ(θ)(x)|dθ

)p

.

By Hölder’s inequality,

|(Fϕ)(x)− (Fψ)(x)|p

≤
( ∫ 0

−∞
(ϑ(θ))qe−q(γ+ε)θdθ

)p/q
∫ 0

−∞
ep(γ+ε)θ|ϕ(θ)(x)− ψ(θ)(x)|pdθ.
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Thus∫ 1

0

|(Fϕ)(x)− (Fψ)(x)|pdx

≤
( ∫ 0

−∞
(ϑ(θ))qe−q(γ+ε)θdθ

)p/q
∫ 1

0

∫ 0

−∞
ep(γ+ε)θ|ϕ(θ)(x)− ψ(θ)(x)|pdθ dx.

Then∫ 1

0

|(Fϕ)(x)− (Fψ)(x)|pdx ≤ λ

∫ 0

−∞
epεθ

∫ 1

0

epγθ|ϕ(θ)(x)− ψ(θ)(x)|pdx dθ

≤ λ(sup
θ≤0

epγθ

∫ 1

0

|ϕ(θ)(x)− ψ(θ)(x)|pdx)
∫ 0

−∞
epεθdθ

≤ 1
pε
λ|ϕ− ψ|pCγ

.

Therefore,

|F (ϕ)− F (ψ)|p ≤ (
1
pε
λ)1/p|ϕ− ψ|Cγ .

�

Let function φ defined by

φ(θ)(x) = ϕ(θ, x) for θ ≤ 0, x ∈ [0, 1].

Then (4.1) takes the abstract form

u′(t) +Au(t) 3 F (ut) for t ≥ 0
u0 = φ ∈ Cγ .

(4.2)

Consequently, by Theorem 3.5, we deduce the following result.

Proposition 4.5. Under the above assumption, let φ ∈ Cγ ∩ C1(] −∞, 0];X) be
such that φ′ ∈ Cγ , φ′ bounded and φ(0) ∈ D̂(A). Then (4.2) has a unique strong
solution u and the function v defined by

v(t, x) = u(t)(x) for a.e. (t, x) ∈ [0, 1]×]0, 1[

satisfies (4.1) for almost everywhere (t, x) ∈ [0, 1]×]0, 1[.

Example 2: Hyperbolic case. We consider the hyperbolic equation

∂

∂t
u(t, x) +

∂

∂x
(g(u(t, x))) =

∫ 0

−∞
H(θ, x, u(t+ θ, x))dθ for t ≥ 0, x ∈ R

u(θ, x) = ϕ0(θ, x) for θ ≤ 0, x ∈ R
(4.3)

where g : R → R is continuous and strictly monotone with g(R) = R. H :]−∞, 0]×
R× R → R and the initial value function ϕ0 :]−∞, 0]× R → R will be defined in
the sequel.

Let X = L1(R) and define the operator

D(A) =
{
v ∈ L1(R)∩L∞(R) :

d

dx
(g(v(x)) ∈ L1(R)

}
Av =

d

dx
(g(v(x)).

Lemma 4.6 ([9]). A is m-accretive operator in L1(R).
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As above, we choose the phase space

B = Cγ = {ϕ ∈ C(]−∞, 0];L1(R)) : sup
θ≤0

eγθ|ϕ(θ)|1 < +∞},

where γ > 0, we provide Cγ with the norm

|ϕ|Cγ
= sup

θ≤0
eγθ|ϕ(θ)|1,

where

|ϕ(θ)|1 =
∫ ∞

−∞
|ϕ(θ)(x)|dx.

Let F be defined on Cγ by

F (ϕ)(x) =
∫ 0

−∞
H(θ, x, ϕ(θ, x))dθ for t ≥ 0, x ∈ R.

And the function φ defined by

φ(θ)(x) = ϕ0(θ, x) for for θ ≤ 0, x ∈ R

Then equation 4.3 takes the abstract form

u′(t) +Au(t) = F (ut) for t ≥ 0
u0 = φ ∈ Cγ

We assume that H satisfies

|H(θ, x, y1)−H(θ, x, y2)| ≤ κ(θ)|y1 − y2| for θ ∈]−∞, 0] x, y1, y2 ∈ R

with ∫ 0

−∞
e−γθκ(θ)dθ <∞.

Moreover, we assume that

H(., ., 0) ∈ L1(]−∞, 0]× R).

Under the above condition, F : Cγ → L1(R) is Lipschitz continuous. Let ϕ ∈ Cγ .
Then F (ϕ) ∈ L1(R) due to the fact, that

F (0) ∈ L1(R).

For the Lipschitz condition, take ϕ,ψ ∈ Cγ and x ∈ R. Then

|(F (ϕ)− F (ψ))(x)| ≤
∫ 0

−∞
κ(θ)|ϕ(θ, x)− ψ(θ, x)|dθ for x ∈ R.

It follows that∫ ∞

−∞
|(F (ϕ)− F (ψ))(x)|dx ≤

∫ 0

−∞
e−γθκ(θ)e−γθ

∫ ∞

−∞
|ϕ(θ, x)− ψ(θ, x)|dx dθ.

Consequently,

|F (ϕ)− F (ψ)|1 ≤
∫ 0

−∞
e−γθκ(θ)dθ|ϕ− ψ|Cγ

.

By theorem 3.3, we deduce the following result.

Proposition 4.7. Let the initial data function ϕ0 be such that φ ∈ Cγ and φ(0) ∈
D(A). Then (1.1) has a unique mild solution defined on [0,+∞).
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