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EXISTENCE OF POSITIVE SOLUTIONS FOR p-LAPLACIAN
THREE-POINT BOUNDARY-VALUE PROBLEMS

ON TIME SCALES

HONG-RUI SUN, YING-HAI WANG

Abstract. This article shows the existence of positive solutions for a class of

p-Laplacian three-point boundary-value problem on time scales. By using sev-

eral fixed point theorems in cones, we establish conditions for the existence of
at least one, two or three positive solutions for the boundary-value problems.

Our results are new even for the corresponding differential (T = R) and differ-
ence equation (T = Z), and for the general time scales setting. An example is

also given to illustrate our results.

1. Introduction

Dynamic equations on time scales not only unify differential and difference equa-
tions [13], but also exhibit much more complicated dynamics [1, 8, 9]. The study
of dynamic equations on time scales has led to important applications in the study
of insect population models, biology, heat transfer, stock market, wound healing,
and epidemic models [14, 20, 21].

Before introducing the problems of interest for this paper, we present some basic
definitions which can be found in [5, 8, 9, 13]. Another source on dynamic equations
on time scales is [17].

A time scale T is a nonempty closed subset of R with the topology inherited
from R. For notation, we shall use the convention that, for each interval J of R,
JT = J ∩ T.

The jump operators σ, ρ : T → T defined by

σ(t) = inf{τ ∈ T : τ > t} and ρ(t) = sup{τ ∈ T : τ < t}

(supplemented by inf ∅ := sup T and sup ∅ := inf T) are well defined. The point
t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t, σ(t) > t, respectively. If T has a right-scattered minimum m, define
Tκ = T−{m}; otherwise, set Tκ = T. If T has a left-scattered maximum M , define
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Tκ = T− {M}; otherwise, set Tκ = T. The forward graininess is µ(t) := σ(t)− t.
Similarly, the backward graininess is υ(t) := t− ρ(t).

For f : T → R and t ∈ Tκ, the ∆-derivative of f at t, denoted by f∆(t), is
the number (provided it exists) with the property that given any ε > 0, there is a
neighborhood U ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|,

for all s ∈ U .
For f : T → R and t ∈ Tκ, the ∇-derivative [5] of f at t, denoted by f∇(t), is

the number (provided it exists) with the property that given any ε > 0, there is a
neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|,

for all s ∈ U .
A function f : T → R is ld-continuous provided it is continuous at left dense

points in T and its right sided limit exists (finite) at right dense points in T. If
T = R, then f is ld-continuous if and only if f is continuous. If T = Z, then any
function is ld-continuous. It is known [5] that if f is ld-continuous, then there is a
function F (t) such that F∇(t) = f(t). In this case, we define∫ b

a

f(τ)∇τ = F (b)− F (a).

For recent results on positive solutions for second order three point boundary
value problems on time scales the reader is referred to [2, 3, 6, 10, 15, 18, 22]. Our
results have been motivated by those of Anderson, Avery and Henderson [4], and
Sun, Tang and Wang [25].

For convenience, throughout this paper we denote ϕp(u) = |u|p−2u for p > 1
with (ϕp)−1 = ϕq, where 1/p+ 1/q = 1.

Anderson, Avery and Henderson [4] considered the problem

(ϕp(u∆(t)))∇ + c(t)f(u(t)) = 0, t ∈ (a, b)T,

u(a)−B0(u∆(ν)) = 0, u∆(b) = 0,

where ν ∈ (a, b)T, f ∈ Cld([0,∞), [0,∞)), c ∈ Cld((a, b)T, [0,∞)) and Kmx ≤
B0(x) ≤ KMx for some positive constants Km, KM . They established the existence
result of at least one positive solution by a fixed point theorem of cone expansion
and compression of functional type.

In [25], the authors considered the eigenvalue problem for the p-Laplacian three-
point boundary value problem

(ϕp(u∆(t)))∇ + λh(t)f(u(t)) = 0, t ∈ (0, T )T,

u(0)− βu∆(0) = γu∆(η), u∆(T ) = 0.

The main tool used in [24] is Krasnoselskii’s fixed point theorem.
In this paper we study the existence of solutions for the one-dimensional p-

Laplacian three-point boundary value problem on time scales

(ϕp(u∆(t)))∇ + h(t)f(t, u(t)) = 0, t ∈ (0, T )T, (1.1)

u(0)− βu∆(0) = γu∆(η), u∆(T ) = 0. (1.2)
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We establish sufficient conditions for the existence of at least one, two or three
positive solutions for the boundary value problem. An example is also given to il-
lustrate the main results. The results are new even for the special cases of difference
equations and differential equations.

The rest of the paper is organized as follows. In Section 2, we first give four
lemmas which are needed throughout this paper and then state several fixed point
results: Krasnosel’skii’s fixed point theorem in a cone, a new fixed point theorem
due to Avery and Henderson and the Leggett-Williams fixed point theorem. In
Section 3 we use Krasnosel’skii’s fixed point theorem to obtain the existence of
at least one positive solutions of problem (1.1)-(1.2). Section 4 will discuss the
existence of twin positive solutions of problem (1.1)-(1.2). Two new results and
some corollaries will be presented by using a new fixed point theorem due to Avery
and Henderson. In Section 5 we develop criteria for the existence of (at least)
three positive and arbitrary odd positive solutions of problem (1.1) and (1.2). In
particular, our results in this section are new when T = R (the continuous case)
and T = Z (the discrete case). Finally, in section 6, we give an example to illustrate
our main results.

For the sake of convenience, we have the following hypotheses:
(i) T is a time scale, with 0, T ∈ T, β, γ are nonnegative constants, η ∈

(0, ρ(T ))T.
(ii) h ∈ Cld((0, T )T, [0,∞)) such that 0 <

∫ T

0
h(s)∇s < ∞, and f is in the

space C([0,∞), (0,∞)).

2. Preliminaries

Let the Banach space B = Cld([0, T ]T) (see [2]) be endowed with the norm
‖u‖ = supt∈[0,T ]T |u(t)|, and choose the cone P ⊂ B defined by

P = {u ∈ B : u(t) ≥ 0 for t ∈ [0, T ]T and

u∆∇(t) ≤ 0 for t ∈ (0, T )T, u
∆(T ) = 0}.

Clearly, ‖u‖ = u(T ) for u ∈ P . Define the operator A : P → B by

Au(t) =
∫ t

0

ϕq

( ∫ T

s

h(τ)f(τ, u(τ))∇τ
)
∆s

+ βϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

+ γϕq

( ∫ T

η

h(s)f(s, u(s))∇s
) (2.1)

for t ∈ [0, T ]T.

Lemma 2.1 ([24, Lemma 2.6]). Assume g : R → R is continuous, g : T → R is
delta differentiable on Tκ, and f : R → R is continuous differentiable. Then there
exists c in the interval [ρ(t), t] with

(f ◦ g)∇(t) = f ′(g(c))g∇(t).

From the definition of A, the monotonicity of ϕq(x) and Lemma 2.1, it is
easy to see that for each u ∈ P , Au ∈ P and satisfies (1.2). In addition, since
(ϕp(u∆(t)))∇ = −h(t)f(u(t)) < 0, and u∆(T ) = 0, then Au(T ) is the maximum
value of Au(t).

Lemma 2.2 ([25, Lemma 2.2]). A : P → P is completely continuous.
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Lemma 2.3 ([25, Lemma 2.3]). If u ∈ P , then u(t) ≥ t
T ‖u‖ for t ∈ [0, T ].

From the two lemmas above, we see that each fixed point of the operator A in
P is a positive solution of (1.1), (1.2).

Lemma 2.4 ([11, 16]). Let P be a cone in a Banach space B. Assume Ω1,Ω2 are
open subsets of X with 0 ∈ Ω1,Ω1 ⊂ Ω2. If A : P ∩ (Ω2\Ω1) → P is a completely
continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2\Ω1).

In the rest of this section, we provide some background material from the theory
of cones in Banach spaces, and we then state several fixed point theorems which
we needed later.

Let B be a Banach space and P be a cone in B. A map ψ : P → [0,+∞)
is said to be a nonnegative, continuous and increasing functional provided ψ is
nonnegative, continuous and satisfies ψ(x) ≤ ψ(y) for all x, y ∈ P and x ≤ y.

Given a nonnegative continuous functional ψ on a cone P of a real Banach space
B, we define, for each d > 0, the set

P (ψ, d) = {x ∈ P : ψ(x) < d}.

Lemma 2.5 ([7]). Let P be a cone in a real Banach space E. Let α and ψ be
increasing, nonnegative continuous functional on P , and let θ be a nonnegative
continuous functional on P with θ(0) = 0 such that, for some c > 0 and H > 0,

ψ(x) ≤ θ(x) ≤ α(x) and ‖x‖ ≤ Hψ(x)

for all x ∈ P (ψ, c). Suppose there exist a completely continuous operator A :
P (ψ, c) → P and 0 < a < b < c such that

θ(λx) ≤ λθ(x) for 0 ≤ λ ≤ 1andx ∈ ∂P (θ, b)

and
(i) ψ(Ax) > c for all x ∈ ∂P (ψ, c);
(ii) θ(Ax) < b for all x ∈ ∂P (θ, b);
(iii) P (α, a) 6= ∅ and α(Ax) > a for x ∈ ∂P (α, a).

Then, A has at least two fixed points, x1 and x2 belonging to P (ψ, c) satisfying
a < α(x1) with θ(x1) < b and b < θ(x2) with ψ(x2) < c.

Let 0 < a < b be given and let α be a nonnegative continuous concave functional
on the cone P . Define the convex sets Pa, P (α, a, b) by

Pa = {x ∈ P : ‖x‖ < a},
P (α, a, b) = {x ∈ P : a ≤ α(x), ‖x‖ ≤ b}.

Then we state the Leggett-Williams fixed point theorem [19].

Lemma 2.6. Let P be a cone in a real Banach space B, A : P c → P c be completely
continuous and α be a nonnegative continuous concave functional on P with α(x) ≤
‖x‖ for all x ∈ P c. Suppose there exists 0 < d < a < b ≤ c such that

(i) {x ∈ P (α, a, b) : α(x) > a} 6= ∅ and α(Ax) > a for x ∈ P (α, a, b);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;
(iii) α(Ax) > a for x ∈ P (α, a, c) with ‖Ax‖ > b.
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Then A has at least three fixed points x1, x2, x3 satisfying ‖x1‖ < d, a < α(x2),
‖x3‖ > d, and α(x3) < a.

3. Existence of One Positive Solution

For convenience, we define some important constants

C1 = (T + β + γ)−1ϕp(
∫ T

0

h(s)∇s), (3.1)

C2 = (η + β + γ)−1ϕp(
∫ T

η

h(s)∇s). (3.2)

Theorem 3.1. Assume there exist positive numbers a 6= b such that the conditions

(H1) There is a > 0 such that f(t, u) ≤ ϕp(aC1) for t ∈ [0, T ]T and 0 ≤ u ≤ a;
(H2) There is b > 0 such that f(t, u) ≥ ϕp(bC2) for t ∈ [η, T ]T and η

T b ≤ u ≤ b.

Then (1.1)–(1.2) has at least one positive solution u such that ‖u‖ lies between a
and b.

Proof. Without loss of generality, we may suppose that 0 < a < b. Define the
bounded open ball centered at the origin by

Ωa = {u ∈ B : ‖u‖ ≤ a}, Ωb = {u ∈ B : ‖u‖ ≤ b}.

Then 0 ∈ Ωa ⊂ Ωb. For u ∈ P
⋂
∂Ωa so that ‖u‖ = a, by (H1) and (3.1), we have

‖Au‖ = sup
t∈[0,T ]

[ ∫ t

0

ϕq

( ∫ T

s

h(τ)f(τ, u(τ))∇τ
)
∆s

+ βϕq(
∫ T

0

h(s)f(s, u(s))∇s) + γϕq

( ∫ T

η

h(s)f(s, u(s))∇s
)]

≤ (T + β + γ)ϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

≤ (T + β + γ)ϕq

( ∫ T

0

h(s)ϕp(aC1)∇s
)

≤ aC1(T + β + γ)ϕq

( ∫ T

0

h(s)∇s
)
≤ a.

Hence, ‖Au‖ ≤ ‖u‖ for u ∈ P
⋂
∂Ωa. Similarly, let u ∈ P

⋂
∂Ωb so that ‖u‖ = b.

Then

min
t∈[η,T ]

u(t) ≥ η

T
b
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and

‖Au‖ ≥ Au(η)

=
∫ η

0

ϕq

( ∫ T

s

h(τ)f(τ, u(τ))∇τ
)
∆s

+ βϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

+ γϕq(
∫ T

η

h(s)f(s, u(s))∇s)

≥ (η + β + γ)ϕq(
∫ T

η

h(s)f(s, u(s))∇s)

≥ (η + β + γ)bC2ϕq

( ∫ T

η

h(s)∇s
)

= b = ‖u‖

by (H2) and (3.2). Consequently, ‖Au‖ ≥ ‖u‖ for u ∈ P
⋂
∂Ωb. By Lemma 2.4, A

has a fixed point u ∈ P
⋂

(Ωb \Ωa), which is a positive solution of (1.1), (1.2), such
that a ≤ ‖u‖ ≤ b. �

For t ∈ [0, T ]T, we define

f0(t) = lim infu→0+
f(t, u)
ϕp(u)

, f∞(t) = lim infu→∞
f(t, u)
ϕp(u)

, (3.3)

f0(t) = lim supu→0+
f(t, u)
ϕp(u)

, f∞(t) = lim supu→∞
f(t, u)
ϕp(u)

. (3.4)

Corollary 3.2. The boundary-value problem (1.1), (1.2) has at least one positive
solution provided either

(H3) f0(t) < ϕp(C1) for t ∈ [0, T ]T and f∞(t) > ϕp

(
TC2

η

)
for t ∈ [η, T ]T or

(H4) f0(t) > ϕp

(
TC2

η

)
for t ∈ [η, T ]T and f∞(t) < ϕp(C1) for t ∈ [0, T ]T,

where C1, C2, f0, f∞, f
0, f∞ are as in (3.1), (3.2), (3.3), (3.4), respectively. In

particular, if f is superlinear in ϕp(u) (f0(t) = 0 and f∞(t) = ∞) or sublinear
in ϕp(u) (f0(t) = ∞ and f∞(t) = 0), then (1.1), (1.2) has at least one positive
solution.

Proof. First suppose (H3) holds. Then, there are sufficiently small a > 0 and
sufficiently large b > 0 such that

f(t, u)
ϕp(u)

≤ ϕp(C1) for t ∈ [0, T ]T, u ∈ (0, a],

f(t, u)
ϕp(u)

≥ ϕp

(TC2

η

)
for t ∈ [η, T ]T, u ∈ [

ηb

T
,+∞).

Then

f(t, u) ≤ ϕp(uC1) ≤ ϕp(aC1), t ∈ [0, T ]T, u ∈ [0, a],

f(t, u) ≥ ϕp

(TC2u

η
) ≥ ϕp(C2b), t ∈ [η, T ]T, u ∈ [

ηb

T
, b].

In particular, both (H1) and (H2) hold, so that by Theorem 3.1, (1.1), (1.2) has at
least one positive solution.
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Next assume (H4) holds. Then there exist 0 < a < b such that

f(t, u)
ϕp(u)

≥ ϕp

(TC2

η
) for t ∈ [η, T ]T, u ∈ (0, a], (3.5)

f(t, u)
ϕp(u)

≤ ϕp(C1) for t ∈ [0, T ]T, u ∈ [b,+∞). (3.6)

From (3.5) we have f(t, u) ≥ ϕp

(
TC2u

η

)
≥ ϕp(C2a) for t ∈ [η, T ]T, u ∈ [ηa

T , a]
satisfying (H2) with respect to a. Now consider (3.6), we wish to show that (H1)
holds. To that end, we consider the two cases: (1) f(t, u) is bounded or (2) f(t, u)
is unbounded.

Case 1: Suppose there exists C > 0 such that f(t, u) ≤ C for t ∈ [0, T ]T and
u ∈ [0,∞). By (3.6), there is r ≥ max{b, ϕq(C)

C1
} such that f(t, u) ≤ C ≤ ϕp(C1r)

for t ∈ [0, T ]T, u ∈ [0, r]. Thus (H1) is satisfied with respect to r.
Case 2: If f is unbounded, there exist t0 ∈ [0, T ]T and r′ ≥ b such that

f(t, u) ≤ f(t0, r′) ≤ ϕp(C1r
′) for t ∈ [0, T ]T and u ∈ [0, r′].

and (H1) is satisfied with respect to r′. Thus in both cases condition (H1) hold and
Theorem 3.1 yields the conclusion. �

4. Twin Solutions

In this section, we fix c ∈ T such that η < c < T , and denote

C3 = (c+ β + γ)−1ϕp

( ∫ T

c

h(s)∇s
)
.

Define the nonnegative, increasing and continuous functionals ψ, θ, and α on P by

ψ(u) = min
t∈[η,c]T

u(t) = u(η), θ(u) = max
t∈[0,η]T

u(t) = u(η),

α(u) = max
t∈[0,c]T

u(t) = u(c).

We observe that, for each u ∈ P,
ψ(u) = θ(u) ≤ α(u). (4.1)

In addition, for each u ∈ P , ψ(u) = u(η) ≥ η
T ‖u‖. Thus

‖u‖ ≤ T

η
ψ(u), u ∈ P. (4.2)

Finally, we also note that

θ(λu) = λθ(u), 0 ≤ λ ≤ 1 and u ∈ ∂P (θ, b′).

We now present the results in this section.

Theorem 4.1. Assume that there are positive numbers a′ < b′ < c′ such that

0 < a′ <
C1

C3
b′ <

ηC1

TC3
c′.

Assume further that f(t, u) satisfies the following conditions:
(i) f(t, u) > ϕp(c′C2), (t, u) ∈ [η, T ]T × [c′, T

η c
′],

(ii) f(t, u) < ϕp(b′C1), (t, u) ∈ [0, T ]T × [0, T
η b
′],

(iii) f(t, u) > ϕp(a′C3), (t, u) ∈ [c, T ]T × [a′, T
c a
′].
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Then (1.1)-(1.2) has at least two positive solutions u1 and u2 such that

a′ < max
t∈[0,c]T

u1(t) with max
t∈[0,η]T

u1(t) < b′,

b′ < max
t∈[0,η]T

u2(t) with min
t∈[η,c]T

u2(t) < c′.

Proof. By the definition of operator A and its properties, it suffices to show that
the conditions of Lemma 2.5 hold with respect to A.

We first show that if u ∈ ∂P (ψ, c′), then ψ(Au) > c′. Indeed, if u ∈ ∂P (ψ, c′),
then ψ(u) = mint∈[η,c]T u(t) = u(η) = c′. Since u ∈ P , ‖u‖ ≤ T

η ψ(u) = T
η c
′, we have

c′ ≤ u(t) ≤ T
η c
′, t ∈ [η, T ]T. As a consequence of (i), f(t, u(t)) > ϕp(c′C2), t ∈

[η, T ]T. Also, Au ∈ P implies

ψ(Au) = Au(η)

=
∫ η

0

ϕq

( ∫ T

s

h(τ)f(τ, u(τ))∇τ
)
∆s

+ βϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

+ γϕq

( ∫ T

η

h(s)f(s, u(s))∇s
)

≥ (η + β + γ)ϕq

( ∫ T

η

h(s)f(s, u(s))∇s
)

> (η + β + γ)
ηc′C2

T
ϕq

( ∫ T

η

h(s)∇s
)

= c′.

Next, we verify that θ(Au) < b′ for u ∈ ∂P (θ, b′). Let us choose u ∈ ∂P (θ, b′),
then θ(u) = maxt∈[0,η]T u(t) = u(η) = b′. This implies 0 ≤ u(t) ≤ b′, t ∈ [0, η]T.
Since u ∈ P , we also have b′ ≤ u(t) ≤ ‖u‖ ≤ T

η u(l) = T
η b
′ for t ∈ [η, T ]T. So

0 ≤ u(t) ≤ T

η
b′, t ∈ [0, T ]T.

Using (ii), we get
f(t, u(t)) < ϕp(b′C1), t ∈ [0, T ]T.

Also, Au ∈ P implies that

θ(Au) = Au(η) ≤ Au(T )

=
∫ T

0

ϕq(
∫ T

s

h(τ)f(τ, u(τ))∇τ)∆s

+ βϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

+ γϕq(
∫ T

η

h(s)f(s, u(s))∇s)

≤ (T + β + γ)ϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

< (T + β + γ)b′C1ϕq

( ∫ T

0

h(s)∇s
)

= b′.

Finally, we prove that P (α, a′) 6= ∅ and α(Au) > a′ for all u ∈ ∂P (α, a′). In
fact, the constant function a′

2 ∈ P (α, a′). Moreover, for u ∈ ∂P (α, a′), we have
α(u) = maxt∈[0,c]T u(t) = u(c) = a′. This implies a′ ≤ u(t) ≤ T

c a
′, t ∈ [c, T ]T.
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Using assumption (iii), f(t, u(t)) > ϕp(a′C3), t ∈ [c, T ]T. As before Au ∈ P , we
obtain

α(Au) = (Au)(c)

=
∫ c

0

ϕq

( ∫ T

s

h(τ)f(τ, u(τ))∇τ
)
∆s

+ βϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

+ γϕq

( ∫ T

η

h(s)f(s, u(s))∇s
)

≥ (c+ β + γ)ϕq

( ∫ T

c

h(s)f(s, u(s))∇s
)

> (c+ β + γ)
a′

L
ϕq

( ∫ T

c

h(s)∇s
)

= a′.

Thus, by Lemma 2.5, there exist at least two fixed points of A which are positive
solutions u1 and u2, belonging to P (ψ, c′), of (1.1)-(1.2) such that

a′ < α(u1) with θ(u1) < b′, b′ < θ(u2) with ψ(u2) < c′.

�

In analogy to Theorem 4.1, we have the following result.

Theorem 4.2. Assume that there are positive numbers a′ < b′ < c′ such that

0 < a′ <
c

T
b′ <

cC2

TC1
c′.

Assume further that f(t, u) satisfies the following conditions:
(i) f(t, u) < ϕp(c′C1) for (t, u) ∈ [0, T ]T × [0, T

η c
′],

(ii) f(t, u) > ϕp(b′C2) for (t, u) ∈ [η, T ]T × [b′, T
η b
′],

(iii) f(t, u) < ϕp(a′C1) for (t, u) ∈ [c, T ]T × [0, T
c a
′].

Then (1.1)-(1.2) has at least two positive solutions u1 and u2 such that

a′ < max
t∈[0,c]T

u1(t) with max
t∈[0,η]T

u1(t) < b′,

b′ < max
t∈[0,η]T

u2(t) with max
t∈[η,c]T

u2(t) < c′.

Corollary 4.3. Assume that f satisfies conditions

(i) f0(t) > ϕp(C2), t ∈ [η, T ]T and f∞(t) = lim infu→∞
f(t,u)
ϕp(u) > ϕp(C3), t ∈

[c, T ]T;
(ii) there exists a′ > 0 such that f(t, u) < ϕp(a′C1) for (t, u) ∈ [0, T ]T× [0, T

η a
′].

Then (1.1)-(1.2) has at least two positive solutions.

Corollary 4.4. Suppose that f satisfies conditions
(i) f0(t) < ϕp( η

T C1), t ∈ [0, T ]T and f∞(t) < ϕp( c
T C1), t ∈ [c, T ]T;

(ii) there exists b′ > 0 such that f(t, u) > ϕp(b′C2), for (t, u) ∈ [η, T ]T×[b′, T
η b
′].

Then (1.1)-(1.2) has at least two positive solutions.

By applying Theorems 4.1 and 4.2, it is easy to prove that Corollaries 4.3 and
4.4 hold, respectively.
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5. Existence of three solutions

Let the nonnegative continuous concave functional Ψ : P → [0,∞) be defined by

Ψ(u) = min
t∈[η,T ]T

u(t) = u(η), u ∈ P.

Note that for u ∈ P , Ψ(u) ≤ ‖u‖.

Theorem 5.1. Suppose that there exist constants 0 < d′ < a′ such that

(i) f(t, u) < ϕp(d′C1), (t, u) ∈ [0, T ]T × [0, d′];
(ii) f(t, u) ≥ ϕp(a′C2), (t, u) ∈ [η, T ]T × [a′, T

η a
′];

(iii) one of the following conditions holds:
(D1) lim supu→∞maxt∈[0,T ]T

f(t,u)
ϕp(u) < ϕp(C1);

(D2) there exists a number c′ > T
η a
′ such that f(t, u) < ϕp(c′C1) for

(t, u) ∈ [0, T ]T × [0, c′].

Then (1.1)-(1.2) has at least three positive solutions.

Proof. By the definition of operator A and its properties, it suffices to show that
the conditions of Lemma 2.6 hold with respect to A.

We first show that if (D1) holds, then there exists a number l′ > T
η a
′ such that

A : P l′ → Pl′ . Suppose that

lim sup
u→∞

max
t∈[0,T ]T

f(t, u)
ϕp(u)

< ϕp(C1)

holds, then there are τ > 0 and δ < C1 such that if u > τ, then

max
t∈[0,T ]T

f(t, u)
ϕp(u)

≤ ϕp(δ).

That is to say,

f(t, u) ≤ ϕp(δu), (t, u) ∈ [0, T ]T × [τ,∞).

Set λ = max{f(t, u) : (t, u) ∈ [0, T ]T × [0, τ ]}, then

f(t, u) ≤ λ+ ϕp(δu), (t, u) ∈ [0, T ]T × [0,∞). (5.1)

Take

l′ > max{T
η
a′, ϕq(

λ

ϕp(C1)− ϕp(δ)
)}. (5.2)
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If u ∈ P l′ , then by (3.1), (5.1) and (5.2), we obtain

‖Au‖ = Au(T )

=
∫ T

0

ϕq(
∫ T

s

h(τ)f(τ, u(τ))∇τ)∆s+ βϕq(
∫ T

0

h(s)f(s, u(s))∇s)

+ γϕq(
∫ T

η

h(s)f(s, u(s))∇s)

≤ (T + β + γ)ϕq(
∫ T

0

h(s)f(s, u(s))∇s)

≤ (T + β + γ)ϕq(
∫ T

0

h(s)(λ+ ϕp(δu(s))∇s)

≤ (T + β + γ)ϕq(λ+ ϕp(δl′))ϕq(
∫ T

0

h(s)∇s)

= ϕq(λ+ ϕp(δl′))
1
C1

< l′.

Next we verify that if there is a positive number r′ such that if f(t, u) < ϕp(r′/N)
for (t, u) ∈ [0, T ]T ×[0, r′], then A : P r′ → Pr′ .

Indeed, if u ∈ P r′ , then

‖Au‖ = Au(T )

≤ (T + β + γ)ϕq

( ∫ T

0

h(s)f(s, u(s))∇s
)

<
r′

N
(T + β + γ)ϕq

( ∫ T

0

h(s)∇s
)

= r′,

thus, Au ∈ Pr′ . Hence, we have shown that either (D1) or (D2) holds, then there
exists a number c′ with c′ > T

η a
′ such that A : P c′ → Pc′ . It is also note from (i)

that A : P d′ → Pd′ .
Now, we show that {u ∈ P (Ψ, a′, T

η a
′) : Ψ(u) > a′} 6= ∅ and Ψ(Au) > a′ for all

u ∈ P (Ψ, a′, T
η a
′). In fact,

u =
(η + T )a′

2η
∈ {u ∈ P (Ψ, a′,

T

η
a′) : Ψ(u) > a′}.

For u ∈ P (Ψ, a′, T
η a
′), we have

a′ ≤ min
t∈[η,T ]T

u(t) = u(η) ≤ u(t) ≤ T

η
a′,
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for all t ∈ [η, T ]T. Then, in view of (ii), we know that

Ψ(Au) = min
t∈[η,T ]T

Au(t) = Au(η)

=
∫ η

0

ϕq

( ∫ T

τ

h(τ)f(τ, u(τ))∇τ
)
∆s+ βϕq(

∫ T

0

h(s)f(s, u(s))∇s)

+ γϕq

( ∫ T

η

h(s)f(s, u(s))∇s
)

≥ (η + β + γ)ϕq

( ∫ T

η

h(s)f(s, u(s))∇s
)

≥ (η + β + γ)a′C2ϕq

( ∫ T

η

h(s)∇s
)

= a′.

Finally, we assert that if u ∈ P (Ψ, a′, c′) and ‖Au‖ > T
η a
′, then Ψ(Au) > a′.

Suppose u ∈ P (Ψ, a′, c′) and ‖Au‖ > T
η a
′. Then

Ψ(Au) = min
t∈[η,T ]T

Au(t) = Au(η)

≥ η

T
Au(T ) =

η

T
‖Au‖ > a′.

To sum up, the hypotheses of Lemma 2.6 are satisfied, hence (1.1)–(1.2) has at
least three positive solutions u1, u2, u3 such that

‖u1‖ < d′, a′ < min
t∈[η,T ]T

u2(t) and ‖u3‖ > d′ with min
t∈η,T ]T

u3(t) < a′.

�

From Theorem 5.1, we see that, when assumptions such as (i), (ii), (iii) are
imposed appropriately on f , we can establish the existence of an arbitrary odd
number of positive solutions of (1.1), (1.2).

Theorem 5.2. If

0 < d′1 < a′1 <
T

η
a′1 < d′2 < a′2 <

T

η
a′2 < d′3 < . . . < d′n, n ∈ N,

(i) f(t, u) < ϕp(d′iC1), (t, u) ∈ [0, T ]T × [0, d′i];
(ii) f(t, u) ≥ ϕp(a′iC2), (t, u) ∈ [η, T ]T × [a′i,

T
η a
′
i];

then (1.1)-(1.2) has at least 2n− 1 positive solutions.

Proof. When n = 1, it is immediate from condition (i) that A : P d′
1
→ Pd′

1
⊂ P d′

1
,

which means that A has at least one fixed point u1 ∈ P d′
1

by the Schauder fixed
point theorem. When n = 2, it is clear that Theorem 4.1 holds (with c1 = d′2).
Then we can obtain at least three positive solutions u1, u2, and u3 satisfying

‖u1‖ < d′1, min
t∈[η,T ]T

u2(t) > a′1 and ‖u3‖ > d′1 with min
t∈[η,T ]T

u3(t) < a′1.

Following this way, we complete the proof by induction. �
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6. Example

Let T = {1 − (1/2)N0} ∪ {1}, where N0 denote the set of nonnegative integers.
Take T = 1, p = 3

2 , β = γ = 1
4 , η = 15

16 , c = 31
32 . If we let h(s) ≡ 1, then by (3.1)

and (3.2) we have

C1 = (T + β + γ)−1ϕp

( ∫ T

0

1∇s
)

=
2
3
,

C2 = (η + β + γ)−1ϕp

( ∫ T

η

1∇s
)

=
4
23
.

Suppose

f(t, u) = f(u) :=
6 + 9u

20(1 + u)
(2 + sinu)

√
u, t ∈ [0, 1]T, u ≥ 0,

then f0 = f0 = 3
5 , f∞ = 9

20 , f∞ = 27
20 .

Firstly, by easy calculation, it is easy to get

ϕp(C1) =

√
2
3
≈ 1.224, ϕp(

T

η
C2) =

√
64
345

≈ 0.431,

So the condition (H3) of Corollary 3.2 holds. Thus by Corollary 3.2, the boundary-
value problem(

|u∆(t)|− 1
2u∆(t)

)∇ +
6 + 9u(t)

20(1 + u(t))
(2 + sinu(t))

√
u(t) = 0, (6.1)

u(0)− 1
2
u∆(0) =

1
2
u∆

(15
16

)
, u∆(1) = 0, (6.2)

has at least one positive solution.
Secondly, since

f0 =
3
5
< ϕp

( η
T
C1

)
=

√
5
8
≈ 0.791, f∞ =

9
20

< ϕp

( c
T
C1

)
=

√
11
48

≈ 0.479.

If we choose b′ = 0.7, then

min
t∈[0,T ]T,u∈[b′, 16

15 b′]
f(t, u) ≈ 0.800 > ϕp(b′C1) ≈ 0.683.

So all the assumptions of Corollary 4.4 are satisfied. Therefore by Corollary 4.4
the boundary value problem (5.1)–(5.2) has at lest two solutions u1 and u2 with
0 < ‖u1‖ ≤ 0.7 < ‖u2‖.
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