Electronic Journal of Differential Equations, Vol. 2009(2009), No. 01, pp. 1-27.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

HOMOGENIZED MODEL FOR FLOW IN PARTIALLY
FRACTURED MEDIA

CATHERINE CHOQUET

ABSTRACT. We derive rigorously a homogenized model for the displacement
of one compressible miscible fluid by another in a partially fractured porous
reservoir. We denote by e the characteristic size of the heterogeneity in the
medium. A function a characterizes the cracking degree of the rock. Our
starting point is an adapted microscopic model which is scaled by appropriate
powers of e. We then study its limit as ¢ — 0. Because of the partially
fractured character of the medium, the equation expressing the conservation
of total mass in the flow is of degenerate parabolic type. The homogenization
process for this equation is thus nonstandard. To overcome this difficulty,
we adapt two-scale convergence techniques, convexity arguments and classical
compactness tools. The homogenized model contains both single porosity and
double porosity characteristics.

1. INTRODUCTION AND MAIN RESULT

We consider the displacement of a two-component mixture through a highly
contrasted porous medium, with fractures and matrix blocks. Assuming that the
matrix blocks are disconnected, one usually models this type of setting using the
concept of double porosity introduced by Barenblatt et al [5]. The fractured part is
responsible for the macro-scale transport and the matrix part can store a concentra-
tion longer than is to be expected in a single porous material. The less permeable
part of the rock thus contributes as global sink or source terms for the transported
solutes in the fracture (see for instance [4, [@]). By the way, the matrix of cells may
also be connected so that some flow occurs directly within the cell matrix. We
consider here such a partially fissured medium. Most commercial simulators have
the added feature of including matrix-matrix connections. But there are very few
theoretical derivations of a model for this phenomenon. The uncertainties relating
to the size of the physical structure and the fluid content of the reservoir make
understanding fluid flow through homogenization a pragmatic approach.

The present paper is an extension of the works [14] [I3] [IT]. In these latter ref-
erences, the degree of interconnection between matrix and fractured part of the
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medium, was characterized by a constant averaged parameter. In the present pa-
per, a function « describes the interconnection. This function may be zero in the
totally fractured part Qo of the domain 2, and some technical challenges are en-
countered there. The required estimates for the homogenization process involve
the degenerating function v and are technically more challenging than in [II]. The
final homogenized equation are different in Qy and in 2\ Q. From a more physical
viewpoint, this contribution aims to give a model more adapted to the local geom-
etry of a natural domain. The interconnection function « is considered as a first
order property of the medium, comparable, for instance, with the fracture intensity
function.

We begin by recalling the equations describing the transport of two miscible
species in a slightly compressible flow through a homogeneous porous medium, see
[0 20, [15] for details. The unknowns of the problem are the pressure p and the
concentration c of one of the two species of the mixture. Denoting by ¢ the porosity
of the rock and by k its permeability, the mass conservation principles during the
displacement are expressed by the equations

¢Op + div(v) = g5, v= —%Vp, (1.1)
pOc+v - Ve —div(D(v)Ve) = gs(¢ — ). (1.2)

The average velocity of the flow v is given by the Darcy law in . We neglect
the gravitational terms. The viscosity u is a nonlinear function depending on the
concentration. For instance, in the Koval model [I7], p is defined for ¢ € (0,1) by
p(e) = p(0)(1 + (MY* —1)¢)=4, the constant M = 1(0)/u(1) being the mobility
ratio. Analogous to Fick’s law the dispersive flux is considered proportional to the
concentration gradient and the dispersion tensor is

D(v) = ¢4 (Dmld + Dy(v)) = ¢y (Dmld + |v| (mE(v) + ar(Id — £(v)))), (1.3)

where £(v);; = v, /|v|?, a; and a; are the longitudinal and transverse dispersion
constants and D,, is the molecular diffusion. For the usual rates of flow, these
real numbers are such that oy > o > D,,, > 0. The terms containing g5 are the
injection and production terms.

We now aim to study a similar flow in a partially fractured porous medium. We
thus consider a domain  C R? with a periodic structure, controlled by a parameter
¢ > 0 which represents the size of each block of the matrix. The C! boundary of
Qis T and v is the corresponding exterior normal. The standard period (e = 1)
is a cell Y consisting of a matrix block Y;, of external C! boundary 0Y,, and of a
fracture domain Yy. We assume that |Y'| = 1. The e-reservoir consists of copies €Y’
covering 2. The two subdomains of 2 are defined by

¢ =N {Ueeac(YVr + 0}, Q=N {Uecac(Yn +6)},

where A is an appropriate infinite lattice. The fracture-matrix interface is denoted
by I, = 89} N o, NQ and vy, is the corresponding unit normal pointing out
Q. See [14] and [I] for some illustrations of admissible structures. To homogenize
the reservoir, we shall let tend to zero the size € of the cells.

Following [I4], we assume that the flow is made of two parts. The first component
accounts for the global diffusion in the fracture system. The second one corresponds
to high frequency spatial variations which lead to local storage in the matrix. A
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function o € C'(Q) characterizes the interconnection between fractures and matrix.
It is assumed such that

0<a(z)<l, alz)+6(x) =1,
a(x) =0 if and only if z € Qo,

where () is a bounded open subset of 2. It may be given by experimental data on
samples of porous media and by stochastic reconstruction (see [7] and the references
therein). The function « describing the interconnection intensity is obviously linked
with the commonly used concepts of fracture intensity and fracture-size distribution
(see for instance [I8]). Note that in [14, I3] and [II], the cracking degree was
characterized by a constant a € (0,1).

We thus adapt System — to such a decomposition of the flow. We
also scale the equations for the rapidly varying part by appropriate powers of €
to conserve the flow between the matrix and the fractures as e — 0 (¢f [} [14]).
The complete derivation of the microscopic model is justified in [TI]. Denoting by
J=(0,T), T > 0, the time interval of interest, we consider:

OGO f5 + 05 - VI — div(D§)VF) = ¢(fi — ff) in Q5 xJ,  (14)

P70ips + div(vf) = gs, vy = —LJ:Vp; in Q% x J, (1.5)
H(f1)

P 0,CS + V- VO — div(DF(V)VES) = q,(CL — CF)  in QF, x J, (1.6)
S 4+ V- Vs — div(DE(V)VES) = qs(é1 — ¢5)  in QF, x J, (1.7)
¢°OLcs + V-V — div(D(V)Ve5) = gs(é2 — ¢§) in QX J, (1.8)

¢Op° +div(V) = q,, VYV =V, +eV,, inQ xJ, (1.9)

Vi = —alef +eh) sV, Vi = —(1—alef + )0V, (L)

where m{ = ac§ + SC5. The flow in the fractures is described by (1.4))-(1.5). The
matrix behavior is described by (1.6))-(1.10)). In particular, (1.6)) governs the slowly
varying component while (1.7))-(1.8) governs the high frequency varying ones. We
note that the former system becomes of double degenerate type as ¢ — 0. Indeed,
in the subset g, the parabolic character of (1.6))-(1.9) is only ensured by the term
€2. Moreover Eq. (1.9) is also of degenerate parabolic type in 2\ € since we can
solely state that (c§ + ¢5)(z,t) > 0in Q x J.

The model is completed by the following boundary and initial conditions. We
begin by the transmission relations across the interface I'},, x J.
BDH)V i - vim = D(V)VCT - vim, (1.11)
aD(p)VIT - vpm = DY)V - vim, (1.12)
aD(WF)V(1 = f) - vim = —aDF) Vi - vpm = DY)V - Vim, (1.13)
fi =aci +BCT,  alc] + ) = a, ( )
Vs Vem =Y Vpm, Dy =D". (1.15)

We add a zero flux condition out of the full domain 2
D(v})Vfi-v=00n0Q5NT, (1.16)
D(VO)VC; - v =D (V)Vci - v =D (V)Vc5-v=0o0n 00, NT, (1.17)
vy v=00n00Q; NI, V°-v=0o0n09Q,NT, (1.18)
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and the following initial conditions in €2
(fi(2,0),Ci(x,0),ci(x,0), ¢5(2,0)) = (/7 (x), CF (2), €] (x), ¢5(x)), (1.19)
Py (,0) = x5 (2)p°(x), p(2,0) = x5 (2)p°(2). (1.20)
Let us now enumerate the assumptions. The source term g5 is a nonnegative
function of LI(Q2 x J), ¢ > 2, and
Oéél+ﬁ01:f1, 0§f1§1, 61+62:1

As we assume a periodic structure in the reservoir, the porosities (¢% (), ¢¢(z)) =
(07(%), ¢(%)) and the permeabilities (k% (z), k() = (ks (), k(%)) of the fracture
and of the matrix are periodic of period (€Y7, €Y;,). These quantities are assumed
to be smooth and bounded, but globally they are discontinuous across I'},,. We
assume moreover

0<¢- < ¢p(a), p(a) <¢=', h_l€* <kp(2)- & k()€ E < kTNEP,
k_ >0, a.e. in Q, for all £ € R3. The viscosity u € W (Q x (0,1)) is such that
0<p— <p(x,c)<pg Vee (0,1), p(r,c)=peRi in Q.
For sake of simplicity we have assumed that the viscosity is constant in 2g. We then
can pass to the limit in Qg without introducing a dilation operator (see [1I] Section
4 for the details). The tensor D is already defined in (1.3)). The tensor D¢ has a
similar structure but its diffusive part (o + B€2)D,,Id contains the proportions of

slowly and rapidly varying flows in the matrix. The main property of these tensors
is

D(v)¢ - € > ¢ (D + asluf]) €7, V€ € R?,
DY (V)€ > ¢ (Dmla+ Be®) + o V5 + V5 )IEP, Ve € R
We assume that p° belongs to H(€2), and that (f¢,C¢,c$,c5) € (L>(2))* satisfies

(1.21)

0< fP(zr) <lae. inQ, (1.22)
7o <) <vps (1-,74) €R?, ae in @, (1.23)
acf(x) + pCY(x) = x5, fi(x), 0 < cf(x) +c5(z) <1 ae. in 2. (1.24)

The main result of the paper is the following.

Theorem 1.1. As the scaling parameter € tends to zero, the microscopic model
- converges to the following macroscopic model. The homogenized pres-
sure problem is

—H
Yy Yo Ky N 0 -
(05" + X 8) s = div (25 Vr) = mg/mqbatp dy inQxJ,

0 . 0y _ 0o_ k(y)
S0 +div(V') = g5, V7 = )

pr(z.t) =p°(x,y,t) ify €Tpm, (2,8) €QxJ,
Fprf v=00n0xJ, pr(z,0) =p°(2,y,0) = p°(x) in Qx Yy,

m Qo X Yy, X J,

The homogenized concentrations problem is in € X J:

—Y 1*Y7n 1
b5 1O f1 + XQ\QOB¢ 0,C1 + XQOB/ o(y) 0,Cdy
YVTL
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K, Ky, X k(y)
I Ips-V Vp; - VC L g 00,00 d
,LL(f ) pf fl X(Z\Qoﬂ (f ) pf 1= ﬂ Yo, L yp Yyl y)
- le(DJI‘{ (vpf)vfl) — XQ\Qo B le( m(vpf)vcl)

:q5|Yf|(f1—f1)+ﬁqS(C1 X\ | Y| C1 — XQU/ Cy (- ya')dy>

7Ym afynz
¢ " xa\.0c1 +XQO/ d(y) Opcidy — Fb X\, 9:Ch

H

2vay)

fo (Vcl— ﬂ

KH
xno/ d(y) 0:.Cdy — xona, —2= (f)

k
— X / (uy)vypo ) (Vyc(l) - vacg) d

m

. a
— X\ div(Dh (Vps)Ver) + xava, 3 div(DJ (Vps)VCh)

= gs (61 — X\ [Yiml €1 — X, / Ay, -)dy)
Y,

m

(Cl — X\ | Y| C1 — X0, Yy, ) dy),

Yo

_a,
ﬂS
and in Qo X Y, x J

k . k A
o C - 109,50 7,00 - a0V ,0)9,00) = g (61 - ),

k . k ;
o) - 09,109, — div (D, 9,) = g 61 - ),
completed by

1
(D (Vo) Vi — EDg(fo)VC&) Ve, =0,

o
(DE(Vps)Ver — Bpf,{(vpf)vcl) |, =0,
hlicg =1 aliy=dlo=cl, =01l =1,
flzacl +,@Cl a.e. ZTLQXJ f1:ﬂcg) a.e. in Qofome.

The homogemzed quantities Ku , ’Df and DE are defined in (E) (-) and

below.

The homogenization process then leads to a macroscopic model containing both
single porosity and double porosity characteristics. We show that the double poros-
ity part of the model almost disappears as soon as a direct flow occurs in the matrix
(see the equations in Q\ Qp). It emphasizes in particular the role of the dispersion
tensor which models all the velocities heterogeneity at the microscopic level. It is
characteristic of a miscible flow (see [3] and the references therein). The result is
thus quite different of the one obtained in [I4] [I3]. Nevertheless, even in Q \ Qo,
the model captures the interactions between the matrix and the fractured part.
Indeed, the homogenized permeability and diffusion tensors strongly depend on the
transmission function a. One could compare this effects with some models where
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the permeability is concentration dependent: propagation in clays (see [16] and
the references therein) or blood flow in micro vessels (see [22] and the references
therein) for instance. And in the subset )y where no direct transmission occurs,
the model is of double porosity type.

This paper is organized as follows. Section 2 is devoted to the analysis of the
microscopic model. We derive uniform estimates for the solutions. Convergence
results are stated using two-scale convergence techniques, convexity arguments and
classical compactness tools. In Section 3, we pass to the limit e — 0 and we get the
homogenized model described in Theorem 1.1.

2. ANALYSIS OF THE MICROSCOPIC MODEL

The existence of weak solutions for the problem — is proved in [I1].
The proof is of course inspired by the statement of the existence of solutions for
Problem (L.I)-(L.2) in a homogeneous porous medium (see [10]). But the decom-
position of the flow in the matrix part of the domain induces additional difficulties.
Appropriate concentrations spaces for the problem are introduced following [I3]:
He is the Hilbert space H¢ = L2(Q;) x L2(Q¢,) x L2(Q¢,) with the inner product

([Uf, Um s Um}v [¢fa ¢ma \I/m])He
_ / ws (z) vy () da +/ o () Yo () +/ Upn () o () da,
Q Qc, Q
and V¢ is the Banach space

Ve=HN {(uf,um,Um) S Hl(Qjc) X Hl(an) X Hl(an);
’Y;uf = avpUm + B, Um on F;m}

€
m

€
f

endowed with the norm

ve = |IXFurllzz) + Ixmumllzz@) + X0 Unll 22 @)
+1IX5Vugll 2z + X0 Vumllzz@)s + X0 VUl 22(9))3,

H(U'fvum’ Um)|

where 7¢ : H'(Q5) — L?(99Q5) is the usual trace map and x§ is the characteristic
function associated with €25, j = f,m. We also introduce the Banach space V°

Ve = L2(05,) % T2(95,) 0 { (1, uz) € HY(Q5,) x HY(9G,);
a = ay, (u1 + ug) on F;m}

endowed with the norm

[ (w1, u2)llve = Ixmuillzz ) +1IXmuallL2 @) + Ixm Vurll e @) + Ixm Vuell 2 @))s -

We note that for any fixed € > 0, the problem is of parabolic type. Then, adapting
the proof of [10] to the present piecewise structure, one can state the following
existence result (see [I1] for a detailed proof).

Theorem 2.1. Let 0 < e < 1. There exists a solution (p},p<, fi,ci,Cf,c5) of

Problem (1.4))-(1.20)) in the following sense.
(i) The pressure part (p§,p©) belongs to L?(J; Hl(Q})) x L2(J; HY(Q,)) and is

a weak solution of (L.5), (L.9)-(L.10), (L.15), (L.18) and (1.20). Indeed, for any
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function v € C1(J; HY(Q)) such that 9 |—7= 0,

- / (50 + X8 D) Ort)
QxJ

€ ; € € € € _ 2 2 € .
+/Q><J(Xf,u(f1€)vpf +Xm(a(cl +C2)(1 € )+€ )N(mi)VPE) V'(/) (21)
— - [0+ w0 + [ aw.

Q QxJ

(ii) The concentration part (ff,c5,Cs,cS) is such that (ff,c5,C5) € L2(J;VE) N
HY(J; (V) and (c5,¢5) € L*(J;Ve.) N HY(J;(VEY). It satisfies for any test
functions (dg,dy, D1) € L*(J; V) and dy € L*(J; HY(S25,)) the following relations.

| sosa [ sacar [ saci+ [ e
Q5 xJ Qe xJ Qe xJ Qs xJ
+/ V¢ (d1Ve] + D1VCY) -I-/ D(y})fo -Vdy

Qe xJ Q

}><J

+/ D(V)V¢s - Vdy -I-/ D(VE)VCs - VDyq
Q5. xJ Qe xJ

:/ qs(fl—ff>df+/ qs(alfc;)dﬁ/ 4 (C1 — C5) Dy,
Q% xJ Qe xJ

Qe xJ
(2.2)
and
/ ¢0rc5 do + / (V- -Ve5)da + / DE(V)Ves - Vdy
Qe xJ Qe xJ Qe xJ
[ WIS ) s 23)
o0, xJ
:/ gs (1 — ¢§) da.
Qe xJ
Furthermore, the following maximum principles hold:
0< fi(z,t) < fi ae in Qf x J, (2.4)
0 <ms(z,t) < fi, 0<cS(a,t)+c5(x,t) <1 ae in QS x J, (2.5)
v <ci(z,t) <~y ae in Q5 x J. (2.6)

We now state some uniform estimates for the solutions of the microscopic sys-
tem. We begin by stating the following properties of the pressure solutions of the
problem (L.5), (T.9)-(1.10), (1.15), (T.18), (1.20). One of the main difficulties of
the homogenization problem appears in the following lemma. Indeed, letting € to
0, Equation is of degenerate parabolic type because one can only ensure that
¢ +¢5 > 0. It is a main difference with our former work in [I1].

Lemma 2.2. The pressure satisfies the following uniform estimates
195 | Lo (1529 (09)) + IPFl L2511 025)) < €
[l (225220052 < C,
1Pl Loe (3La(0s,)) < C
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e/ 2(c§ + e5) 2V |2 (sr200 )2 + 1€V Nl (22502000 )2 < C,

m

Vel 20200 yyys < C,

m

||£hH(L2(J;L2(Q$n)))3 < (.

Furthermore the time derivative (x}qb;@tp; + X5, 0°0:p%) is uniformly bounded in
L*(J5 (HH())").

Proof. The estimates are derived from integration by parts. We multiply (1.5 by
Py and integrate over Q; x J. We multiply (1.9) by p¢ and integrate over Q¢, x J.
Summing up the resulting relations, we obtain

1 / ) 1 ) kS
- o5 D5 dm—i—f/ o° |p© da:—i—/ Vp§ - VpS dxdt
2 Jas i eyl 2 Jae, Il Qs xJ M(f1) ror

ke
—|—/ alc§ +¢5)(1 — ) + € ¢ Vp©dadt
Q;LXJ( i+l ) )M(mi)
1
= 5 [0 + X @D @ P de+ [ g (o + ) dor
Q QxJ

Applying the Cauchy-Schwarz and Young inequalities with the properties of ?%, ¢,
k%, k¢ and p in the latter relation, we get

_ _ k_
¢—/ \p}\zdx—&-qbf Ip€|? do 4+ — |Vp€f\2da:dt
2 Qs 2 Jae Ht JasxJ
k_
+ = (a(ef +c§) VP2 + € (1 — alcf + ¢5)) |Vpe|?) dadt
K+ Jae xJ

< (9N 2@y, sl 2y + / D52 dad + / 1P ded.
Qs xJ Qe xJ

Using the Gronwall lemma, we prove the desired estimates, but in L? instead of L9.
The result on the time derivatives then follows straightforward from , —
(1.10]). It remains to show that the pressure is uniformly bounded in L*°(J; L1(£2)).
Let 7 > 0. We multiply Eq. l} (respectively ) by quc(p}2 +1)9/2=1 (resp.
qp(pe +n)9/2~1) and we integrate by parts over Q5 (resp. Q7). We obtain

d kS — € €
G O 02 o )+ [ o - v
Qs M1

f

kS
+/ (f )qpf 2(p5% + )P 2Vp - Vs
1

/ /i(]::h)
J, g

(c c 1—2 2
1+ ea)( 6)+E)M(m§

/ asq(X505 (05" +m) 7 + x5 (pF + ).

a(e] +e5)(1—€) + %) (p°* +n)?>~ ' Vp© - Vp*

_|_

)qp62(p62 +n)922Vpt - Vp©

2
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The four last terms of the left hand side of the latter relation are nonnegative. The
right hand side term is estimated as follows using the Holder inequality.

’/ asq (X2 (05 +m) 22+ x50 (0 + 77)”271)‘
- C/Q Jas| (x5 (05" +m @2 + x5, (02 + )07 Y/?)

-1)/q
<o [ xiws + 2 4 +072) ([ ladr)”

(4-1)/q
< C(/Q X052 +m) "% + x5 (0 + 77)“) :

We conclude with the Gronwall lemma that ch(pjcg + 77)1/2 + an(pﬁz + 77)1/2 is

uniformly bounded in L>°(J; L(2)). It follows that x5p§ + x7,,p° is also uniformly
bounded in L*°(J; LI(R2)). O

We now establish the following results concerning the concentrations functions
(ff,Cf e, ).

Lemma 2.3. (i) The functions (f5,C5,c5,c5) are uniformly bounded in the
space L>(J; Lz(Qjc)) X (L (J; Lz(Qjc)))?’ and are such that

0< fi(z,t) < fl <1 almost everywhere in Q; x J,
0 < ac§(x,t) + BC(z,t) < fL <1 almost everywhere in QF, x J
0 <ci(x,t) +c5(x,t) <1 almost everywhere in Qf, x J,
v- < cj(x,t) <v4  almost everywhere in Q5 X J;
(ii) the sequence ((D}n/2 + at1/2|y;\1/2)fo) is uniformly bounded in (L* (€ x
J))%;
(iil) fori = 1,2, the diffusive terms o/?(1+ (¢ + c5)Y/?|Vp<|/?)Ves and e(1+
|eVpe|M2)Ves are uniformly bounded in (L*(95, x J))3. The same estimates
hold for C5.

Proof. The maximum principles of (i) are a direct consequence of the construction
of the solution (ff,Cf, ¢§,c§) in Theorem[2.1] We write the variational formulation
. ) with the test function (dy,d1, D1) = (ff,c5,C5). We get

o [ osliPan s [P +Icsdo s [ DE§S Vi dede
Q5 Qc, Qs xJ
+ / (DE(VOVE - Vel + DE(V)VES - VOS) da dt
Qe xJ
+/ (y}~fo)ffd:cdt+/ Ve (&5 Ve + CEVCE) dadt
Q;x] e xJ
+/ g OG LI + x5 (€512 + [C5[2)) d di 27)
QxJ
:/ qsflffdatdt—i—/ gs (165 + CLCF) da dt
QxJ Qe xJ

1
+5 [ @I + o (et + (o) do
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The convective terms in (2.7)) are estimated as follows using the Cauchy-Schwarz
and Young inequalities. In the fractured part, we write

(67
[ wsvmsias|< [ Sl VPl [l
§xJ Q% xJ Q5

7
where 0 < ff(z,t) < 1a.e. in Q5 xJ and v is uniformly bounded in (L' (Q§ x J))?
thanks to Lemma [2.2] In the matrix part, we get firstly

‘/ Cl Vcl + Cl VCl)
Ex]

<[ Gwieenl(vaP + veip)
e xJ 2
+C [ (V51 D P + 105 do
:

The second term of the right-hand side of the latter relation is treated as follows
using Lemma [2.2]

| vl (el + 5P
@

k
< M—* o (alef +e5) (1 =€) +¢)[Voe| (|51 + |CF )
- f

2( € €\2 2 € V)2 c|2 1/2
<C( | (a2(ch+¢5)? + (1 - alc +¢5))*|VpP?)
f
X ([l 7oy + 10T 1))
C € €
g(HCiHLw(Qe y + ||CiHLoo(Qe + - 5/ a+€)Dn (Ve |? + Vi),

for any § > 0. The last term in the left-hand side of (2.7) is nonnegative. Using
the latter estimates, the Cauchy-Schwarz and Young inequalities for the right-hand
side source terms and the basic properties (|1.21)) of the tensors D and D¢, it follows

from (2.7) that

¢— € € € € € « € €
o [ OGP + X5l P + G do + 6 | (Do + S |gl) IV fi | dadt
Q Q;XJ
+ o ((a + €2)(1 — ) Dy + %mg + V) (VS + [VC5J?) dadt
Qe xJ
< ¢ +C |f£]? dadt.
d Q}xJ

We choose 0 < § < 1. We use the Gronwall lemma to infer from the latter relation
that /o + Be2Ve§ and |a(c§ + ¢5) + (1 — a(c§ + ¢5))Vp<|/2Ve§ are uniformly
bounded in (L2(Q x J))3. The estimates for ff, ¢§ and C¢ follow. Once we know
the estimate for ¢, we obtain similar ones for ¢§ by multiplying by c{,
by c5, integrating over €)f,, and summing up the results to kill the terms on I'¢,
Our claim is proved. ([

We now have sufficient estimates to state the first convergence result. The proof
of the homogenization process will be carried out by using the two-scale convergence
introduced by G.Nguetseng in [I9] and developed by Allaire in [2]. The basic
definition and properties of this concept follow.
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Proposition 2.4. A sequence of functions (v¢) bounded in L?(Q x J) two-scale
converges to a limit v°(x,y,t) belonging to L2(2 x Y x J), v‘iv", if
lim v(x,t) U(z,x/e, t) dedt = / / v (z,y,t) U(x,y,t) dedydt,
=0Jaxs QxJ

for any test function U(x,y,t), Y-periodic in the second variable, satisfying

lim |\I/(x,x/e,t)|2dxdt:/ /|\I/(x,y,t)|2dxdydt.
—0Jaxg axJJy

(i) From each bounded sequence (v¢) in L*(2 x J) one can extract a subsequence
which two-scale converges.
(ii) Let (v¢) be a bounded sequence in L*(J; HY(Q)) which converges weakly to v

in L2(J; HY(Q)). Then ve2v and there exists a function vt € L2(Q x J; HL, (Y))

per
such that, up to a subsequence, VUEE\VU(:EJ) + Vol (z,y,t).
(iii) Let (v€) be a bounded sequence in L?(Q x J) with (eVv¢) bounded in (L?(2 x
J))3. Then, there exists a function v° € L?(Q x J; HL, (Y)) such that, up to a

per
subsequence, v¢30° and erei\VyvO(x,yj).
Before applying these results, we have to extend some functions to the whole
domain 2. We begin by defining a global pressure 6 by
0° = X§p§ + XmD"
We have assumed that the connected sets Q% and €27, have the admissible structure

to apply the results of [[]. We thus claim that, for j = f,m, there exists three

constants k] = kf (Y;) > 0, ¢ = 1,2,3, and a linear and continuous extension
operator IT§ : H'(Q5) — HJ, (Q) such that TI5v = v a.e. in Q5 and

/ \H§v|2dx < kg/ lv|? de, / |V(H§-v)|2dx < kg/ |Vo|? da
Q(Ekl) Q; Q(ek}l) Q;
for all v € H'(25), with Q(eky) = {z € Q| dist(z,T') > ek }. To avoid dealing with

boundary layers, we make the following additional assumption on the structure of
the domain Q:
Q5 = Qekr) N {Ukezxe (Y, + k)} and Q5 =Q\Q,.
We then define the extension C¢ of
cc=cf+c§
by
Ce =1I; ¢
and the extension of p} by P i—z %p

Now, in view of Lemmas [2.2[ and - there exist functions py € L?(J; H'()),
P} ELQ(QXJ Hl (Y)),p’ € L?(OxJ; H,, (Y)), (f1,C1,c1,ca) € (L°°(J; L2(2))N
2(0 x

per per

LQ(J HY (), (),CY) € (L2(Q x J; Hy,, (Y)))* and (fi,C1,c1,03) € (L2(Q
J; H)..(Y)))* such that, up to extracted subsequences, as ¢ — 0,
€ € € € € 2
0 = X505 + Xeub" = P (@, 9, 1) = XsW)pr(2,t) + Xm (0)P° (2, 9, 1),
Py — py weakly in L*(Q x J),

€ 2 € 2
Pf = py, VP; = Vps(a,t) + Vypi(z,y,t),
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VO 2 X (y) Vo (2, y, 1),
a2 2 a1/2(01 + ¢2), al’?y e 2 al/ZV(cl +e2) + Vy(ci + C%),
XiFE 2 W h XSV 2 @) (V) + Vy fl(z.y.t),
Xen02C5 2 o (y)at /20,
Xen @2V CE 2 ()02 (VCy (2, 1) + V,C (2,3, 1)),
XanC5 2 X (W), 5,1), X VO 2 X ()Y CY (2, 9, 1),
X028 2 xm()aPes, X502V 2y (y)a 2 (Vei(,1) + Vel (2,4, 1)),
Xin€s 2 xXm W) (@, 9, 1), XV 2 xm W) VD (,y,1), i =1,2.
We note that

1
Cl :/ C?(7y7) dya XQ\rol :XQ\Qoyi/ C?(a@h) dya
Y m JY,,

1
Gl :/ Ay, ) dy, xonaoCt :XQ\QOY*/ Ay, ) dy.
Y m JY,,
We also assert that

€ € € € € 2

P = x§0F + X9 = 2(y) = xr(W)r(y) + xm(¥)o(v),
€ € € € € 2

K = x5k§ + x5,k = K(y) = x5 (9)ks(y) + xm () k(y),

and that ®¢ and K¢ are admissible test functions for the two-scale convergence.
Furthermore, some two-scale limits are linked across the interface I'¢,,,. We claim
the following results.

Lemma 2.5. The two limit pressures are equal on the matriz-fracture interface:
pr(z,t) = p°(z,8,t) for s € Ty, (w,8) € A x J.

Proof. We recall that 0° = x5p$ + x7,,p° € L2(J; HY(2)) satisfies V50¢ = v5p§ =
VP = V0 and eVO° = ex;Vp§ + ex;, Vp© € (L2(2 x J))? for any fixed € > 0.

We know that 8¢ = Xfr(W)py(z,t) +xm(¥)p°(z,y,t) and eVGEixm(y)Vypo(m, Y, t).
For any ¥ € (CS°(;C2,.(Y)))? we write

s Yper
£ . T . T
/ VO Uz, L) do = _/ s (edwg(x, ) 4 div(a, 7)) dz.
Q € Q z € Yy €
We take the two-scale limits on both sides. We get

/ / Xon (y) Vyp” - W dz
QJY
- /9 /Y(Xf@”’f(% )+ xm ()" (2, y,1)) div ¥, y) dedy

= —// py(z,t)¥(x,s) - vy dxds—// p°(z,5,)¥(x, 8) - vy, dads
o Joay; Q Jov,,
+//Xm(y)vypo-gd:r.
aly

This proves that pg(x,t) = p°(x, s,t) for s € Yy N Y., = T g a
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We add the following result linking the limit concentrations f; and m; = acy +
BC1. This lemma was already stated in [9] when « is a constant parameter. By
the way, we detail its proof for the convenience of the reader.

Lemma 2.6. The concentrations fi(z,t) and my(z,t) = acy(z,t) + C1(x,t) are
equal almost everywhere in (Q\ Qo) x J and fi(z,t) = BCY(z,s,t) for a.e. (z,t) €
Qo x J, s € Tgyy. Furthermore a(z)(c1 + c2)(z,t) = a(z) almost everywhere in
QxJ.

Proof. Let d° = X%f{ + x;,m{ € L3(J; HY(Q2)). It satisfies Y5de = 5fi =
VM = Y d® and eVd© = ex§V i + ex;, Vmi € (L*(Q x J))®. We know that

2 2
d* = x5 () 1 + x\20 Xm (1)1 + X X () BCY and €Vde=x0y Xm (y)3V,C?. For
any W € (C°(C2,(Y)))? we write
z . x . x

/ eVd® - ¥(x,=)dxdt = f/ dc (e div ¥(z, —) + div ¥(z, 7)) dxdt.
QxJ € QxJ v € v €

We take the two-scale limits on both sides. We get
/ / X8V, CY - ¥ dadydt
QxJ JYm

. / / (s () F2 (25 1) + xom () xerr020 (200 (2, )
QxJJY

+ Xm (¥) X0 () B(x)CY (2, y, 1)) d;v Y(z,y) dedydt
-/ i@ (e ) vydodsde — [ [ (xora,(@hmae.)
QxJ JOYy QxJ JOY

+ X0 (2)B(x)CY(x, s, t)) (z,s) - U dedsdt + / XQOﬂVyC? - W dxdydt.
QxJ JY,,

This proves that fi(z,t) = xo\q, (€)m1(z,t) + xa, (@) 8(x)C) (z, s,t) for s € Yy N
0Y,, = I'py and thus fi(z,t) = mi(z,t) ae. in (Q\ Q) x J and fi(z,t) =
B(x)CY(z,s,t) ae. (z,t) € Qo x J, s € T'yp,. The same computations for dS =
Xjo + Xp,a(c] + ¢5) show that a(z)(c1 + c2)(,t) = a(x) a.e. in Q x J. O

We then claim and prove the following compactness result, of course penalized
by the degeneracy of function « in the set .

Lemma 2.7. The sequences (XiXa\,ff): (XfnXa\o,mi) and (X5, /2(c§ + ¢5))
are sequentially compact in L?(2 x J).

Proof. We begin by writing the problem satisfied by m§ in Qf, x J.
POmi + V¢ - Vm] — div(D(V)Vm3) — (¢f — C))V* - Va
+ D (V)Vci - Va — D (V)VCT - Va + div((c] — C))D(V)Va) = qs(fl —mj),

(2.8)

D (V)Vmi v = (0% + B)DH VT - vpm + (c] = CHD (V) Vo vpm,
mi = fi onTgy xJ, (2.9)
DE(V)Vm]-v=0 on (09, NT) x J, (2.10)

mi(z,0) = act(z) + SCT () = x5, () 7 () in Q.. (2.11)
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On the one hand, let ¢ € L*(J; H*(2)). We multiply (T.4) by (a® 4 5?)x§1 and
(2.8) by x&,1. We integrate over 2 x J and sum up the results. We get
(X505 + X0 ) (XGF(@ + B2 ff 4 X)) L2 (3(12(9))) % L2 (JH2(9))

= /Q J(xjf(az + B2 - VI 4 X5V Vmi) ¢ dodt
X

+ / Xin(c] — CT) (V- Vo) ¢ dedt + / Xo,(c§ — CT) DVa - Vi dadt
QxJ Q

xJ

- / (X (a® + B)DV ff + X5, D°Vms) - Vi dwdt
QxJ

- / 220 = 1)x§DV ff - Va dudt
QxJ

- / Xom (Devci -Va —-DVCY - Va) ¥ dxdt
QxJ

[ @ 8+ D = (G + )+ ) v dad,
QxJ
We recall that o € C1(Q). Moreover, in view of the previous lemmas, we have
[ 4+ P05 iV Vi) e
axJ

< C|||Q§|1/2fo|\(L2(ﬂ;xJ)3|||2}|1/2||L4(Q;xJ)||¢|\L4(sz;x.1)
+ C’II|V5|1/2Vm§||(L2(anxJ)3H|V€|1/2||L4(anxJ)||¢||L4(Q;nxJ)
< Ol acrm2 ),

‘/ (X5(@® + B)DV f{ + x5, DVmy) - V¢ da:dt‘
QxJ

< OVY|paxay)s
< ClYllparm2 )

[ a0+ 5+ D = (502 + B + X)) b doc]

< Clllf1lloos Imilloo)lgsll 2 @xn 1¥ 1l 20 )

< Clllpa(rmz(a)-
We infer from the latter computations that the sequence 6t(¢6f(a2 + 52))(‘} i+
¢°X5,m$) is uniformly bounded in L*3(J; (H?(2))'). Since (¢%(a® + B2)x5ff +
dxE,m5) is uniformly bounded in L (2 x J), a standard argument of Aubin’s type
proves that (¢% (o +8%)x§ ff + ¢ x5, m4) lies in a compact subset of C(J; (H'(€2))").
Therefore, there is £ € L2(J; (H*(2))), such that, up to an extracted subsequence,

¢(a® + B2)XG [T + ¢ Xpmi — € in C(J5(H'(Q))') as € — 0.

Two-scale convergence arguments show that

€= (a®+5%)( /Y 61 ()dy) F1 + xen ( /y o(y)dy)mr + xan /Y S()BC(,y,)dy,

where m; = ac; + fC1 = f1 ae. inw\ Q by Lemma
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On the other hand, the sequence o'/ *(XGff + X5um{) is uniformly bounded in
the space L*(J; H'(2)). We thus can pass to the limit in the product (¢%(a® +

BHXG ST + ¢6x$nmi,a1/2(x§ff + X5m9)) (a1 (@) x 5L () as follows.
tim (x5 (a2 + B2)67f1 + Xiudms, ' 2X 1) + (X (a® + B0
X0 M, a2, ms ) )
= (@40 [ orwdus [ o) et ¥rin)

(@248 [ opw)dy+ /Y ()dy) f1, @V |Yim 1)

Yy m
= (@2 + 6% | or)dy+ / o(y)dy) fr, M ),
Yy Yom
As a consequence we have

lim (0 + 5%)X50% + X5 ) G + x5ami = f1), a3 ST+ Xmi = 1)
= lim ((((0® + B)X565 + X5 ) (35 + xeum), @235 + xiumd)

—2(((a® + B2) X505 + X5 0) (NG f5 + Xeum$), a2 f1)

+ (0% + X565 + Xiu ) 1,02 1) ) = 0.

Since a? + 32 > 0, ¢%,¢° > ¢ > 0, this shows that a1/2(x}ff + x&,m$) strongly
converges to o'/2f; in L?(Q x J).

The compactness result for a'/?(c§ + ¢5) is proved using similar calculations.
Note in particular that the problem satisfied by ¢ + ¢5 in €2, x J is

PO (c] + ¢3) + V- V(c] +¢5) —div(DV(e] +¢5)) = gs(1 =] — ),  (2.12)

DV (cf +¢5)-v=0 on o, xJ, (2.13)
(5 +¢5)(x,0) =S (z) +c5(x) in QF,. (2.14)
This completes the proof. [

We now aim to state some compactness result for the pressure. But as empha-
sized in Lemma 1, we have no direct estimate for the pressure gradient in the matrix
part. Our solely estimate is weighted by (c§ + ¢5). We thus begin by the following
result for the weight function.

Lemma 2.8. For any real number a such that 0 < a < 1, the sequence ozl/z(cE +
)@= N/27 e ¢ = ¢ + ¢, is uniformly bounded in (L?(Q5, x J))>.

Proof. The function c¢€ is solution of Problem ([2.12))-(2.14]). We also already know
that ¢© is uniformly bounded in L*>(Q¢, x J). Let 0 < a < 1. We multiply (2.12)
by (c¢ 4 €%)® and we integrate by parts over Q¢, x (0,t), t € (0,T). We obtain
1
1+a

1
/ (c“(z,t) + ) de — —— (eS(z) 4 c§(x) + ) T da
€ 1 + a an

+ / (VE-Ve) (¢ + €2)* dadt + / ; 2 D°Ve - Vet dadt
Qe % (0,t) Q

x(0,0) (c°+ €))7

€
m
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= / qs(1 — ) (¢ + €*)* dxdt. (2.15)
Qe x(0,t)
We write
’/ (V€ - V) (¢ + %) dadt
% (0,2)

< V2V 200, <0 NV 2L, < I+ €)loe < C,

’/ (@) + €)' da| < O+ )+ < C,

[y o) (4 7 ddt] < iz 1 = e+ e < ©.
€, x(0,t
The result of the lemma then follows from ([2.15]). O

We now claim the following weighted compactness result for the pressure in the
matrix part of the domain.

Lemma 2.9. The following strong convergence holds true.
VaCeh® — y/aler + co)p in L2(Q x J),
where p is the weak limit of ¢ in L?>(Q x J):

pla,t) = /Y P, 1) dy.

Proof. The following lines being quite technical, we assume for sake of simplicity
that the global pressure 6¢ is nonnegative. In the general case, one would perform
the same computations as below replacing 8¢ by the nonnegative function 1/6<? + n,
1 > 0. We define the auxiliary function P€ by

€ __ 0°
g+ 1
We note that (P€) is a bounded sequence of L>°(Qx J). Let us denote by P its weak
limit. We have introduced the function P¢ in view to apply the convexity results for
limits of bounded sequences in L of [23]. We also note in view of Lemma [2.2| and
Proposition[2.4] (ii) that the two-scale limit of the sequence (aC“6¢) does not depend
on the microscopic variable y. The same holds true for the sequence (aC€P*).
Furthermore, by Lemma (a'/2C¢) is sequentially compact in L2(Q x J) and we
have denoted by a'/?¢c = a'/?(c; 4 ¢;) its limit. We then assert that

P°aCP° — dacP in L*(Q x J). (2.16)

Choosing ¥/ (p®+1)? as test function in the variational formulation , one easily
checks that ®¢9, P¢ is uniformly bounded in L'(J;(W3(€))’). Using a classical
argument of Aubin’s type (see [21]), we conclude that ®€P¢ is sequentially compact
in L2(J; (H'(Q))").

We thus can pass to the limit ¢ — 0 in the duality product

(@P, aCP/(P+ 1)) (1 (o)) xH1(0) — (PP ac P /(P + 1))
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where f¢ denotes the ad hoc limit of the sequence f¢. In view of (2.16)), the latter
convergence reads

pe2 _ TP
¢ — adP
[ R
Since ®¢(P€ + 1) is also sequentially compact in L?(.J; (H(£2))’), we compute
(@(P* +1), a0 P /(P + 1)) (1 () () — (®(PC + 1), ac P/ (P + 1)),
which means with ([2.16]

PP A1)
Pe+1
But @E%j:”al/gc'e = §¢Pa!/?2C¢ — ®Pa'/?c. We thus infer from the latter

relation that

ad* ¢ in L*(Q x J). (2.17)

ad C® — a®c(P + 1)P¢/(Pc + 1).

Pe P
= . 2.1
A pe T = (2.18)
Inserting (2.18)) in (2.17)) yields
Pe2 _ p?
a(I)EP6+1C€—\a<I>P+1c in L2(Q x J). (2.19)

Now we note that («C¢//P¢ + 1) is uniformly bounded in L?(J; H(Q)). We then
pass to the limit in the following duality product

(PP, aC/V P+ 1>(H1(Q))’><H1(Q) — (PP acl/V P+ 1),
that is with (2.16)

Ce — 1
a® P — — a®PPc————. 2.20
vVPe+1 Pe+1 (220)
Using the strong convergence of a'/2C¢ to a'/?c in L*(Q x .J), we also have
a@Echi e 1 Y —— (2.21)

vPe+1 vV P¢

Since we manipulate here bounded sequences in L (2 x J), we can use convexity
arguments of Tartar [23] to claim that

—_

! < because of the concavity of = — N in Ry
VP+17 VP41 Vi+1 ’
D < P because of the convexity of x — L R..
VPe+1 7~ VP+1 Vo +1
The two latter relations with and give
04‘1)506\/% - O@C\/% in L2(Q x J). (2.22)
Bearing in mind that ®¢ > ¢_ > 0, we infer from and that
aC*® r — ac P
VPe+1 VP +1

a.e. in Q x J and strongly in LP(Q x J), for all 1 < p < oo. It follows that
(aP<? /(P 4 1))C¢(P¢ 4+ 1) — aP?c, and then

VaCeP¢ — y/acP a.e. in Q x J and strongly in LP(Q x J), V1 < p < .
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We note that all the latter computations can be performed using the function

o<

P =
6 +1

instead of P¢. It leads to
VaCePY — \/acP' a.e. in  x J and strongly in LP(Q x J), V1 < p < oo.

Let us go back to the problem of the limit behavior of the global pressure €. The
two latter convergence results read

o 0 o< o<
vaCe vac——, VaCe vac———. 2.23

S T L T N T (2.23)
Similar computations than those performed with P¢ in the latter lines allow to

assert that
Vvae o =ac £
fc+1 p+1’

where p is the weak limit in L(Q2x J) of §¢. It then follows from the first convergence
in (2.23) that aC<0?/(6¢ +1)> — acp?/(p + 1) a.e. in Q x J. Multiplying the
latter relation by 6 + 1, we conclude that

962 — Qac p2
0c+1 p+1

This convergence together with the second one in (2.23]) proves that

962 p2
A/ Ce
(% 96+1—>\/Oécp+1

Since a'/2C¢ — a'/?c and thus vVaC<(0° + 1) — /ac(p + 1), it follows that

<2
vVaCe
g +1

aC*

a.e. in 0 x J.

VaCe(6¢ + 1) = aCbh* — acp®.

We conclude that
VaC<§® — \/acp strongly in L*(Q x J).
Lemma [2.9]is proved. ]

Our last preliminary lemma before to pass to the limit in the pressure problem
gives the two-scale limit of the weighted pressure.

Lemma 2.10. There exists some function & € L2/ 02(Q x J; H], (Y)) such
that

aC Ve 2 afcr +c2)Vp+ V.
Proof. Let ¥ € (D(2 x J;C25,(Y)))? such that div, ¥ = 0. We set ¥(z,t) =

per
Y(x,z/e,t). The sequence ((aC® + €2)VH°) being uniformly bounded in (L?(Q x
J))3, it admits a two-scale limit. Let us denote it by £. Since eV6° is uniformly

bounded in (L?(Q x J))3, we also have
aCvee 2 ¢
By definition of £ we have

lim (aC* + )VO° - V€ dadt = / / & - U duadt. (2.24)
=0 Jaxg axJJy =
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We also have

/ (O + €2)VO° - T° dxdt
QxJ
= / (aC® 4+ )Y2(aCc 4 €2)Y/2V6° - U° dadt
QxJ
= —2/ (aC + e)20°V ((aC* + €2)1/?) - U° dudt
QxJ

- / (O + €2)0° div ¥° dadt
QxJ x

and then

lim (aC® + 2)VO° - U dadt
c—0JaxJ

- _2/ / a(@)?(er + ) pla, t)
QxJ JY
X V(a1/2(01 + C2)1/2 + VyCSqrt)g(x, Y, t) dedydt

- / / aler + c2) p(z, t) div¥(z,y,t) dedydt,
QxJ JY x

where Cyqry € L*(Q x J; H),,.(Y)) is such that

V(aC)'/? 2 V(afer + 02))1/2 + VyCoqrt-
It follows from — that
£@,9,) = —ple,t) V(@) (e (@, ) + ea(, )
—2a(2) 2 (cr(x,t) + ea(2, 1) ?pla, t) Vo Cogri (2, y, 1)
+ V(a(z)(er(z,t) + ez, 1))p(x, 1)) + Vyéi(,y,t)
for some function & € L*(Q2x.J; H},,.(Y)). Defining the function &, € L29/(a+2) (O x

J; H;er(y)) by 52(55, Y, t) = 720‘(*’5)1/2(01 (.T, t) +02(x, t))l/Qp(xa t)qurt(xa y,t) +£17
we have

(2.25)

£ =alcr +c2)Vp+ Vy&o.
This completes the proof. O

We now have the main tools to pass to the limit ¢ — 0 in the microscopic
problem.

3. DERIVATION OF THE HOMOGENIZED PROBLEM

We begin by studying the limit behavior of the pressure problem. We multiply
Equation (1.5) by a test function in the form U(z,t) + €U s(z,x/€,t), with ¥ €
D(Q x J) and ¥y y € D(Q x J;Cp,(Y)). We also multiply Equation (1.9) by

U(z,t) + €Vy p(x, z/€,t) + (x,x/€,t), where Uy ,,, € D(Q x J;C,.(Y)) is such

per
that Uy, (2,y,t) = ¥y ¢(2,y,1) if y € Ty and o € D(Q x J;Cpe,.(Y) with support
in Qo x Y;, x J. Integrating over Q2 x J, we obtain

/Q E chgé;(x) O (\Il(x, 1)+ ey ¢(z, /e, t))

+ / X @ () Osp© (\I/(a:7 1)+ eV (z,z/e, t) + Y(z, /e, t))
QxJ
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ki) o
+/ X% ps - (VO + eV Ui p + V, 01 )
QxJ ( ) ’

kE
+ / Xon (xe) (a(ci +c5)(1—€*) + ez)Vp6 . (V\I/ + eV Ui, + VU,
QxJ MOnl) ' ’

1
+ V)¢ + EVywe)

_ / Gs (U + US|+ TS+ ).
QxJ

Letting € — 0, we get
/ o7 (y) Oy ¥(x,1) +/ / d(y) Oep® (U (2, t) + (x,y, 1))
QxJ Yf QxJ Ym,
/'f% (Vps + Vyp}) - (VO + V, 05 )
x J
/ y
xJ J Y, w(f
/ &vypo -Vt
oxJJY,, M

=/ 4o (U + ).
QAxJxXY

By density arguments we conclude that the corresponding two-scale homogenized
system in Q x J is:

Eey

=
‘:

+ Cl + cz)Vp + Vy£2) (V\I/ —+ Vy\IfLm) (31)

~

+

:a\:o\:o\

@7+ xerna® ") Ops + X / o(y)0p° dy
le( (fl)/ '(y)(fo+Vypf)dy)

- diV m /Ym k(y)(aVpy + Vy&)dy) = qs,

k(y)

p(f1)
ky(y)(Vpy + Vypf) vy=0 onlypm, k
k(y)(aVpy + V&) vy =0 onTy,, k
K

(aVps + vygz)) —0 inY,,

—diV(
(y)(foJrVyp})«l/:O on T,
y)(aVpr+ V&) -v=0 onT,

(Q/—\\
~—

o(y)op° + dZiJV(XO) =qs VW =— Vyp? in Qp x Yy, x J,

|

o

—

ps(z,0) = p°(2,y,0) = p°(x) in Qx Y,
pf(x,t):po(x,y,t) ifyelsm, oapf=apinQxJ
Let us add some justifications of the latter relation. We have already proved in

Lemma that p°(z,y,t) = ps(z,t) if y € Tgp. We thus assert that (e +
e2)(x, )p®(z,y,t) = (c1+c)(z, t)ps(x,t) if y € Tgp. We also recall that a(eq+ca) =



EJDE-2009/01 PARTIALLY FRACTURED MEDIA 21

a a.e. in Q x J. Because of Lemma [2.7]
aCcpc = a(ep + e)p° = ap?,
and because of Lemma |2.9
aCfe 2 afer + e2)p = ap.

It follows that a(z)p° (2, y,t) = a(z)p(x,t) = a(z)ps(x,t) if y € Tpp, that ispr =p
a.e. in (2\ Q) x J.

Now we eliminate the function p} in the former system. We use the solution
(v")1<i<3 of the cell problem (3.2)) below.

—divy (s (ks (y) + xm@)EW) (Vo' (y) +€)) =0 inY,

; ; (3.2)
/ v'(y)dy =0, y+— v'(y) Y-periodic,
Y

where e’ is the unit vector in the j-th direction. We define the homogenized per-
—H
meability tensor K, by

—H

Kyi= / O W)k p (W) + xom (¥) k(1)) (Vo' (y) + €') - (Vo (y) + €/)dy,  (3.3)
1%
1 <i,j < 3. Through the relations p}(z,y,t) = xs(y) S 8ps(x,t) v'(y) and

&(z,y,t) = xm(y)a(z) Z?:l Oz,p¢(x,t)v'(y) we recover the following homoge-
nized system.

Proposition 3.1. The homogenized pressure problem is

—H
—Y, Yo . K, )
(65 7+ xovau® ") Oipy — le(iva) =qs — XQO/ oo’ dy in QxJ,
Yin

M(f1)
(3.4)
H(y)0° + div(Y) = g, V° = —kij’) in Qo x Y x (3.5)
Yy
pr(x,t) = p(x,y,t) if y € D, (x,1) € QX J, (3.6)

Fngf v =0 0n 00 x J, ps(z,0) =p%(z,9,0) = p°(z) in Q x Y, (3.7)
where the homogenized porosity is defined by

Y,

5 = erdy, 3 = / 6(y)dy
Yy Yo

and the homogenized permeability tensor Ff is defined in (3.3)).

In Qg, the matrix plays the role of a source and produces the additional right-
hand side source-like term which is characteristic of a double porosity model (see
[B]). In Q\Qg, the model is of single porosity type. But the interconnection function

o influences the homogenized permeability K f

We now have to state some strong convergence for the Darcy velocities in order
to pass to the limit in the non linear terms of the concentrations equations. We
claim and prove the following result.
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Lemma 3.2. We have the following strong two-scale convergences.

e R 2 ki (y) |
Xt T Wy e V)
k(y)

k 2
oXma(cl +¢5) ——=VD* = xa\ooXm (¥) >~ (aVps + V&),
X\ Q0 X (] Q)M(ml) 2\ Qo Xm ( )u(fl)( r+ Vyé2)
ek k
XX V¢ 2 XQoXm(y)nypq
p(my) j

€

€

Proof. We first prove the following convergence result.

KE
1im/ VO - VO dzxdt
=0 Jaxs (&)

k
= / / ) (G 4 Vyph) - (Vg + Vb dadydt
axJ Jy; #(f1)

k(y)
Vps + V&) - (aVps + V&) dadyd
+/(Q\Qo)><J/Ym u(fl)(a pr+ Vyéa) - (aVpy + V&) dadydt

k
+ / / @vyp().vypodxdydt, (3.8)
QoxJ Yy, M

where £¢ = X5 ff + x5, m{ and K = x5k§ + X5, (cu(c§ 4 ¢5)(1 — €%) + €2) k*. Setting
Q; = Q x (0,t), we consider the following energy equation for ¢t € J.
1

KC
= / OE(0°(x, 1) — p°(x)?)dx + / 2V - VO dads = / qs 0° dxds.
2 Q Qq M(é‘e) Q

In view of the two-scale convergence of 6¢ we have

lim qs 0° dx ds

€E— Qt

= / / s (xXs ()P (. t) + Xm (1) (XD (2, ¥, 1) + Xar0opf (2, 1)) dudyds
Q. Jy

= / qs(|Yf\Pf + X\ | Y|Py + X020 (/ pody)) dxds
Q

Ym

= /Q as(ps + X0 (/Ym (0" — py)dy)) deds.

Then we write the variational formulation (3.1)) with U = ps, ¢ = xa, (" — pf).

V= p} and Uy ,,, = &. Bearing in mind that py = p° a.e. in (Q\ Qo) x J, we
assert that

.1 2 K¢
1 @E € (e} € . €
55%(2/9 0°(x,t) dm—l—/gt M(Se)VG A% d$ds)
1
=§</ ¢fp§(x,t)dxdy+// ¢>(XQ\QOpfc(ﬂs,t)+xQop°(x7y,t)2)dwdy)
aJy; oy,

ki(y) N )
- /Qt /Yf ,U(f1) (va + vypf) (va + vyff) dmdyds

k
+ / / ) (aVps + V&) - (Vpy + Vy&a) dadyds
(@\20)x (0,) Jv,, #(S1)
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k
+ / / M Vypo . Vypo dxdyds.
Qox(0,t) /Y., M

The limit of each term in the left-hand side of the last relation is larger than the
corresponding two-scale limit in the right-hand side. Thus equality holds for each
contribution and ([3.8)) is proved. Now we recall the two-scale convergences

X5 (K /(&) Vo 2o ) (ks (y) /(1)) (Vs + V),
X0 Xon (K& /1(EN)VOT 2 xano Xom () (k(y) /(1)) (@V s + Vys)

€ € € € 2
X0 X (K5 1(E))VOT = X Xom (y) (k(y) /1) V yp°
It thus follows from (3.8 that

lim / Ka - VO° dzdt
e—0 QXJ ( )

/ / Wi )fowypf) (Vpy + V,p}) dadydt,
QXJ Yf

€

K
lim XS, —2V0° - V€ dadt
XN X ey

=0 Jaxg
_ k(y ) 1/2 1/2
= (@' /*Vps + V&) - (a/*Vpy + V&) dudydt,
(O\Q0)xJ u(f1)
lim X% Xon Ko Vo°© - VO dxdt = / / p° - Vypo dxdydt.
=0 Jaxs w(&°) QoxJ J Y,

Bearing in mind that K€ is a symmetric definite positive tensor and that it is
considered as an admissible test function for the two-scale convergence, the latter
relations are sufficient to assert the result of the lemma. (]

Let us now turn to the concentration problem. Let (¢, 11, ¥1) € (D(2 x J))3,

(Y} 91, 01) € (D(Q x J5Cpe,(Y)))?, (,%) € (D( x J;Cpe,(Y)))? with supports
in Qg x Y,, x J, such that

Y(w,t) = a(x)i(z,t) + B(z) Wi (x,t) inQxJ,
iz, y,t) = o(z) (e (z,y,t) + V(x,y,t)) + () (V1 (z,y, 1) + V(z,y,1))
if (z,t) € A x J, y €Ty

We write the variational formulation 1) with dy = warew}’E, dy = b1+ ey b
and Dy = W) + ¢WC + ¥€. We obtain

/e J PpOutfi (5 + €¢}’€) * / GO (11 + ey + 4°)
IEe

Qe xJ

kE
Qe xJ R ! Q;xJ< n(f5)

+/‘ (_u(mi)(o‘(ci+C§)(1—62)+62)Vp5) SV (W1 + el + )

§) - VI W + et ))

m X

k¢ 1
+/ — al(cs +5)(1 —€2) + )Vpe) - VO (T + el + T€
(e + )1 =) + ) Vp) - VO (0 0 w)

m
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k; l.e 1,e
+/QeX‘,D(M(fl)fo)Vfl (Vs + eVathy“ + Vb ;)

€

k €
+ /Q;LXJDG(M(mG)(a(Ci +c5)(1—€*) + ez)vpe)vci (Vi + Vbl

1

1 e
+ Vb€ 4 Vb + =V, 1b¢ —|—/ D ——— (a(c] + 5 1—€?) +¢é
R O R M o ICC R (RO

1
VpF)VCT - (VU + eV, 0} + V0] + V, 0 + -V, )

= / as(fr = fi) (Vs + evy) + / g5(61 — ¢§) (Y1 + e} + )
Q;XJ

Qe xJ

+ / qs(é'l — Cf) (\Ifl + 6‘1/176 + \I/E).
Qe xJ
Letting € to 0, we get

L erma)osives [ xoa ([ owy) @i +acim

Yy

+ /Q o / o) (Buer (1 + ) + 0, (T, + 1)

~/Q><J Yf

_ / Yoo / L(awwy@) (Ver + Ve + (VO + ¥, )
QxJ ym w(f1)

wpf) - (Vi + Vyfi) vy

/ ~Vyp’ - (Vy ) (1 + 1) + V,CF (U1 + 0))

o
s, 2G

k
+ /QXJXQ\QO /Ym D<m(anf + Vyfz))(Vcl + Vyc%) . (le + vyw%)

WD) (Vi + Yy 1) - (Vg + Vy6})

k
+/QXJXQ\QO /YmD(M(avpf+vy52))(vcl+vy011)-(v\p1+quf})
k

+/Q><JXQO/Y D(;Vyp()) V& Vi + V,C0 -V, 0)
:/ Yyl as(fr = f1) ¥y

QxJ

s [ al@-dn  @ - w),

axJ Jy,,

Choosing 95 # 0, U1 = 9¢/5 and the other test functions equal to zero, we obtain
for instance the equation satisfies by f; in € x J. We finally obtain the following
homogenized problem in €2 x J.

—Y 1*Y7n 1
b5 1O f1 + XQ\QOB¢ 0:C1 + XQOB/ o(y) 0,Cdy
YVTL
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H
Yy

u(f)

— div(DJ (Vps)V f1)

Vpy-Vifi— XQ\QOB (f)fo VCi —
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Ky X, k(y)
B

- XQ\QO* div(D (Vpr)VCr) = qs|Yy| (1 — f1)

B

1 .
+ 7% (01 — X\ Y] C1 — X0 / (-, -)dy),
Ym

K&
—*XQO / d(y) 0.Cdy — xonap — =

_XQO/
Y,

— XQ\Qo div(

m

k(y)

m Yy,
¢ XQ\QO3t01+XQU/ P(y) Orcdy — = " xn0,0:Ch

B
F o
=V Ve, — VO
wy P (Ve v
Vypo-(vyc?— Vycg)dy

2

DE (Vps)Ver) + xaya, = div(DE (Vps)VCy)

5

= qs (61 — X\ Y| €1 — XQO/ Ay, -)dy)

«
— 5 4s

g

m

(CI _XQ\QU|Ym|Cl _XQO/Y C](.)(aya)dy>7

with the boundary conditions

(D (Vps)V i - fDHpr)vcl) :

(DE(Vps)Ver — SDH(Vps)VCy)

gom V‘FXJZO’
'V’FxJZO'

/8 m

Functions CY and ¢} satisfy the following problem in Qg x Y;,, x J.

k(y)

P(y)0,CY — TV
6(y)0ect — kif’)

k(y)

" Vy O = div(D(= V")V, 0F) = 0 (Cr = ),

k(y)

Vyp? - Vel — dli}V(’D(Tvypo)vyC?) =g (&1 — ),

The homogenized tensors are defined as follows.

K = /y k() (Vo' (y) + ) - (Vo) (y) + ) dy,

Ky, :/Y ak(y)(Vyv'(y) +e') - (Vyo! (y) + e?)dy,

(fo)

Dy (Vog),;

/

where v, is defined by

yo(‘r7y7t) =

—x7(y) s

D( o) (V w'(z,y) + ei) . (Vywj(a:,y) + ej)dy,

D(v

(y)

p(f1)

yw' (2, y) +€) - (Vyw! (z,y) + €’ )dy,

(Vps + Vypy) — xm(y)j((;{l))(avm + V&),

25

—_— O. O
v, I Vyp vycl dy)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
(3.16)
(3.17)

(3.18)

(3.19)
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and w? (z,t,y) is the Y-periodic solution of the following cell-problem for (z,t) €
Qx J: , '
—div(D(v,)(Vyw’ +€)) =0 inY,
y

_ (3.20)
/wj(m,tyy)dy=07 j=12.3.
Y

It remains to add some initial conditions.
__ fo _ 0 __ 0 _ 0 _ )
f1|t=0 = I Cl|t:0 = C1|t=0 =4 Cl}t:o = (1 |t=0 =1 (3.21)
and to recall that
fi=aci+BC ae. in QxJ, fi=p0CYae in Qyx Ty, xJ

Note that 1' characterizes function ¢; — %Cl. Noting that C; = #ﬁz(fl —
alep — %Cl) , Equation 1) then gives f.
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