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POSITIVE SOLUTIONS OF A THIRD-ORDER THREE-POINT
BOUNDARY-VALUE PROBLEM

BO YANG

Abstract. We obtain upper and lower estimates for positive solutions of a
third-order three-point boundary-value problem. Sufficient conditions for the

existence and nonexistence of positive solutions for the problem are also ob-
tained. Then to illustrate our results, we include an example.

1. Introduction

Recently third-order multi-point boundary-value problems have attracted a lot of
attention. In 2003, Anderson [2] considered the third-order boundary-value problem

u′′′(t) = f(t, u(t)), 0 ≤ t ≤ 1, (1.1)

u(t1) = u′(t2) = γu(t3) + δu′′(t3) = 0. (1.2)

In 2008, Graef and Yang [5] studied the third-order nonlocal boundary-value prob-
lem

u′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.3)

u(0) = u′(p) =
∫ 1

q

w(t)u′′(t)dt = 0. (1.4)

For more results on third-order boundary-value problems we refer the reader to
[1, 4, 7, 9, 11, 12, 13].

In this paper, we consider the third-order three-point nonlinear boundary-value
problem

u′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.5)

u(0)− αu′(0) = u′(p) = βu′(1) + γu′′(1) = 0. (1.6)

To our knowledge, the problem (1.5)-(1.6) has not been considered before. Note
that the set of boundary conditions (1.6) is a very general one. For example, if we
let α = β = 0 and p = γ = 1, then (1.6) reduces to

u(0) = u′(1) = u′′(1) = 0, (1.7)
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which are often referred to as the (1, 2) focal boundary conditions. If we let α = 0,
β = 0, and γ = 1, then (1.6) reduces to

u(0) = u′(p) = u′′(1) = 0. (1.8)

The boundary-value problem that consists of the equation (1.5) and the boundary
conditions (1.8) has been considered by Anderson and Davis in [3] and Graef and
Yang in [6]. Our goal in this paper is to generalize some of the results from [3, 6]
to the problem (1.5)-(1.6).

In this paper, we are interested in the existence and nonexistence of positive
solutions of the problem (1.5)-(1.6). By a positive solution, we mean a solution
u(t) to the boundary-value problem such that u(t) > 0 for 0 < t < 1.

In this paper, we assume that
(H1) The functions f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous,

and g(t) 6≡ 0 on [0, 1].
(H2) The parameters α, β, γ, and p are non-negative constants such that β+γ >

0, 0 < p ≤ 1, and 2p(1 + α) ≥ 1.
(H3) If p = 1, then γ > 0.
To prove some of our results, we will use the following fixed point theorem, which

is due to Krasnosel’skii [10].

Theorem 1.1. Let (X, ‖ · ‖) be a Banach space over the reals, and let P ⊂ X be a
cone in X. Assume that Ω1,Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂
Ω2, and let

L : P ∩ (Ω2 − Ω1) → P

be a completely continuous operator such that, either
(K1) ‖Lu‖ ≤ ‖u‖ if u ∈ P ∩ ∂Ω1, and ‖Lu‖ ≥ ‖u‖ if u ∈ P ∩ ∂Ω2; or
(K2) ‖Lu‖ ≥ ‖u‖ if u ∈ P ∩ ∂Ω1, and ‖Lu‖ ≤ ‖u‖ if u ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ (Ω2 − Ω1).

Before the Krasnosel’skii fixed point theorem can be used to obtain any existence
result, we have to find some nice estimates to positive solutions to the problem
(1.5)–(1.6) first. These a priori estimates are essential to a successful application of
the Krasnosel’skii fixed point theorem. It is based on these estimates that we can
define an appropriate cone, on which Theorem 1.1 can be applied. Better estimates
will result in sharper existence and nonexistence conditions.

We now fix some notation. Throughout we let X = C[0, 1] with the supremum
norm

‖v‖ = max
t∈[0,1]

|v(t)|, ∀v ∈ X.

Obviously X is a Banach space. Also we define the constants

F0 = lim sup
x→0+

f(x)
x

, f0 = lim inf
x→0+

f(x)
x

,

F∞ = lim sup
x→+∞

f(x)
x

, f∞ = lim inf
x→+∞

f(x)
x

.

These constants will be used later in our statements of the existence theorems.
This paper is organized as follows. In Section 2, we obtain some a priori estimates

to positive solutions to the problem (1.5)-(1.6). In Section 3, we define a positive
cone of the Banach space X using the estimates obtained in Section 2, and apply
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Theorem 1.1 to establish some existence results for positive solutions of the problem
(1.5)-(1.6). In Section 4, we present some nonexistence results. An example is given
at the end of the paper to illustrate the existence and nonexistence results.

2. Green’s Function and Estimates of Positive Solutions

In this section, we shall study Green’s function for the problem (1.5)-(1.6), and
prove some estimates for positive solutions of the problem. Throughout the section,
we define the constant M = β + γ − βp. By conditions (H2) and (H3), we know
that M is a positive constant.

Lemma 2.1. If u ∈ C3[0, 1] satisfies the boundary conditions (1.6) and u′′′(t) ≡ 0
on [0, 1], then u(t) ≡ 0 on [0, 1].

Proof. Since u′′′(t) ≡ 0 on [0, 1], there exist constants a1, a2, and a3 such that

u(t) = a1 + a2t + a3t
2, 0 ≤ t ≤ 1.

Because u(t) satisfies the boundary conditions (1.6), we have1 −α 0
0 1 2p
0 β 2(β + γ)

 a1

a2

a3

 =

0
0
0

 . (2.1)

The determinant of the coefficient matrix for the above linear system is 2M > 0.
Therefore, the system (2.1) has only the trivial solution a1 = a2 = a3 = 0. Hence
u(t) ≡ 0 on [0, 1]. The proof is complete. �

We need the indicator function χ to write the expression of Green’s function for
the problem (1.5)-(1.6). Recall that if [a, b] ⊂ R := (−∞,+∞) is a closed interval,
then the indicator function χ of [a, b] is given by

χ[a,b](t) =

{
1, if t ∈ [a, b],
0, if t 6∈ [a, b].

Now we define the function G : [0, 1]× [0, 1] → [0,∞) by

G(t, s) =
β + γ − βs

2(β + γ − pβ)
(2αp + 2pt− t2) +

(t− s)2

2
χ[0,t](s)

− p− s

2(β + γ − pβ)
(2(α + t)(β + γ)− βt2)χ[0,p](s).

We are going to show that G(t, s) is Green’s function for the problem (1.5)-(1.6).

Lemma 2.2. Let h ∈ C[0, 1]. If

y(t) =
∫ 1

0

G(t, s)h(s)ds, 0 ≤ t ≤ 1,

then y(t) satisfies the boundary conditions (1.6) and y′′′(t) = h(t) for 0 ≤ t ≤ 1.

Proof. If

y(t) =
∫ 1

0

G(t, s)h(s)ds,
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then

y(t) = −
∫ p

0

p− s

2M
(2(α + t)(β + γ)− βt2)h(s)ds +

∫ t

0

(t− s)2

2
h(s)ds

+
∫ 1

0

β + γ − βs

2M
(2αp + 2pt− t2)h(s)ds.

(2.2)

Differentiating the above expression, we have

y′(t) = −
∫ p

0

p− s

M
(β + γ − βt)h(s)ds +

∫ t

0

(t− s)h(s)ds

+
∫ 1

0

β + γ − βs

M
(p− t)h(s)ds,

(2.3)

y′′(t) = β

∫ p

0

p− s

M
h(s)ds +

∫ t

0

h(s)ds−
∫ 1

0

β + γ − βs

M
h(s)ds, (2.4)

and
y′′′(t) = h(t), 0 ≤ t ≤ 1.

It is easy to see from (2.3) that y′(p) = 0.
By making the substitution t = 0 in (2.2) and (2.3), we get

y(0) = −
∫ p

0

p− s

M
α(β + γ)h(s)ds +

∫ 1

0

β + γ − βs

M
αph(s)ds (2.5)

and

y′(0) = −
∫ p

0

p− s

M
(β + γ)h(s)ds +

∫ 1

0

β + γ − βs

M
ph(s)ds. (2.6)

It is clear from (2.5) and (2.6) that y(0)− αy′(0) = 0.
By making the substitution t = 1 in (2.3) and (2.4), we get

y′(1) = −γ

∫ p

0

p− s

M
h(s)ds +

∫ 1

0

(1− s)h(s)ds +
∫ 1

0

β + γ − βs

M
· (p− 1)h(s)ds

and

y′′(1) = β

∫ p

0

p− s

M
h(s)ds +

∫ 1

0

h(s)ds−
∫ 1

0

β + γ − βs

M
h(s)ds.

Simplifying the last two equations, we get

y′(1) = −γ

∫ p

0

p− s

M
h(s)ds + γ

∫ 1

0

p− s

M
h(s)ds, (2.7)

y′′(1) = β

∫ p

0

p− s

M
h(s)ds− β

∫ 1

0

p− s

M
h(s)ds. (2.8)

It is easily seen from (2.7) and (2.8) that βy′(1) + γy′′(1) = 0. The proof is now
complete. �

Lemma 2.3. Let h ∈ C[0, 1] and y ∈ C3[0, 1]. If y(t) satisfies the boundary
conditions (1.6) and y′′′(t) = h(t) for 0 ≤ t ≤ 1, then

y(t) =
∫ 1

0

G(t, s)h(s)ds, 0 ≤ t ≤ 1.
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Proof. Suppose that y(t) satisfies the boundary conditions (1.6) and y′′′(t) = h(t)
for 0 ≤ t ≤ 1. Let

k(t) =
∫ 1

0

G(t, s)h(s)ds, 0 ≤ t ≤ 1.

By Lemma 2.2 we have k′′′(t) = h(t) for 0 ≤ t ≤ 1, and k(t) satisfies the boundary
conditions (1.6). If we let m(t) = y(t) − k(t), 0 ≤ t ≤ 1, then m′′′(t) = 0 for
0 ≤ t ≤ 1 and m(t) satisfies the boundary conditions (1.6). By Lemma 2.1, we have
m(t) ≡ 0 on [0, 1], which implies that

y(t) =
∫ 1

0

G(t, s)h(s)ds, 0 ≤ t ≤ 1.

The proof is complete. �

We see from the last two lemmas that

y(t) =
∫ 1

0

G(t, s)h(s)ds for 0 ≤ t ≤ 1

if and only if y(t) satisfies the boundary conditions (1.6) and y′′′(t) = h(t) for
0 ≤ t ≤ 1. Hence the problem (1.5)-(1.6) is equivalent to the integral equation

u(t) =
∫ 1

0

G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1, (2.9)

and G(t, s) is Green’s function for the problem (1.5)-(1.6).
Now we investigate the sign property of G(t, s). We start with a technical lemma.

Lemma 2.4. If (H2) holds, then

2pα + 2pt− t2 ≥ 0, 0 ≤ t ≤ 1.

Proof. Assuming that (H2) holds; if 0 ≤ t ≤ 1, then

2pα + 2pt− t2 = t(1− t) + 2pα(1− t) + (2p(1 + α)− 1)t ≥ 0.

The proof is complete. �

Lemma 2.5. If (H2)–(H3) hold, then we have
(1) If 0 ≤ t ≤ 1 and 0 ≤ s ≤ 1, then G(t, s) ≥ 0.
(2) If 0 < t < 1 and 0 < s < 1, then G(t, s) > 0.

Proof. We shall prove (1) only. We take four cases to discuss the sign property of
G(t, s).

(i) If s ≥ p and s ≥ t, then

G(t, s) =
β + γ − βs

2M
(2pα + 2pt− t2) ≥ 0.

(ii) If s ≥ p and s ≤ t, then

G(t, s) =
β + γ − βs

2M
(2pα + 2pt− t2) +

(t− s)2

2
≥ 0.

(iii) If s ≤ p and s ≥ t, then

G(t, s) =
1
2
(2αs + 2st− t2) ≥ 0.
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(iv) If s ≤ p and s ≤ t, then

G(t, s) = αs +
s2

2
≥ 0.

Therefore G(t, s) is nonnegative in all four cases. The proof of (1) is complete.
If we take a closer look at the expressions of G(t, s) in the four cases, then we

will see easily that (2) is also true. We leave the details to the reader. �

Lemma 2.6. If u ∈ C3[0, 1] satisfies (1.6), and

u′′′(t) ≥ 0 for 0 ≤ t ≤ 1, (2.10)

then
(1) u(t) ≥ 0 for 0 ≤ t ≤ 1.
(2) u′(t) ≥ 0 on [0, p] and u′(t) ≤ 0 on [p, 1].
(3) u(p) = ‖u‖.

Proof. Note that G(t, s) ≥ 0 if t, s ∈ [0, 1]. If u′′′(t) ≥ 0 on [0, 1], then for each
t ∈ [0, 1] we have

u(t) =
∫ 1

0

G(t, s)u′′′(s) ds ≥ 0.

The proof of (1) is complete.
It follows from (2.3) that

u′(t) =
∫ p

t

(s− t)u′′′(s) ds +
∫ 1

p

β + γ − βs

M
· (p− t)u′′′(s)ds.

If 0 ≤ t ≤ p, then it is obvious that u′(t) ≥ 0. If t ≥ p, then we put (2.3) into an
equivalent form

u′(t) = −
∫ t

p

(s− p)(γ + β(1− t))
M

u′′′(s) ds−
∫ 1

t

β + γ − βs

M
(t− p)u′′′(s) ds,

from which we can see easily that u′(t) ≤ 0.
Part (3) of the lemma follows immediately from parts (1) and (2). The proof is

now complete. �

Throughout the remainder of the paper, we define the continuous function a :
[0, 1] → [0,+∞) by

a(t) =
2pα + 2pt− t2

2pα + p2
, 0 ≤ t ≤ 1.

It can be shown that

a(t) ≥ min{t, 1− t}, 0 ≤ t ≤ 1.

The proof of the last inequality is omitted.

Lemma 2.7. If u ∈ C3[0, 1] satisfies (2.10) and the boundary conditions (1.6),
then u(t) ≥ a(t)u(p) on [0, 1].

Proof. If we define
h(t) = u(t)− a(t)u(p), 0 ≤ t ≤ 1,

then
h′′′(t) = u′′′(t) ≥ 0, 0 ≤ t ≤ 1.

Obviously we have h(p) = h′(p) = 0. To prove the lemma, it suffices to show that
h(t) ≥ 0 for 0 ≤ t ≤ 1. We take two cases to continue the proof.
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Case I: h′(0) ≤ 0. We note that h′(p) = 0 and h′ is concave upward on [0, 1]. Since
h′(0) ≤ 0, we have h′(t) ≤ 0 on [0, p] and h′(t) ≥ 0 on [p, 1]. Since h(p) = 0, we
have h(t) ≥ 0 on [0, 1].
Case II: h′(0) > 0. It is easy to see from the definition of h(t) that

h(0) = αh′(0).

Since α ≥ 0, we have h(0) ≥ 0.
Because h′(0) > 0 and h(0) ≥ 0, there exists δ ∈ (0, p) such that h(δ) > 0.
By the mean value theorem, since h(δ) > h(p) = 0, there exists r1 ∈ (δ, p) such

that h′(r1) < 0. Now we have h′(0) > 0, h′(r1) < 0, and h′(p) = 0. Because h′(t)
is concave upward on [0, 1], there exists r2 ∈ (0, r1) such that

h′(t) > 0 on [0, r2), h′(t) ≤ 0 on [r2, p], h′(t) ≥ 0 on (p, 1].

Since h(0) ≥ 0 and h(p) = 0, we have h(t) ≥ 0 on [0, 1].
We have shown that h(t) ≥ 0 on [0, 1] in both cases. The proof is complete. �

In summary, we have

Theorem 2.8. Suppose that (H1)–(H3) hold. If u ∈ C3[0, 1] satisfies (2.10) and
the boundary conditions (1.6), then u(p) = ‖u‖ and u(t) ≥ a(t)u(p) on [0, 1]. In
particular, if u ∈ C3[0, 1] is a nonnegative solution to the boundary-value problem
(1.5)-(1.6), then u(p) = ‖u‖ and u(t) ≥ a(t)u(p) on [0, 1].

3. Existence of Positive Solutions

Now we give some notation. Define the constants

A =
∫ 1

0

G(p, s)g(s)a(s) ds, B =
∫ 1

0

G(p, s)g(s) ds

and let
P = {v ∈ X : v(p) ≥ 0, a(t)v(p) ≤ v(t) ≤ v(p) on [0, 1]}.

Obviously X is a Banach space and P is a positive cone of X. Define an operator
T : P → X by

Tu(t) =
∫ 1

0

G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1, u ∈ X.

It is well known that T : P → X is a completely continuous operator. And by the
same argument as in Theorem 2.8 we can prove that T (P ) ⊂ P .

Now the integral equation (2.9) is equivalent to the equality

Tu = u, u ∈ P.

To solve problem (1.5)-(1.6) we need only to find a fixed point of T in P .

Theorem 3.1. If BF0 < 1 < Af∞, then the problem (1.5)-(1.6) has at least one
positive solution.

Proof. Choose ε > 0 such that (F0 + ε)B ≤ 1. There exists H1 > 0 such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.
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For each u ∈ P with ‖u‖ = H1, we have

(Tu)(p) =
∫ 1

0

G(p, s)g(s)f(u(s)) ds

≤
∫ 1

0

G(p, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖
∫ 1

0

G(p, s)g(s)ds

= (F0 + ε)‖u‖B ≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. So, if we let Ω1 = {u ∈ X : ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1.

To construct Ω2, we first choose c ∈ (0, 1/4) and δ > 0 such that

(f∞ − δ)
∫ 1−c

c

G(p, s)g(s)a(s) ds > 1.

There exists H3 > 0 such that f(x) ≥ (f∞− δ)x for x ≥ H3. Let H2 = H1 + H3/c.
If u ∈ P with ‖u‖ = H2, then for c ≤ t ≤ 1− c, we have

u(t) ≥ min{t, 1− t}‖u‖ ≥ cH2 ≥ H3.

So, if u ∈ P with ‖u‖ = H2, then

(Tu)(p) ≥
∫ 1−c

c

G(p, s)g(s)f(u(s)) ds

≥
∫ 1−c

c

G(p, s)g(s)(f∞ − δ)u(s)ds

≥
∫ 1−c

c

G(p, s)g(s)a(s) ds · (f∞ − δ)‖u‖ ≥ ‖u‖,

which implies ‖Tu‖ ≥ ‖u‖. So, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then Ω1 ⊂ Ω2,
and

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2.

Then the condition (K1) of Theorem 1.1 is satisfied, and so there exists a fixed
point of T in P . The proof is complete. �

Theorem 3.2. If BF∞ < 1 < Af0, then (1.5)-(1.6) has at least one positive
solution.

The proof of the above theorem is similar to that of Theorem 3.1 and is therefore
omitted.

4. Nonexistence Results and Example

In this section, we give some sufficient conditions for the nonexistence of positive
solutions.

Theorem 4.1. Suppose that (H1)–(H3) hold. If Bf(x) < x for all x ∈ (0,+∞),
then (1.5)-(1.6) has no positive solution.
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Proof. Assume the contrary that u(t) is a positive solution of (1.5)-(1.6). Then
u ∈ P , u(t) > 0 for 0 < t < 1, and

u(p) =
∫ 1

0

G(p, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(p, s)g(s)u(s) ds

≤ B−1

∫ 1

0

G(p, s)g(s)ds · u(p) ≤ u(p),

which is a contradiction. �

In a similar fashion, we can prove the following theorem.

Theorem 4.2. Suppose that (H1)–(H3) hold. If Af(x) > x for all x ∈ (0,+∞),
then (1.5)-(1.6) has no positive solution.

We conclude this paper with an example.

Example 4.3. Consider the third-order boundary-value problem

u′′′(t) = g(t)f(u(t)), 0 < t < 1, (4.1)

u(0)− u′(0) = u′(3/4) = u′(1) + u′′(1) = 0, (4.2)

where

g(t) = (1 + t)/10, 0 ≤ t ≤ 1,

f(u) = λu
1 + 3u

1 + u
, u ≥ 0.

Here λ is a positive parameter. Obviously we have F0 = f0 = λ, F∞ = f∞ = 3λ.
Calculations indicate that

A =
198989
2112000

, B =
9889

102400
.

From Theorem 3.1 we see that if

3.538 ≈ 1
3A

< λ <
1
B
≈ 10.355,

then problem (4.1)-(4.2) has at least one positive solution. From Theorems 4.1 and
4.2, we see that if

λ <
1

3B
≈ 3.45 or λ >

1
A
≈ 10.613,

then problem (4.1)-(4.2) has no positive solution.
This example shows that our existence and nonexistence conditions are quite

sharp.
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